18 research outputs found

    Comparing Labelled Markov Decision Processes

    Get PDF
    A labelled Markov decision process is a labelled Markov chain with nondeterminism, i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications of equivalence checking for the verification of anonymity, we study the algorithmic comparison of two labelled MDPs, in particular, whether there exist strategies such that the MDPs become equivalent/inequivalent, both in terms of trace equivalence and in terms of probabilistic bisimilarity. We provide the first polynomial-time algorithms for computing memoryless strategies to make the two labelled MDPs inequivalent if such strategies exist. We also study the computational complexity of qualitative problems about making the total variation distance and the probabilistic bisimilarity distance less than one or equal to one

    Dynamic Probabilistic Input Output Automata

    Get PDF
    We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O Automata formalism of Attie & Lynch [Paul C. Attie and Nancy A. Lynch, 2016] to the probabilistic setting. The original dynamic I/O Automata formalism included operators for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion. They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton. Our work extends all these features to the probabilistic setting. Furthermore, we prove necessary and sufficient conditions to obtain the monotonicity of automata creation/destruction with implementation preorder. Our construction uses a novel proof technique based on homomorphism that can be of independent interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et al. [Ran Canetti et al., 2007] to dynamic settings, an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure distributed computation, cybersecure distributed protocols, etc)

    Strategies for MDP Bisimilarity Equivalence and Inequivalence

    Get PDF
    A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. Motivated by applications to the verification of probabilistic noninterference in security, we study problems whether there exist strategies such that the labelled MDPs become bisimilarity equivalent/inequivalent. We show that the equivalence problem is decidable; in fact, it is EXPTIME-complete and becomes NP-complete if one of the MDPs is a Markov chain. Concerning the inequivalence problem, we show that (1) it is decidable in polynomial time; (2) if there are strategies for inequivalence then there are memoryless strategies for inequivalence; (3) such memoryless strategies can be computed in polynomial time

    Solving Odd-Fair Parity Games

    Full text link
    This paper discusses the problem of efficiently solving parity games where player Odd has to obey an additional 'strong transition fairness constraint' on its vertices -- given that a player Odd vertex vv is visited infinitely often, a particular subset of the outgoing edges (called live edges) of vv has to be taken infinitely often. Such games, which we call 'Odd-fair parity games', naturally arise from abstractions of cyber-physical systems for planning and control. In this paper, we present a new Zielonka-type algorithm for solving Odd-fair parity games. This algorithm not only shares 'the same worst-case time complexity' as Zielonka's algorithm for (normal) parity games but also preserves the algorithmic advantage Zielonka's algorithm possesses over other parity solvers with exponential time complexity. We additionally introduce a formalization of Odd player winning strategies in such games, which were unexplored previous to this work. This formalization serves dual purposes: firstly, it enables us to prove our Zielonka-type algorithm; secondly, it stands as a noteworthy contribution in its own right, augmenting our understanding of additional fairness assumptions in two-player games.Comment: To be published in FSTTCS 202
    corecore