29 research outputs found

    Distribution Policies for Datalog

    Get PDF
    Modern data management systems extensively use parallelism to speed up query processing over massive volumes of data. This trend has inspired a rich line of research on how to formally reason about the parallel complexity of join computation. In this paper, we go beyond joins and study the parallel evaluation of recursive queries. We introduce a novel framework to reason about multi-round evaluation of Datalog programs, which combines implicit predicate restriction with distribution policies to allow expressing a combination of data-parallel and query-parallel evaluation strategies. Using our framework, we reason about key properties of distributed Datalog evaluation, including parallel-correctness of the evaluation strategy, disjointness of the computation effort, and bounds on the number of communication rounds

    Deciding Boundedness of Monadic Sirups

    Get PDF

    Static Analysis of Graph Database Transformations

    Full text link
    We investigate graph transformations, defined using Datalog-like rules based on acyclic conjunctive two-way regular path queries (acyclic C2RPQs), and we study two fundamental static analysis problems: type checking and equivalence of transformations in the presence of graph schemas. Additionally, we investigate the problem of target schema elicitation, which aims to construct a schema that closely captures all outputs of a transformation over graphs conforming to the input schema. We show all these problems are in EXPTIME by reducing them to C2RPQ containment modulo schema; we also provide matching lower bounds. We use cycle reversing to reduce query containment to the problem of unrestricted (finite or infinite) satisfiability of C2RPQs modulo a theory expressed in a description logic

    On the Optimization of Iterative Programming with Distributed Data Collections

    Get PDF
    Big data programming frameworks are becoming increasingly important for the development of applications for which performance and scalability are critical. In those complex frameworks, optimizing code by hand is hard and time-consuming, making automated optimization particularly necessary. In order to automate optimization, a prerequisite is to find suitable abstractions to represent programs; for instance, algebras based on monads or monoids to represent distributed data collections. Currently, however, such algebras do not represent recursive programs in a way which allows for analyzing or rewriting them. In this paper, we extend a monoid algebra with a fixpoint operator for representing recursion as a first class citizen and show how it enables new optimizations. Experiments with the Spark platform illustrate performance gains brought by these systematic optimizations

    Non-polynomial Worst-Case Analysis of Recursive Programs

    Full text link
    We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of nonrecursive programs. First, we apply ranking functions to recursion, resulting in measure functions. We show that measure functions provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in nonpolynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem using linear programming. While previous methods obtain worst-case polynomial bounds, our approach can synthesize bounds of the form O(nlogn)\mathcal{O}(n\log n) as well as O(nr)\mathcal{O}(n^r) where rr is not an integer. We present experimental results to demonstrate that our approach can obtain efficiently worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the divide-and-conquer algorithm for the Closest-Pair problem, where we obtain O(nlogn)\mathcal{O}(n \log n) worst-case bound, and (ii) Karatsuba's algorithm for polynomial multiplication and Strassen's algorithm for matrix multiplication, where we obtain O(nr)\mathcal{O}(n^r) bound such that rr is not an integer and close to the best-known bounds for the respective algorithms.Comment: 54 Pages, Full Version to CAV 201

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page
    corecore