82 research outputs found

    DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning

    Full text link
    The rapidly changing workload of service-based systems can easily cause under-/over-utilization on the component services, which can consequently affect the overall Quality of Service (QoS), such as latency. Self-adaptive services composition rectifies this problem, but poses several challenges: (i) the effectiveness of adaptation can deteriorate due to over-optimistic assumptions on the latency and utilization constraints, at both local and global levels; and (ii) the benefits brought by each composition plan is often short term and is not often designed for long-term benefits -- a natural prerequisite for sustaining the system. To tackle these issues, we propose a two levels constraint reasoning framework for sustainable self-adaptive services composition, called DATESSO. In particular, DATESSO consists of a re ned formulation that differentiates the "strictness" for latency/utilization constraints in two levels. To strive for long-term benefits, DATESSO leverages the concept of technical debt and time-series prediction to model the utility contribution of the component services in the composition. The approach embeds a debt-aware two level constraint reasoning algorithm in DATESSO to improve the efficiency, effectiveness and sustainability of self-adaptive service composition. We evaluate DATESSO on a service-based system with real-world WS-DREAM dataset and comparing it with other state-of-the-art approaches. The results demonstrate the superiority of DATESSO over the others on the utilization, latency and running time whilst likely to be more sustainable.Comment: Accepted to the SEAMS '20. Please use the following citation: Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning. In IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Oct 7-8, 2020, Seoul, Kore

    Does it matter who pays back Technical Debt? An empirical study of self-fixed TD

    Get PDF
    Context: Technical Debt (TD) can be paid back either by those that incurred it or by others. We call the former self-fixed TD, and it can be particularly effective, as developers are experts in their own code and are well-suited to fix the corresponding TD issues. Objective: The goal of our study is to investigate self-fixed technical debt, especially the extent in which TD is self-fixed, which types of TD are more likely to be self-fixed, whether the remediation time of self-fixed TD is shorter than non-self-fixed TD and how development behaviors are related to self-fixed TD. Method: We report on an empirical study that analyzes the self-fixed issues of five types of TD (i.e., Code, Defect, Design, Documentation and Test), captured via static analysis, in more than 44,000 commits obtained from 20 Python and 16 Java projects of the Apache Software Foundation. Results: The results show that about half of the fixed issues are self-fixed and that the likelihood of contained TD issues being self-fixed is negatively correlated with project size, the number of developers and total issues. Moreover, there is no significant difference of the survival time between self-fixed and non-self-fixed issues. Furthermore, developers are more keen to pay back their own TD when it is related to lower code level issues, e.g., Defect Debt and Code Debt. Finally, developers who are more dedicated to or knowledgeable about the project contribute to a higher chance of self-fixing TD. Conclusions: These results can benefit both researchers and practitioners by aiding the prioritization of TD remediation activities and refining strategies within development teams, and by informing the development of TD management tools

    Technical Debt: An empirical investigation of its harmfulness and on management strategies in industry

    Get PDF
    Background: In order to survive in today\u27s fast-growing and ever fast-changing business environment, software companies need to continuously deliver customer value, both from a short- and long-term perspective. However, the consequences of potential long-term and far-reaching negative effects of shortcuts and quick fixes made during the software development lifecycle, described as Technical Debt (TD), can impede the software development process.Objective: The overarching goal of this Ph.D. thesis is twofold. The first goal is to empirically study and understand in what way and to what extent, TD influences today’s software development work, specifically with the intention to provide more quantitative insight into the field. Second, to understand which different initiatives can reduce the negative effects of TD and also which factors are important to consider when implementing such initiatives.Method: To achieve the objectives, a combination of both quantitative and qualitative research methodologies are used, including interviews, surveys, a systematic literature review, a longitudinal study, analysis of documents, correlation analysis, and statistical tests. In seven of the eleven studies included in this Ph.D. thesis, a combination of multiple research methods are used to achieve high validity.Results: We present results showing that software suffering from TD will cause various negative effects on both the software and the developing process. These negative effects are illustrated from a technical, financial, and a developer’s working situational perspective. These studies also identify several initiatives that can be undertaken in order to reduce the negative effects of TD.Conclusion: The results show that software developers report that they waste 23% of their working time due to experiencing TD and that TD required them to perform additional time-consuming work activities. This study also shows that, compared to all types of TD, architectural TD has the greatest negative impact on daily software development work and that TD has negative effects on several different software quality attributes. Further, the results show that TD reduces developer morale. Moreover, the findings show that intentionally introducing TD in startup companies can allow the startups to cut development time, enabling faster feedback and increased revenue, preserve resources, and decrease risk and thereby contribute to beneficial\ua0effects. This study also identifies several initiatives that can be undertaken in order to reduce the negative effects of TD, such as the introduction of a tracking process where the TD items are introduced in an official backlog. The finding also indicates that there is an unfulfilled potential regarding how managers can influence the manner in which software practitioners address TD

    Quality Properties of Execution Tracing, an Empirical Study

    Get PDF
    The authors are grateful to all the professionals who participated in the focus groups; moreover, they also express special thanks to the management of the companies involved for making the organisation of the focus groups possible.Data are made available in the appendix including the results of the data coding process.The quality of execution tracing impacts the time to a great extent to locate errors in software components; moreover, execution tracing is the most suitable tool, in the majority of the cases, for doing postmortem analysis of failures in the field. Nevertheless, software product quality models do not adequately consider execution tracing quality at present neither do they define the quality properties of this important entity in an acceptable manner. Defining these quality properties would be the first step towards creating a quality model for execution tracing. The current research fills this gap by identifying and defining the variables, i.e., the quality properties, on the basis of which the quality of execution tracing can be judged. The present study analyses the experiences of software professionals in focus groups at multinational companies, and also scrutinises the literature to elicit the mentioned quality properties. Moreover, the present study also contributes to knowledge with the combination of methods while computing the saturation point for determining the number of the necessary focus groups. Furthermore, to pay special attention to validity, in addition to the the indicators of qualitative research: credibility, transferability, dependability, and confirmability, the authors also considered content, construct, internal and external validity

    Study of Code Smells: A Review and Research Agenda

    Get PDF
    Code Smells have been detected, predicted and studied by researchers from several perspectives. This literature review is conducted to understand tools and algorithms used to detect and analyze code smells to summarize research agenda. 114 studies have been selected from 2009 to 2022 to conduct this review. The studies are deeply analyzed under the categorization of machine learning and non-machine learning, which are found to be 25 and 89 respectively. The studies are analyzed to gain insight into algorithms, tools and limitations of the techniques. Long Method, Feature Envy, and Duplicate Code are reported to be the most popular smells. 38% of the studies focused their research on the enhancement of tools and methods. Random Forest and JRip algorithms are found to give the best results under machine learning techniques. We extended the previous studies on code smell detection tools, reporting a total 87 tools during the review. Java is found to be the dominant programming language during the study of smells

    Understanding, Analysis, and Handling of Software Architecture Erosion

    Get PDF
    Architecture erosion occurs when a software system's implemented architecture diverges from the intended architecture over time. Studies show erosion impacts development, maintenance, and evolution since it accumulates imperceptibly. Identifying early symptoms like architectural smells enables managing erosion through refactoring. However, research lacks comprehensive understanding of erosion, unclear which symptoms are most common, and lacks detection methods. This thesis establishes an erosion landscape, investigates symptoms, and proposes identification approaches. A mapping study covers erosion definitions, symptoms, causes, and consequences. Key findings: 1) "Architecture erosion" is the most used term, with four perspectives on definitions and respective symptom types. 2) Technical and non-technical reasons contribute to erosion, negatively impacting quality attributes. Practitioners can advocate addressing erosion to prevent failures. 3) Detection and correction approaches are categorized, with consistency and evolution-based approaches commonly mentioned.An empirical study explores practitioner perspectives through communities, surveys, and interviews. Findings reveal associated practices like code review and tools identify symptoms, while collected measures address erosion during implementation. Studying code review comments analyzes erosion in practice. One study reveals architectural violations, duplicate functionality, and cyclic dependencies are most frequent. Symptoms decreased over time, indicating increased stability. Most were addressed after review. A second study explores violation symptoms in four projects, identifying 10 categories. Refactoring and removing code address most violations, while some are disregarded.Machine learning classifiers using pre-trained word embeddings identify violation symptoms from code reviews. Key findings: 1) SVM with word2vec achieved highest performance. 2) fastText embeddings worked well. 3) 200-dimensional embeddings outperformed 100/300-dimensional. 4) Ensemble classifier improved performance. 5) Practitioners found results valuable, confirming potential.An automated recommendation system identifies qualified reviewers for violations using similarity detection on file paths and comments. Experiments show common methods perform well, outperforming a baseline approach. Sampling techniques impact recommendation performance

    Security and trust in cloud computing and IoT through applying obfuscation, diversification, and trusted computing technologies

    Get PDF
    Cloud computing and Internet of Things (IoT) are very widely spread and commonly used technologies nowadays. The advanced services offered by cloud computing have made it a highly demanded technology. Enterprises and businesses are more and more relying on the cloud to deliver services to their customers. The prevalent use of cloud means that more data is stored outside the organization’s premises, which raises concerns about the security and privacy of the stored and processed data. This highlights the significance of effective security practices to secure the cloud infrastructure. The number of IoT devices is growing rapidly and the technology is being employed in a wide range of sectors including smart healthcare, industry automation, and smart environments. These devices collect and exchange a great deal of information, some of which may contain critical and personal data of the users of the device. Hence, it is highly significant to protect the collected and shared data over the network; notwithstanding, the studies signify that attacks on these devices are increasing, while a high percentage of IoT devices lack proper security measures to protect the devices, the data, and the privacy of the users. In this dissertation, we study the security of cloud computing and IoT and propose software-based security approaches supported by the hardware-based technologies to provide robust measures for enhancing the security of these environments. To achieve this goal, we use obfuscation and diversification as the potential software security techniques. Code obfuscation protects the software from malicious reverse engineering and diversification mitigates the risk of large-scale exploits. We study trusted computing and Trusted Execution Environments (TEE) as the hardware-based security solutions. Trusted Platform Module (TPM) provides security and trust through a hardware root of trust, and assures the integrity of a platform. We also study Intel SGX which is a TEE solution that guarantees the integrity and confidentiality of the code and data loaded onto its protected container, enclave. More precisely, through obfuscation and diversification of the operating systems and APIs of the IoT devices, we secure them at the application level, and by obfuscation and diversification of the communication protocols, we protect the communication of data between them at the network level. For securing the cloud computing, we employ obfuscation and diversification techniques for securing the cloud computing software at the client-side. For an enhanced level of security, we employ hardware-based security solutions, TPM and SGX. These solutions, in addition to security, ensure layered trust in various layers from hardware to the application. As the result of this PhD research, this dissertation addresses a number of security risks targeting IoT and cloud computing through the delivered publications and presents a brief outlook on the future research directions.Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaavat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsittelyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia taltioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infrastruktuurin turvaamista. Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknologiana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä terveydenhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet keräävät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa. Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tietoturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai niiden käyttäjien yksityisen tiedon suojaamiseksi. Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja turvautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymistavat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina. Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takaisinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkaisuina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuksellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön, saarekkeen, tekniseen toteutukseen. Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellusrajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokollakerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla. Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio ja diversifiointitekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturvallisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat monikerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen asti. Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vastataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista
    corecore