260,729 research outputs found

    FacTweet: Profiling Fake News Twitter Accounts

    Full text link
    [EN] We present an approach to detect fake news in Twitter at the account level using a neural recurrent model and a variety of different semantic and stylistic features. Our method extracts a set of features from the timelines of news Twitter accounts by reading their posts as chunks, rather than dealing with each tweet independently. We show the experimental benefits of modeling latent stylistic signatures of mixed fake and real news with a sequential model over a wide range of strong baselinesThe work of Paolo Rosso was partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31)Ghanem, BHH.; Ponzetto, SP.; Rosso, P. (2020). FacTweet: Profiling Fake News Twitter Accounts. Springer. 35-45. https://doi.org/10.1007/978-3-030-59430-5_3S3545Aker, A., Kevin, V., Bontcheva, K.: Credibility and transparency of news sources: data collection and feature analysis. arXiv (2019)Aker, A., Kevin, V., Bontcheva, K.: Predicting news source credibility. arXiv (2019)Badawy, A., Lerman, K., Ferrara, E.: Who falls for online political manipulation? In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 162–168. ACM (2019)Baly, R., Karadzhov, G., Alexandrov, D., Glass, J., Nakov, P.: Predicting factuality of reporting and bias of news media sources. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3528–3539 (2018)Baly, R., Karadzhov, G., Saleh, A., Glass, J., Nakov, P.: Multi-task ordinal regression for jointly predicting the trustworthiness and the leading political ideology of news media. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2109–2116 (2019)Boyd, R.L., et al.: Characterizing the Internet Research Agency’s Social Media Operations During the 2016 US Presidential Election using Linguistic Analyses. PsyArXiv (2018)Choi, Y., Wiebe, J.: +/-EffectWordNet: sense-level lexicon acquisition for opinion inference. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1181–1191 (2014)Clark, E.M., Williams, J.R., Jones, C.A., Galbraith, R.A., Danforth, C.M., Dodds, P.S.: Sifting robotic from organic text: a natural language approach for detecting automation on Twitter. J. Comput. Sci. 16, 1–7 (2016)Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: BotOrNot: a system to evaluate social bots. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274. International World Wide Web Conferences Steering Committee (2016)Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2Vec: character-based distributed representations for social media. In: The 54th Annual Meeting of the Association for Computational Linguistics (ACL), p. 269 (2016)Dickerson, J.P., Kagan, V., Subrahmanian, V.: Using sentiment to detect bots on Twitter: are humans more opinionated than bots? In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 620–627. IEEE (2014)Ghanem, B., Buscaldi, D., Rosso, P.: TexTrolls: identifying Russian trolls on Twitter from a textual perspective. arXiv preprint arXiv:1910.01340 (2019)Ghanem, B., Cignarella, A.T., Bosco, C., Rosso, P., Rangel, F.: UPV-28-UNITO at SemEval-2019 Task 7: exploiting post’s nesting and syntax information for rumor stance classification. In: Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval), pp. 1125–1131 (2019)Ghanem, B., Glavas, G., Giachanou, A., Ponzetto, S.P., Rosso, P., Pardo, F.M.R.: UPV-UMA at CheckThat! Lab: verifying Arabic claims using a cross lingual approach. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019 (2019)Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020)Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019)Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96(5), 1029 (2009)Im, J., et al.: Still out there: modeling and identifying Russian troll accounts on Twitter. arXiv preprint arXiv:1901.11162 (2019)Karduni, A., et al.: Can you verifi this? Studying uncertainty and decision-making about misinformation using visual analytics. In: Twelfth International AAAI Conference on Web and Social Media (ICWSM) (2018)Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34 (2010)Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F.: The spread of fake news by social bots. arXiv preprint arXiv:1707.07592, pp. 96–104 (2017)Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL) (Volume 2: Short Papers), vol. 2, pp. 647–653 (2017)Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (EMNLP) (2005

    Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces

    Full text link
    [EN] Traditional interaction mechanisms in distributed digital spaces often fail to consider the intrinsic properties of action, perception, and communication among workgroups, which may affect access to the common resources used to mutually organize information. By developing suitable spatial geometries and natural interaction mechanisms, distributed spaces can become blended where the physical and virtual boundaries of local and remote spaces merge together to provide the illusion of a single unified space. In this paper, we discuss the importance of blended interaction in distributed spaces and the particular challenges faced when designing accessible technology. We illustrate this discussion through a new tangible interaction mechanism for collaborative spaces based on tabletop system technology implemented with optical frames. Our tangible elements facilitate the exchange of digital information in distributed collaborative settings by providing a physical manifestation of common digital operations. The tangibles are designed as passive elements that do not require the use of any additional hardware or external power while maintaining a high degree of accuracy.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA Project (Ref. TIN2013-46036-C3-1-R).Salvador-Herranz, G.; Camba, J.; Contero, M.; Naya Sanchis, F. (2018). Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces. Universal Access in the Information Society. 17(2):247-256. https://doi.org/10.1007/s10209-017-0563-7S247256172Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Acoust. Speech Signal Process. 13(3), 209–216 (1991)Benyon, D.: Presence in blended spaces. Interact. Comput. 24(4), 219–226 (2012)Bhalla, M.R., Bhalla, A.V.: Comparative study of various touchscreen technologies. Int. J. Comput. Appl. 6(8), 12–18 (2010)Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Newton (2008)Candela, E.S., Pérez, M.O., Romero, C.M., López, D.C.P., Herranz, G.S., Contero, M., Raya, M.A.: Humantop: a multi-object tracking tabletop. Multimed. Tools Appl. 70(3), 1837–1868 (2014)Cohen, J., Withgott, M., Piernot, P.: Logjam: a tangible multi-person interface for video logging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 128–135. ACM (1999)Couture, N., Rivière, G., Reuter, P.: Geotui: a tangible user interface for geoscience. In: Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, pp. 89–96. ACM (2008)de la Guía, E., Lozano, M.D., Penichet, V.R.: Cognitive rehabilitation based on collaborative and tangible computer games. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 389–392. IEEE (2013)Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, pp. 219–226. ACM (2001)Falcão, T.P., Price, S.: What have you done! the role of ‘interference’ in tangible environments for supporting collaborative learning. In: Proceedings of the 9th International Conference on Computer Supported Collaborative Learning-Volume 1, pp. 325–334. International Society of the Learning Sciences (2009)Fallman, D.: Wear, point and tilt. In: Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 293–302. ACM Press (2002)Fishkin, K.P., Gujar, A., Harrison, B.L., Moran, T.P., Want, R.: Embodied user interfaces for really direct manipulation. Commun. ACM 43(9), 74–80 (2000)Fitzmaurice, G.W., Buxton, W.: An empirical evaluation of graspable user interfaces: towards specialized, space-multiplexed input. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 43–50. ACM (1997)Fitzmaurice, G.W., Ishii, H., Buxton, W.A.: Bricks: laying the foundations for graspable user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 442–449. ACM Press (1995)Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)Higgins, S.E., Mercier, E., Burd, E., Hatch, A.: Multi-touch tables and the relationship with collaborative classroom pedagogies: a synthetic review. Int. J. Comput. Support. Collab. Learn. 6(4), 515–538 (2011)Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: Passive real-world interface props for neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 452–458. ACM (1994)Hinske, S.: Determining the position and orientation of multi-tagged objects using RFID technology. In: 5th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops’07, pp. 377–381. IEEE (2007)Hornecker, E.: A design theme for tangible interaction: embodied facilitation. In: ECSCW 2005, pp. 23–43. Springer (2005)Hoshi, K., Öhberg, F., Nyberg, A.: Designing blended reality space: conceptual foundations and applications. In: Proceedings of the 25th BCS Conference on Human–Computer Interaction, pp. 217–226. British Computer Society (2011)Ishii, H.: Tangible User Interfaces. CRC Press, Boca Raton (2007)Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 234–241. ACM (1997)Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-wimp interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 201–210. ACM (2008)Jetter, H.C., Dachselt, R., Reiterer, H., Quigley, A., Benyon, D., Haller, M.: Blended Interaction: Envisioning Future Collaborative Interactive Spaces. ACM, New York (2013)Jin, X., Han, J.: Quality threshold clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 820–820. Springer, Boston, MA (2011)Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 139–146. ACM (2007)Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: Tuio: a protocol for table-top tangible user interfaces. In: Proceedings of the 6th International Workshop on Gesture in Human–Computer Interaction and Simulation, pp. 1–5 (2005)Kirk, D., Sellen, A., Taylor, S., Villar, N., Izadi, S.: Putting the physical into the digital: issues in designing hybrid interactive surfaces. In: Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, pp. 35–44. British Computer Society (2009)Marques, T., Nunes, F., Silva, P., Rodrigues, R.: Tangible interaction on tabletops for elderly people. In: International Conference on Entertainment Computing, pp. 440–443. Springer (2011)Müller, D.: Mixed reality systems. iJOE 5(S2), 10–11 (2009)Newton-Dunn, H., Nakano, H., Gibson, J.: Block jam: a tangible interface for interactive music. In: Proceedings of the 2003 Conference on New Interfaces for Musical Expression, pp. 170–177. National University of Singapore (2003)Patten, J., Recht, B., Ishii, H.: Audiopad: a tag-based interface for musical performance. In: Proceedings of the 2002 Conference on New Interfaces for Musical Expression, pp. 1–6. National University of Singapore (2002)Patten, J., Recht, B., Ishii, H.: Interaction techniques for musical performance with tabletop tangible interfaces. In: Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, p. 27. ACM (2006)PQLabs: Inc. http://multitouch.com/ . Retrieved on 16 October 2016Ryokai, K., Marti, S., Ishii, H.: I/o brush: drawing with everyday objects as ink. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’04, pp. 303–310. ACM, New York (2004). doi: 10.1145/985692.985731Salvador, G., Bañó, M., Contero, M., Camba, J.: Evaluation of a distributed collaborative workspace as a creativity tool in the context of design education. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–7. IEEE (2014)Salvador-Herranz, G., Contero, M., Camba, J.: Use of tangible marks with optical frame interactive surfaces in collaborative design scenarios based on blended spaces. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 253–260. Springer (2014)Salvador-Herranz, G., Camba, J.D., Naya, F., Contero, M.: On the integration of tangible elements with multi-touch surfaces for the collaborative creation of concept maps. In: International Conference on Learning and Collaboration Technologies, pp. 177–186. Springer (2016)Schöning, J., Hook, J., Bartindale, T., Schmidt, D., Oliver, P., Echtler, F., Motamedi, N., Brandl, P., von Zadow, U.: Building interactive multi-touch surfaces. In: Müller-Tomfelde, C. (ed.) Tabletops-Horizontal Interactive Displays, pp. 27–49. Springer, London, UK (2010)Shaer, O., Hornecker, E.: Tangible user interfaces: past, present, and future directions. Found. Trends Hum. Comput. Interact. 3(1–2), 1–137 (2010)Shen, C., Everitt, K., Ryall, K.: Ubitable: Impromptu face-to-face collaboration on horizontal interactive surfaces. In: International Conference on Ubiquitous Computing, pp. 281–288. Springer (2003)Suzuki, H., Kato, H.: Algoblock: a tangible programming language, a tool for collaborative learning. In: Proceedings of 4th European Logo Conference, pp. 297–303 (1993)Suzuki, H., Kato, H.: Interaction-level support for collaborative learning: Algoblockan open programming language. In: The 1st International Conference on Computer Support for Collaborative Learning, pp. 349–355. L. Erlbaum Associates Inc. (1995)Terrenghi, L., Kirk, D., Richter, H., Krämer, S., Hilliges, O., Butz, A.: Physical handles at the interactive surface: exploring tangibility and its benefits. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 138–145. ACM (2008)Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: SMI 2001 International Conference on Shape Modeling and Applications, pp. 188–197. IEEE (2001)Weinberg, G., Gan, S.L.: The squeezables: Toward an expressive and interdependent multi-player musical instrument. Comput. Music J. 25(2), 37–45 (2001)Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)Wilson, F.: The hand: how its use shapes the brain, language, and human culture. Vintage Series. Vintage Books (1998). https://books.google.es/books?id=l_Boy_-NkwUCZuckerman, O., Arida, S., Resnick, M.: Extending tangible interfaces for education: digital montessori-inspired manipulatives. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 859–868. ACM (2005

    A review of mobile robots: Concepts, methods, theoretical framework, and applications

    Full text link
    [EN] Humanoid robots, unmanned rovers, entertainment pets, drones, and so on are great examples of mobile robots. They can be distinguished from other robots by their ability to move autonomously, with enough intelligence to react and make decisions based on the perception they receive from the environment. Mobile robots must have some source of input data, some way of decoding that input, and a way of taking actions (including its own motion) to respond to a changing world. The need to sense and adapt to an unknown environment requires a powerful cognition system. Nowadays, there are mobile robots that can walk, run, jump, and so on like their biological counterparts. Several fields of robotics have arisen, such as wheeled mobile robots, legged robots, flying robots, robot vision, artificial intelligence, and so on, which involve different technological areas such as mechanics, electronics, and computer science. In this article, the world of mobile robots is explored including the new trends. These new trends are led by artificial intelligence, autonomous driving, network communication, cooperative work, nanorobotics, friendly human-robot interfaces, safe human-robot interaction, and emotion expression and perception. Furthermore, these news trends are applied to different fields such as medicine, health care, sports, ergonomics, industry, distribution of goods, and service robotics. These tendencies will keep going their evolution in the coming years.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Spanish Ministry of Economy and Competitiveness, which has funded the DPI2013-44227-R project.Rubio Montoya, FJ.; Valero Chuliá, FJ.; Llopis Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems. 16(2):1-22. https://doi.org/10.1177/1729881419839596S122162Brunete, A., Ranganath, A., Segovia, S., de Frutos, J. P., Hernando, M., & Gambao, E. (2017). Current trends in reconfigurable modular robots design. International Journal of Advanced Robotic Systems, 14(3), 172988141771045. doi:10.1177/1729881417710457Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars Rovers: Past, Present, and Future. Computer, 41(12), 44-50. doi:10.1109/mc.2008.479Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2007). Global Path Planning on Board the Mars Exploration Rovers. 2007 IEEE Aerospace Conference. doi:10.1109/aero.2007.352683Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., … Wiens, R. C. (2012). Mars Science Laboratory Mission and Science Investigation. Space Science Reviews, 170(1-4), 5-56. doi:10.1007/s11214-012-9892-2Khatib, O., Yeh, X., Brantner, G., Soe, B., Kim, B., Ganguly, S., … Creuze, V. (2016). Ocean One: A Robotic Avatar for Oceanic Discovery. IEEE Robotics & Automation Magazine, 23(4), 20-29. doi:10.1109/mra.2016.2613281Ceccarelli, M. (2012). Notes for a History of Grasping Devices. Mechanisms and Machine Science, 3-16. doi:10.1007/978-1-4471-4664-3_1Campion, G., & Chung, W. (2008). Wheeled Robots. Springer Handbook of Robotics, 391-410. doi:10.1007/978-3-540-30301-5_18Ferriere, L., Raucent, B., & Campion, G. (s. f.). Design of omnimobile robot wheels. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.509271Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750Bałchanowski, J. (2012). Mobile Wheel-Legged Robot: Researching of Suspension Leveling System. Mechanisms and Machine Science, 3-12. doi:10.1007/978-94-007-5125-5_1Williams, R. L., Carter, B. E., Gallina, P., & Rosati, G. (2002). Dynamic model with slip for wheeled omnidirectional robots. IEEE Transactions on Robotics and Automation, 18(3), 285-293. doi:10.1109/tra.2002.1019459Chan, R. P. M., Stol, K. A., & Halkyard, C. R. (2013). Review of modelling and control of two-wheeled robots. Annual Reviews in Control, 37(1), 89-103. doi:10.1016/j.arcontrol.2013.03.004Kim, H., & Kim, B. K. (2014). Online Minimum-Energy Trajectory Planning and Control on a Straight-Line Path for Three-Wheeled Omnidirectional Mobile Robots. IEEE Transactions on Industrial Electronics, 61(9), 4771-4779. doi:10.1109/tie.2013.2293706Carbone, G., & Ceccarelli, M. (2005). Legged Robotic Systems. Cutting Edge Robotics. doi:10.5772/4669Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (s. f.). Footstep Planning for the Honda ASIMO Humanoid. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.2005.1570188Arikawa, K., & Hirose, S. (s. f.). Development of quadruped walking robot TITAN-VIII. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96. doi:10.1109/iros.1996.570670Kurazume, R., Byong-won, A., Ohta, K., & Hasegawa, T. (s. f.). Experimental study on energy efficiency for quadruped walking vehicles. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). doi:10.1109/iros.2003.1250697Hirose, S., Fukuda, Y., Yoneda, K., Nagakubo, A., Tsukagoshi, H., Arikawa, K., … Hodoshima, R. (2009). Quadruped walking robots at Tokyo Institute of Technology. IEEE Robotics & Automation Magazine, 16(2), 104-114. doi:10.1109/mra.2009.932524Stoica, A., Carbone, G., Ceccarelli, M., & Pisla, D. (2010). Cassino Hexapod : Experiences and new leg design. 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). doi:10.1109/aqtr.2010.5520756Bares, J. E., & Wettergreen, D. S. (1999). Dante II: Technical Description, Results, and Lessons Learned. The International Journal of Robotics Research, 18(7), 621-649. doi:10.1177/02783649922066475Schiele, A., Romstedt, J., Lee, C., Henkel, H., Klinkner, S., Bertrand, R., … Michaelis, H. (2008). NanoKhod Exploration Rover - A Rugged Rover Suited for Small, Low-Cost, Planetary Lander Mission. IEEE Robotics & Automation Magazine, 15(2), 96-107. doi:10.1109/mra.2008.917888Takayama, T., & Hirose, S. (2003). Development of Souryu I & II -Connected Crawler Vehicle for Inspection of Narrow and Winding Space. Journal of Robotics and Mechatronics, 15(1), 61-69. doi:10.20965/jrm.2003.p0061Cuesta, F., & Ollero, A. (2005). Intelligent Mobile Robot Navigation. Springer Tracts in Advanced Robotics. doi:10.1007/b14079Ohya, I., Kosaka, A., & Kak, A. (1998). Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Transactions on Robotics and Automation, 14(6), 969-978. doi:10.1109/70.736780Desouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237-267. doi:10.1109/34.982903Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231-249. doi:10.1002/(sici)1097-4563(199704)14:43.0.co;2-rBetke, M., & Gurvits, L. (1997). Mobile robot localization using landmarks. IEEE Transactions on Robotics and Automation, 13(2), 251-263. doi:10.1109/70.563647Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2005). Motion Planning for Humanoid Robots. Robotics Research. The Eleventh International Symposium, 365-374. doi:10.1007/11008941_39Lee, Y.-J., & Bien, Z. (2002). Path planning for a quadruped robot: an artificial field approach. Advanced Robotics, 16(7), 609-627. doi:10.1163/15685530260390746Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., & Lane, D. (2007). Path Planning for Autonomous Underwater Vehicles. IEEE Transactions on Robotics, 23(2), 331-341. doi:10.1109/tro.2007.895057P. Raja. (2012). Optimal path planning of mobile robots: A review. International Journal of the Physical Sciences, 7(9). doi:10.5897/ijps11.1745Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136Lozano-Pérez, T., & Wesley, M. A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10), 560-570. doi:10.1145/359156.359164Lozano-Perez. (1983). Spatial Planning: A Configuration Space Approach. IEEE Transactions on Computers, C-32(2), 108-120. doi:10.1109/tc.1983.1676196Brooks, R. A. (1983). Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(2), 190-197. doi:10.1109/tsmc.1983.6313112Schwartz, J. T., & Sharir, M. (1983). On the «piano movers» problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4(3), 298-351. doi:10.1016/0196-8858(83)90014-3Kavraki LE. Random networks in configurations space for fast path planning. Doctoral dissertation, Department of Computer Science, Stanford University, Stanford, CA, 1994.Kavraki, L. E., Latombe, J.-C., Motwani, R., & Raghavan, P. (1998). Randomized Query Processing in Robot Path Planning. Journal of Computer and System Sciences, 57(1), 50-60. doi:10.1006/jcss.1998.1578Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic Motion Planning with Moving Obstacles. The International Journal of Robotics Research, 21(3), 233-255. doi:10.1177/027836402320556421Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566-580. doi:10.1109/70.508439Rubio, F., Valero, F., Sunyer, J., & Mata, V. (2009). Direct step‐by‐step method for industrial robot path planning. Industrial Robot: An International Journal, 36(6), 594-607. doi:10.1108/01439910910994669Howard, T. M., & Kelly, A. (2007). Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots. The International Journal of Robotics Research, 26(2), 141-166. doi:10.1177/0278364906075328Valero FJ. Planificación de trayectorias libres de obstáculos para un manipulador plano. Doctoral Thesis, UPV, Spain, 1990.Valero, F., Mata, V., Cuadrado, J. I., & Ceccarelli, M. (1996). A formulation for path planning of manipulators in complex environments by using adjacent configurations. Advanced Robotics, 11(1), 33-56. doi:10.1163/156855397x00038Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Garcia, M. A. P., Montiel, O., Castillo, O., Sepúlveda, R., & Melin, P. (2009). Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, 9(3), 1102-1110. doi:10.1016/j.asoc.2009.02.014Miao, H., & Tian, Y.-C. (2013). Dynamic robot path planning using an enhanced simulated annealing approach. Applied Mathematics and Computation, 222, 420-437. doi:10.1016/j.amc.2013.07.022Bobrow, J. E., Dubowsky, S., & Gibson, J. S. (1985). Time-Optimal Control of Robotic Manipulators Along Specified Paths. The International Journal of Robotics Research, 4(3), 3-17. doi:10.1177/027836498500400301Kang Shin, & McKay, N. (1985). Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control, 30(6), 531-541. doi:10.1109/tac.1985.1104009Kyriakopoulos, K. J., & Saridis, G. N. (s. f.). Minimum jerk path generation. Proceedings. 1988 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1988.12075Constantinescu, D., & Croft, E. A. (2000). Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. Journal of Robotic Systems, 17(5), 233-249. doi:10.1002/(sici)1097-4563(200005)17:53.0.co;2-yGasparetto, A., & Zanotto, V. (2010). Optimal trajectory planning for industrial robots. Advances in Engineering Software, 41(4), 548-556. doi:10.1016/j.advengsoft.2009.11.001JIANGdagger, Z.-P., & NIJMEIJER, H. (1997). Tracking Control of Mobile Robots: A Case Study in Backstepping**This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Alberto Isidori under the direction of Editor Tamer Başar. Automatica, 33(7), 1393-1399. doi:10.1016/s0005-1098(97)00055-1Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., & Zikan, K. (1998). Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics, 4(1), 21-36. doi:10.1109/2945.675649Mirtich B. V-Clip: fast and robust polyhedral collision detection. Technical Report TR97-05, Mitsubishi Electric Research Laboratory, 1997.Mohamed, E. F., El-Metwally, K., & Hanafy, A. R. (2011). An improved Tangent Bug method integrated with artificial potential field for multi-robot path planning. 2011 International Symposium on Innovations in Intelligent Systems and Applications. doi:10.1109/inista.2011.5946136Seder, M., & Petrovic, I. (2007). Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. Proceedings 2007 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.2007.363613Simmons, R. (s. f.). The curvature-velocity method for local obstacle avoidance. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.51102

    Myoelectric forearm prostheses: State of the art from a user-centered perspective

    Get PDF
    User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop was organized involving clinicians (representing end users), academics, and engineers. The resulting needs included an increased number of functions, lower reaction and execution times, and intuitiveness of both control and feedback systems. Reviewing the state of the art of research in the main prosthetic subsystems (electromyographic [EMG] sensing, control, and feedback) showed that modern research prototypes only partly fulfill the requirements. We found that focus should be on validating EMG-sensing results with patients, improving simultaneous control of wrist movements and grasps, deriving optimal parameters for force and position feedback, and taking into account the psychophysical aspects of feedback, such as intensity perception and spatial acuity
    corecore