25 research outputs found

    Methodologies for simultaneous optimization of heat, mass, and power in industrial processes

    Get PDF
    Efficient consumption of energy and material resources, including water, is the primary focus for process industries to reduce their environmental impact. The Conference of Parties in Paris (COP21) highlighted the prominent role of industrial energy efficiency in combatting climate change by reducing greenhouse gas (GHG) emissions. Consumption of energy and material resources, especially water, are strongly interconnected; and therefore, must be treated simultaneously using a holistic approach to identify optimal solutions for efficient processing. Such approaches must consider energy and water recovery within a comprehensive process integration framework which includes options such as organic Rankine cycles for electricity generation from low to medium temperature heat. This thesis addresses the issue of how to efficiently manage energy and water in industrial processes by presenting two systematic methodologies for the simultaneous optimization of heat and mass and combined heat and power production. A novel iterative sequential solution strategy is proposed for optimizing heat-integrated water allocation networks through decomposing the overall problem into three sub-problems using mathematical programming techniques. The approach is capable of proposing a set of potential energy and water reduction opportunities that should be further evaluated for technical, economical, physical, and environmental feasibilities. A novel and comprehensive superstructure optimization methodology is proposed for organic Rankine cycle (ORC) integration in industrial processes including architectural features, such as turbine-bleeding, reheating, and transcritical cycles. Meta-heuristic optimization (via a genetic algorithm) is combined with deterministic techniques to solve the problem: by addressing fluid selection, operating condition determination, and equipment sizing. This thesis further addresses the importance of holistic approaches by applying the proposed methodologies on a kraft pulp mill. In doing so, freshwater consumption is reduced by more than 60%, while net power output is increased by a factor of six. The results exhibit that interactions among these elements are complex and therefore underline the necessity of such methods to explore their optimal integration with industrial processes. The potential implications of this work are broad, extending from total site integration to industrial symbiosis

    Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Get PDF
    Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs) constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods

    Superstructure Optimization of Low Temperature Organic Rankine Cycle with Multi Component Working Fluid

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2016. 8. 한종훈.Liquefied natural gas (LNG) has been receiving attention as energy source because of its high-energy density and low emission of greenhouse gas problems. Typically, LNG is evaporated by sea water in LNG terminal without using its cryogenic energy. The cryogenic energy of LNG can be utilized for power generation using organic Rankine cycle (ORC). In this thesis, an optimal ORC process utilizing LNG cold energy is proposed. The ORC process is modeled using commercial process simulator. The working fluid of the ORC is composed of normal pentane, trifluoromethane, and tetrafluoromethane. The optimization of the process to minimize total annualized cost (TAC) is performed using superstructure based approach. The developed superstructure includes four process alternatives, which are MSCHE, vapor flash process, 2-stage expansion, and VRP. The optimum solution is attained using the process simulator-interface-optimizer structure. As a result of optimization, the optimum ORC process configuration including MSCHE and 2-stage expansion is obtained. The optimal process shows the net power generation of 409.6 GJ/h, and the power generation per unit kilogram of LNG is increased by 68.2 %.CHAPTER 1 : Introduction 1 1.1. Research motivation 1 1.2. Research objectives 1 1.3. Outline of the thesis 6 CHAPTER 2 : Process Description and Superstructure Design 8 2.1. Base case 8 2.2. Process Alternatives and Superstructure Design 12 CHAPTER 3 : Optimization Formulation 19 3.1. Formulation of optimization problem and constraints 19 3.2. Optimization Structure 22 CHAPTER 4 : Results and Discussion 25 4.1. Results 25 4.2. Discussion 31 CHAPTER 5 : Modeling and Design of Vapor Recovery Unit (VRU) Processes on Carrier Ship 36 5.1. Introduction 36 5.2. Process description 37 5.3. Process modeling 40 5.4. Process alternative for improving efficiency 47 CHAPTER 6 : Conclusion and Future Works 51 6.1. Conclusion 51 6.2. Future works 52 Reference 53 Abstract in Korean (국문요약) 58Docto

    Optimal heat pump integration in industrial processes

    Get PDF
    Among the options for industrial waste heat recovery and reuse which are currently discussed, heat pumping receives far less attention than other technologies (e.g. organic rankine cycles). This, in particular, can be linked to a lack of comprehensive methods for optimal design of industrial heat pump and refrigeration systems, which must take into account technical insights, mathematical principles and state-of-the-art features. Such methods could serve in a twofold manner: (1) in providing a foundation for analysis of heat pump economic and energetic saving potentials in different industries, and further (2) in giving directions for experimentalists and equipment manufacturers to adapt and develop heat pump equipment to better fit the process needs. This work presents a novel heat pump synthesis method embedded in a computational framework to provide a basis for such analysis. The superstructure-based approach is solved in a decomposition solution strategy based on mathematical programming. Heat pump features are incorporated in a comprehensive way while considering technical limitations and providing a set of solutions to allow expert-based decision making at the final stage. Benchmarking is completed by applying the method on a set of literature cases which yields improved-cost solutions between 5% and 30% compared to those reported previously. An extended version of one case is presented considering fluid selection, heat exchanger network (HEN) cost estimations, and technical constraints. The extended case highlights a trade-off between energy efficiency and system complexity expressed in number of compression stages, gas- and sub-cooling. This is especially evident when comparing the solutions with 3 and 5 compression stages causing an increase of the COP from 2.9 to 3.1 at 3% increase in total annualized costs (TAC)

    Can a hierarchical ordering of alternative technological concepts for decarbonizing industrial energy systems minimize mitigation costs?

    Get PDF
    Integration of alternative technological concepts such as switching to alternative fuels, advanced energy efficiency, and carbon capture & storage in existing industrial energy systems can prove highly effective at minimising emissions; however, their adoption is low since solutions using these concepts raise costs considerably. The hypothesis of this work is a hierarchical combination of these concepts can reduce mitigation cost. To this end a mixed method approach is applied combining energy simulation with a novel Mixed Integer Linear Programming model developed to explore 48 alternative solutions to make industrial energy systems more sustainable. The method was applied to the most common industrial energy systems configurations. Results show that the added cost of integrating alternative technological concepts are lowered when energy efficiency via direct heat recovery is explored first in an optimisation-based hierarchy of options. The hierarchy is advanced energy efficiency before fuel and technology switching or integrating carbon capture and storage. This means process integration can pay for steeper reductions in carbon emissions. Integrating alternative technological concepts optimally and hierarchically reduced emissions by 61%, and costs by 55.7% compared to a partial integration for a heat-only business-as-usual industrial energy systems. Even though switching to an alternative fuel (blue hydrogen) reduces carbon emissions by 72%, costs increase by at least 3% compared to a system using fuel gas and fuel oil. A hierarchical integration of blue hydrogen reduces cost by 47% and carbon emissions by 88.7%. Partial integration of carbon capture and storage reduces carbon emissions by 36% but costs increase by 89%, with full integration using optimisation and the hierarchy costs only increase by 6.3%. therefore, the cost-effectiveness of integrating alternative technological concepts is highly influenced by the hierarchy which seeks to minimise demand for energy from industrial processes first, then increase the supply efficiency of industrial energy systems, and before switching to alternative fuels and technologies

    Design Optimization and Dynamic Simulation of Steam Cycle Power Plants: A Review

    Get PDF
    After more than one century from its first use for electric power production, steam cycles are still the object of continuous research and development efforts worldwide. Indeed, owing to its favorable thermodynamic properties, steam cycles are not only used in coal-fired power plants but in a large variety of applications such as combined cycles, concentrated solar power plants and polygeneration plants. On the other hand, to cope with the efficiency and flexibility requirements set by today’s energy markets, the design and the operation of steam cycles must be carefully optimized. A key rule is played by the simulation and optimization codes developed in the last 30 years. This paper provides an introduction to the main types of simulation and optimization problems (design, off-design operation and dynamic), an overview of the mathematical background (possible solution approaches, numerical methods and available software), and a review of the main scientific contributions

    Can a hierarchical ordering of alternative technological concepts for decarbonizing industrial energy systems minimize mitigation costs?

    Get PDF
    Integration of alternative technological concepts such as switching to alternative fuels, advanced energy efficiency, and carbon capture and storage in existing industrial energy systems can prove highly effective at minimizing emissions; however, their adoption is low since solutions using these concepts raise costs considerably. The hypothesis of this work is a hierarchical combination of these concepts can reduce mitigation cost. To this end a mixed method approach is applied combining energy simulation with a novel Mixed Integer Linear Programming model developed to explore 48 alternative solutions to make industrial energy systems more sustainable. The method was applied to the most common industrial energy systems configurations. Results show that the added cost of integrating alternative technological concepts are lowered when energy efficiency via direct heat recovery is explored first in an optimization-based hierarchy of options. The hierarchy is advanced energy efficiency before fuel and technology switching or integrating carbon capture and storage. This means process integration can pay for steeper reductions in carbon emissions. Integrating alternative technological concepts optimally and hierarchically reduced emissions by 61%, and costs by 55.7% compared to a partial integration for a heat-only business-as-usual industrial energy systems. Even though switching to an alternative fuel (blue hydrogen) reduces carbon emissions by 72%, costs increase by at least 3% compared to a system using fuel gas and fuel oil. A hierarchical integration of blue hydrogen reduces cost by 47% and carbon emissions by 88.7%. Partial integration of carbon capture and storage reduces carbon emissions by 36% but costs increase by 89%, with full integration using optimization and the hierarchy costs only increase by 6.3%. Therefore, the cost-effectiveness of integrating alternative technological concepts is highly influenced by the hierarchy which seeks to minimize demand for energy from industrial processes first, then increase the supply efficiency of industrial energy systems, and before switching to alternative fuels and technologies

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    CO<sub>2</sub>-mitigation options for the offshore oil and gas sector

    Get PDF
    The offshore extraction of oil and gas is an energy-intensive process leading to the production of CO2 and methane, discharged into the atmosphere, and of chemicals, rejected into the sea. The taxation of these emissions, in Norway, has encouraged the development of more energy-efficient and environmental-friendly solutions, of which three are assessed in this paper:. (i) the implementation of waste heat recovery, (ii) the installation of a CO2-capture unit and (iii) the platform electrification. A North Sea platform is taken as case study, and these three options are modelled, analysed and compared, using thermodynamic, economic and environmental indicators. The results indicate the benefits of all these options, as the total CO2-emissions can be reduced by more than 15% in all cases, while the avoidance costs vary widely and are highly sensitive to the natural gas price and CO2-tax. (C) 2015 Elsevier Ltd. All rights reserved
    corecore