4 research outputs found

    Process and tool support for design patterns with safety requirements

    Get PDF
    The requirement for higher Security and Dependability (S&D) of systems is continuously increasing, even in domains tradi-tionally not deeply involved in such issues. Nowadays, many practitioners express their worries about current S&D software engineering practices. New recommendations should be considered to ground this discipline on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating S&D by design to foster reuse. In this paper, we propose to combine design patterns and Model Driven Engineering (MDE) techniques for building component-based applications with safety requirements. The resulting modeling framework serves primarily to capture the basic concepts for specifying safety-oriented design patterns, building an S&D pattern system, and maintain safety properties, with existing modeling artifacts, during the engineering process based on the S&D pattern system. As a proof of concept, we are evaluating the feasibility of the framework through the example of the MooN pattern system for building systems having safety requirements: Communication Based Train Control (CBTC)

    Engineering secure systems: Models, patterns and empirical validation

    Get PDF
    Several development approaches have been proposed to handle the growing complexity of software system design. The most popular methods use models as the main artifacts to construct and maintain. The desired role of such models is to facilitate, systematize and standardize the construction of software-based systems. In our work, we propose a model-driven engineering (MDE) methodological approach associated with a pattern-based approach to support the development of secure software systems. We address the idea of using patterns to describe solutions for security as recurring security problems in specific design contexts and present a well-proven generic scheme for their solutions. The proposed approach is based on metamodeling and model transformation techniques to define patterns at different levels of abstraction and generate different representations according to the target domain concerns, respectively. Moreover, we describe an operational architecture for development tools to support the approach. Finally, an empirical evaluation of the proposed approach is presented through a practical application to a use case in the metrology domain with strong security requirements, which is followed by a description of a survey performed among domain experts to better understand their perceptions regarding our approach

    Process and tool support for design patterns with safety requirements

    No full text
    International audienceThe requirement for higher Security and Dependability (S&D) of systems is continuously increasing, even in domains tradi-tionally not deeply involved in such issues. Nowadays, many practitioners express their worries about current S&D software engineering practices. New recommendations should be considered to ground this discipline on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating S&D by design to foster reuse. In this paper, we propose to combine design patterns and Model Driven Engineering (MDE) techniques for building component-based applications with safety requirements. The resulting modeling framework serves primarily to capture the basic concepts for specifying safety-oriented design patterns, building an S&D pattern system, and maintain safety properties, with existing modeling artifacts, during the engineering process based on the S&D pattern system. As a proof of concept, we are evaluating the feasibility of the framework through the example of the MooN pattern system for building systems having safety requirements: Communication Based Train Control (CBTC)
    corecore