6 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ обоснования Π°Π³Ρ€Π°Ρ€Π½Ρ‹Ρ… комплСксных энСргосистСм с использованиСм мСстных рСсурсов

    Get PDF
    Problem of creating agricultural energy systems is of a significant multifactor system-and-situational naΒ­ture, depending on the external economic and energy situation in the country, which predetermines accelerated development of autonomous energy centers of agro-towns based on joint use of centralized fuel and energy and local energy resources. The modern method for integrated energy supply of agro-towns as integrated territorial-and-economic entities of agro-industrial complex of the country with significant technical potential of local resources, including renewable energy sources, was develΒ­oped based on appropriate conceptual tools and principles of multi-level conceptual design and simulation modeling of inteΒ­grated energy systems using method of conceptual expertize as advanced scientific research, pre-project technical-and-eco- nomic and technical -and-technological substantiation of rational structure of the concept project. As a priority, a systemΒ­atic approach to development of regional systems of pilot projects of demonstration areas of high energy efficiency based on highly organized agro-towns and, first of all, experimental farms of the National Academy of Sciences of Belarus is substantiated. With this purpose, the Institute of Energy of the National Academy of Sciences of Belarus has developed software-based computing complex of an intelligent multi-level decision making support system providing simulation modΒ­eling and substantiation of rational scenarios for the concept project of an integrated energy system. The software package includes system of inherited and original software packages for staged procedure for performing computational experiments with a reasonable range of research risks. The conceptual content of the project depends on the Customer’s requirements, aims and objectives of the research, sectoral focus of agro-industrial enterprise, availability of sufficient technical potenΒ­tial of local energy resources, and the consistency of interests of the owners, regional and national governing structures of various sectors of an agro-town. The studies performed with examples of a number of agro-industrial enterprises and social and cultural sectors of agro-towns show a significant (up to 60%) improvement in quality of choosing a rational strucΒ­ture of a concept project for an integrated energy system and reduction (203 times) in sophistication of engineering design compared to ordinary 2-3-variant technical-and-economic substantiation of the project. Acknowledgements. The research was carried out within the framework of the State Program β€œEnergy Systems, Processes and Technologies”, Sub-program 1.1 β€œEnergy Security and Reliability of Energy Systems”, 2016-2018, with the support of the Belarusian Republican Foundation for Fundamental Research.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° создания Π°Π³Ρ€Π°Ρ€Π½Ρ‹Ρ… энСргосистСм носит сущСствСнно ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ систСмно-ситуа­ционный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π² зависимости ΠΎΡ‚ Π²Π½Π΅ΡˆΠ½Π΅ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΈ энСргСтичСской обстановки страны, Ρ‡Ρ‚ΠΎ прСдопрСдСляСт ускорСнноС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… энСргоцСнтров Π°Π³Ρ€ΠΎΠ³ΠΎΡ€ΠΎΠ΄ΠΊΠΎΠ² Π½Π° Π±Π°Π·Π΅ совмСстного использования Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСских ΠΈ мСстных энСргорСсурсов. БоврСмСнная мСтодология комплСксного энСргообСспСчСния Π°Π³Ρ€ΠΎΠ³ΠΎΡ€ΠΎΠ΄ΠΊΠΎΠ² ΠΊΠ°ΠΊ комплСксных Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-хозяйствСнных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ АПК страны, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ тСхничСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ мСстных рСсурсов, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ возобновляСмыС источники энСргии, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Π½Π° основС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ понятийного инструмСнтария ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Π½Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ проСктирования ΠΈ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования комплСксных энСргосистСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… экспСртиз ΠΊΠ°ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠ³ΠΎ Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ исслСдования, ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-экономичСского ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-тСхнологичСского обоснования Ρ€Π°Ρ†ΠΈΠΎΒ­Π½Π°Π»ΡŒΠ½ΠΎΠΉ структуры ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚-ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°. Π’ качСствС ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½ΠΎΠ³ΠΎ направлСния обоснован систСмный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Ρ€Π°Π·Ρ€Π°Β­Π±ΠΎΡ‚ΠΊΠ΅ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… систСм ΠΏΠΈΠ»ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ² дСмонстрационных Π·ΠΎΠ½ высокой энСргоэффСктивности Π½Π° Π±Π°Π·Π΅ высокоорганизованных Π°Π³Ρ€ΠΎΠ³ΠΎΡ€ΠΎΠ΄ΠΊΠΎΠ², Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ-ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… хозяйств ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ Π½Π°ΡƒΠΊ БСларуси. Для этого Π² Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π΅ энСргСтики ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ Π½Π°ΡƒΠΊ БСларуси Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ комплСкс ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ обоснованиС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… сцСнариСв ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚-ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° комплСксной энСргосистСмы. ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ комплСкс Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ систСму наслСдованных ΠΈ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°ΠΊΠ΅Ρ‚ΠΎΠ² ПО для поэтапной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ выполнСния Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… экспСримСнтов с обоснованным Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ рисков исслСдований. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚-ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° зависит ΠΎΡ‚ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π·Π°ΠΊΠ°Π·Ρ‡ΠΈΠΊΠ°, Ρ†Π΅Π»Π΅ΠΉ-Π·Π°Π΄Π°Ρ‡ исслСдований, отраслСвой направлСнности Π°Π³Ρ€ΠΎΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½ΠΎΠ³ΠΎ прСдприятия, наличия достаточного тСхничСского ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° мСстных энСргорСсурсов ΠΈ согласованности интСрСсов собствСнников, Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ общСгосударствСнных ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… структур Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сСкторов Π°Π³Ρ€ΠΎΠ³ΠΎΡ€ΠΎΠ΄ΠΊΠ°. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Π΅ исслСдования Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… ряда Π°Π³Ρ€ΠΎΒ­ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… прСдприятий ΠΈ сСкторов ΡΠΎΡ†ΠΊΡƒΠ»ΡŒΡ‚Π±Ρ‹Ρ‚Π° Π°Π³Ρ€ΠΎΠ³ΠΎΡ€ΠΎΠ΄ΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ сущСствСнноС (Π΄ΠΎ 60 %) ΠΏΠΎΒ­Π²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства Π²Ρ‹Π±ΠΎΡ€Π° Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ структуры ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚-ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° комплСксной энСргосистСмы ΠΈ сниТСниС (Π² 2-3 Ρ€Π°Π·Π°) трудоСмкости тСхничСского проСктирования ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹ΠΌ 2-3-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹ΠΌ тСхнико­экономичСским обоснованиСм ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°. Благодарности. Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ГосударствСнной ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ «ЭнСргСтичСскиС систСмы, процСссы ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈΒ», ΠŸΠΎΠ΄ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° 1.1 «ЭнСргСтичСская Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ энСргСтичСских систСм», 2016-2018 Π³ΠΎΠ΄Ρ‹, ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ БСлорусского рСспубликанского Ρ„ΠΎΠ½Π΄Π° Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований

    Using structured analysis and design technique (SADT) for simulation conceptual modelling

    Get PDF
    Conceptual Modelling (CM) has received little attention in the area of Modelling and Simulation (M&S) and more specifically in Discrete Event Simulation (DES). It is widely agreed that CM is least understood despite its importance. This is however, not the case in other fields of science and engineering (especially, computer science, systems engineering and software engineering). In Computer Science (CS) alone, CM has been extensively used for requirements specification and some well-established methods are in practice. The aim of the thesis is to propose a CM framework based on the principles of software engineering and CS. The development of the framework is adapted from a well-known software engineering method called Structured Analysis and Design Technique (SADT), hence it is called SADT CM. It is argued that by adapting approaches from CS, similar benefits can be achieved in terms of formality, understanding, communication and quality. A comprehensive cross-disciplinary review of CM in CS and M&S is undertaken, which highlights the dearth of standards within M&S CM when compared to CS. Three important sub-fields of CS are considered for this purpose namely, information systems, databases and software engineering. The review identifies two potential methods that could be adopted for developing a M&S CM framework. The first method called PREView was found unsuitable for M&S CM in DES domain. Hence, the thesis concentrates on developing the framework based on SADT. The SADT CM framework is evaluated on three-in depth test cases that investigate the feasibility of the approach. The study also contributes to the literature by conducting a usability test of the CM framework in an experimental setting. A comprehensive user-guide has also been developed as part of the research for users to follow the framewor

    A framework for the provision of online discrete event simulation for operational decision support in complex manufacturing environments

    Get PDF
    The engineering body of knowledge contains an array of methodologies and techniques to address the effectiveness and efficiency of operational activities within a manufacturing environment. One such example is simulation modelling, a powerful analytical tool that can potentially be valuable in assisting decision makers, managers and engineers to gauge improvement opportunities and achieve process advancements. However, the cost of ownership for simulation models is not insignificant even for large multinationals, this stems from the requirements for specialist skills in simulation software, model development, data mining and statistical analysis. Simulation projects typically require a large investment to develop and usually are used-once-and-thrown-away. To reuse the model, it would require repeating a large portion of the development cycle. In order for simulation modelling to achieve wider recognition as a decision support tool there is a necessity to reduce the cost of model maintainability, promote reusability, increase flexibility and improve user friendliness. The research proposed framework intends to achieve four goals. i.) Improve and advance the deployment and maintenance requirements of simulation projects in comparison to traditional methods. ii.) Integrate automation into model deployment phase of a simulation projects. Thus, allowing unique user-specified simulation models to be generated by automatically extracting and manipulating data from factory databases. iii.) Enforce a strong documentation technique to achieve interoperability and re-traceability of project progress, therefore permitting programme code or even entire models to be reused and utilised in future projects. iv.) Advance user friendliness and acceptance towards simulation modelling. Reducing the expertise required to conduct simulation studies will improve the programming exercise image associated with typical simulation studies. This framework assists in developing customised simulation modules. These modules facilitate automated online rapid development of reconfigurable, flexible, self-maintaining simulation models, aiming to deliver tailored analysis to support real-time operational decision making

    Generierung von Simulationsmodellen auf der Grundlage von Prozessmodellen

    Get PDF
    To conduct dynamic analyses on process models those models have to be dynamic models. As dynamic models based on process models a discrete simulation model can be used. However, the different application purpose prevents that process models can be directly used to conduct a simulation study. To transfers a static process model to a dynamic simulation model the ProSiT concept was developed and applied on the process modelling notations eEPC, BPMN and UML activity diagram. The ProSiT concept works as a central instance between different process modelling notations and different simulation systems. The concept includes transformation rules, a transformation model – the ProSiT model – and normalisation rules. Normalisation rules are designed to prepare the converted process model for the transformation in a simulation model. First, process models are checked by notation dependent syntax rules. If the process models match the syntax, preparation rules are applied to prepare the transformation that is executed with specific transformations rules. The resulting model is the conceptual transformation model. Normalisation rules are applied to simplify the process flow or remove not required data from the model. Information that are not available in the original process model will also be added to the model with the support of normalisation rules. Those rules are designed as automatic, semi-automatic and manual rules. When a normalised transformation model is created it can be converted to a simulation system. Therefore applicability rules check whether the simulation system can simulate the model. After this check transformation rules generate the simulation model based on the normalised transformation model.Um dynamische Analysen auf Prozessmodelle anzuwenden, mΓΌssen diese als dynamische Modelle vorliegen. Bei Prozessmodellen eigenen sich fΓΌr diesen Anwendungszweck diskrete Simulationsmodelle. Aufgrund des unterschiedlichen Einsatzzweckes von Prozess- und Simulationsmodellen kΓΆnnen Prozessmodelle nicht direkt fΓΌr eine Simulation verwendet werden. Als Ansatz, das statische Prozessmodell in ein dynamisches Simulationsmodell umzuwandeln, wurde das ProSiT Konzept entwickelt und auf die GeschΓ€ftsprozessnotationen eEPK, BPMN und das UML AktivitΓ€tsdiagramm angewendet. Das ProSiT Konzept stellt eine zentrale Instanz zwischen verschiedenen GeschΓ€ftsprozessnotationen und Simulationsumgebungen dar. Das Konzept umfasst Transformationsregeln, ein Transformationsmodell – das ProSiT Modell – und Normalisierungsregeln zur Vorbereitung des Modells auf eine Simulation. Prozessmodelle werden zunΓ€chst mit Vorbereitungsregeln fΓΌr eine Transformation in das ProSiT Modell vorbereitet. Das vorbereitete Modell wird anschließend mit Transformationsregeln ΓΌberfΓΌhrt. Normalisierungsregeln im Kontext des ProSiT Modells vereinfachen den Prozessablauf und fΓΌgen fehlende Informationen hinzu, die fΓΌr eine Simulation notwendig sind, aber nicht im ursprΓΌnglichen Prozessmodell vorhanden sind. Diese Regeln liegen als automatische, semi-automatische und manuelle Normalisierungsregeln vor. Ist ein Modell normalisiert, kann mittels Anwendbarkeitsregeln geprΓΌft werden, ob eine Simulationsumgebung das Modell simulieren kann. Trifft dies zu, wird mittels Transformationsregeln das Simulationsmodell aus dem normalisierten Transformationsmodell erzeugt.Auch im Buchhandel erhΓ€ltlich: Generierung von Simulationsmodellen auf der Grundlage von Prozessmodellenl / Oliver Kloos Ilmenau : Univ.-Verl. Ilmenau, 2014. - xiv, 508 S. ISBN 978-3-86360-086-0 Preis: 27,20

    Process Modelling Support for the Conceptual Modelling Phase of a Simulation Project

    Get PDF
    While many developments have taken place around supportingthe model coding task of simulation, there are few toolsavailable to assist in the conceptual modelling phase. Severalauthors have reported the advantages of using processmodelling tools in the early phases of a simulation project.This paper provides an overview of process modelling toolsin relation to their support for simulation, categorizing thetools into formal method and descriptive methods. A conclusionfrom this review is that none of the tools availableadequately support the requirements gathering phase ofsimulation. This is not surprising as none of the processmodelling tools were developed for explicit support of simulation.The paper then presents results of research intodeveloping a new process modelling method for simulation
    corecore