

 University of Groningen

Understanding, Analysis, and Handling of Software Architecture Erosion
Li, Ruiyin

DOI:
10.33612/diss.833424077

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Li, R. (2023). Understanding, Analysis, and Handling of Software Architecture Erosion. [Thesis fully internal
(DIV), University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.833424077

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-12-2023

https://doi.org/10.33612/diss.833424077
https://research.rug.nl/en/publications/1f764a7d-92fa-41aa-90e0-66b6adb11fb9
https://doi.org/10.33612/diss.833424077

Understanding, Analysis,
and Handling of Software

Architecture Erosion

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. J.M.A. Scherpen
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Tuesday 9 January 2024 at 14.30 hours

by

Ruiyin Li

born on 11 October 1994
in Hubei, China

Supervisors
Prof. P. Avgeriou
Prof. P. Liang

Assessment Committee
Prof. A. Capiluppi
Prof. A.N. Chatzigeorgiou
Prof. H. Muccini

The research reported in this thesis has been conducted in the Software Enginee-
ring and Architecture group of the Bernoulli Institute for Mathematics, Computer
Science and Artificial Intelligence of the University of Groningen, The Netherlands.

Understanding, Analysis, and Handling of Software Architecture Erosion
Ruiyin Li

To my parents

Abstract

Architecture erosion reflects the tendency of an implemented architecture of a soft-
ware system to gradually diverge from the intended architecture. Empirical evi-
dence from numerous studies has demonstrated that architecture erosion signifi-
cantly impacts various aspects of software development, maintenance, and evolu-
tion. This is because, architecture erosion often tends to occur imperceptibly and
accumulates over time, making its repair challenging, costly, and sometimes even
impossible. Therefore, timely detection and remediation of architecture erosion be-
come crucial.

One way to manage architecture erosion is by identifying its early symptoms,
such as lack of modularity and various architectural smells. By identifying and
managing these symptoms and their evolution, developers can gain insights into
the software system’s health and take proactive measures like architecture refacto-
ring. This early warning mechanism not only aids in repairing eroded architecture,
but also helps in understanding, identifying, analyzing, and optimizing software
architecture, ultimately improving software product quality. However, despite se-
veral research studies investigating the architecture erosion phenomenon, the cur-
rent state of the art has certain shortcomings. Specifically, there is a lack of com-
prehensive understanding of the nature of architecture erosion, it is unclear which
symptoms of architecture erosion are the most common, and there is a lack of ef-
fective methods to identify these symptoms. Hence, the main research objective
of this thesis is to establish a landscape of architecture erosion, investigate com-
mon erosion symptoms, and propose feasible approaches to identify and handle
architecture erosion.

To achieve the stated objective, we first need to obtain a landscape of the archi-
tecture erosion phenomenon and its current state of research in the literature. To this
end, we conducted a systematic mapping study that covers the literature spanning

from January 2006 to May 2019 for a comprehensive understanding of architecture
erosion, including its definitions, symptoms, causes, and consequences. The main
results show that (1) “architecture erosion” is the most frequently-used term follo-
wed by “architecture decay”. Four perspectives (i.e., violation, structure, quality, and
evolution) regarding the definition of architecture erosion are worthy of investiga-
tion in both research and practice, along with the respective four types of erosion
symptoms. (2) Non-technical reasons contribute to architecture erosion alongside
technical reasons. Architecture erosion has negative impacts on software quality at-
tributes, and practitioners can advocate for management intervention to prioritize
addressing architecture erosion and prevent potential system failures. (3) Appro-
aches and tools for detecting and addressing architecture erosion are categorized
into 19 and 35 categories, respectively, with consistency-based and evolution-based
approaches being commonly mentioned.

Subsequently, in order to gain insights into the state of practice, we conducted
an empirical study that aimed to explore how developers perceive and discuss the
phenomenon of architecture erosion. To collect relevant information from the per-
spective of practitioners, we utilized three primary data sources: developers’ online
communities, surveys, and interviews. This comprehensive approach allowed us to
gather diverse perspectives and obtain a deeper understanding of the architecture
erosion phenomenon. The findings reveal that despite the absence of dedicated tools
for detecting architecture erosion, developers can utilize associated practices (e.g.,
code review, architecture conformance checking) and tools (e.g., Lattix) to identify
the symptoms of architecture erosion. Evidence indicated that the collected mea-
sures from practitioners (e.g., architecture assessment, periodic maintenance) can
be utilized during architecture implementation to effectively address architecture
erosion.

After obtaining a comprehensive understanding of the state of research and prac-
tice, we decided to focus on a prevalent practice (i.e., code review) to analyze archi-
tecture erosion. Specifically, we chose code review comments, as a type of textual
artifact produced in code review, providing a window into analyzing developers’
practical understanding of erosion symptoms. We conducted two empirical studies
to delve deeper into common erosion symptoms during software development. The
first study focused on architecture erosion symptoms in code reviews, analyzing
discussions from the Nova and Neutron projects in OpenStack. The results revealed
that the most frequently identified erosion symptoms are architectural violation, du-
plicate functionality, and cyclic dependency. The number of comments on erosion
symptoms decreased over time, indicating increased stability in the architecture.
Most erosion symptoms were addressed by fixing or abandoning them after review
votes. Building upon these findings, the second study further explored the most

frequent violation symptoms, as these are the most immediate symptoms of archi-
tecture erosion and they require the most attention from practitioners. We collected
and analyzed 606 code review comments from four popular open-source projects
(i.e., Nova, Neutron, Qt Base, and Qt Creator) to study violation symptoms. The
findings show that developers discuss 10 categories of violation symptoms during
code review. The primary measures employed to address violation symptoms are
refactoring and removing code, accounting for 90% of the cases, while some sympt-
oms were disregarded by developers.

Considering the limitations of existing tools on identifying symptoms of archi-
tecture erosion, we sought to explore the possibility of automatically identifying
violation symptoms from textual artifacts in practice. We developed 15 machine
learning-based and 4 deep learning-based classifiers using three pre-trained word
embeddings to identify violation symptoms of architecture erosion from developer
discussions in code reviews. The results indicate that (1) the SVM classifier, utilizing
the word2vec pre-trained word embedding, achieved the highest performance with
an F1-score of 0.779; (2) classifiers employing the fastText pre-trained word embed-
ding model achieved favorable performance; (3) classifiers using 200-dimensional
pre-trained word embeddings outperformed those using 100 or 300-dimensional
models; (4) through employing a majority voting strategy, an ensemble classifier
improved performance and surpassed individual classifiers; and (5) practitioners
perceive the classifiers’ results as valuable, confirming the practical potential of au-
tomated identification of violation symptoms.

After proposing a solution for the identification of architecture violations in code
reviews, we proceeded to design an approach aimed at mitigating the impact of hu-
man factors, and especially the problem of unqualified code reviewers. To this end,
we proposed an automated recommendation for code reviewers who are qualified
to review architecture violations based on reviews of code changes. Specifically,
we utilized three widely adopted similarity detection methods to measure the file
path similarity and the semantic similarity of review comments. Through a series
of experiments, we evaluated these methods separately and compared them with
the baseline approach (RevFinder). The results proved that the common similarity
detection methods exhibited acceptable performance scores and outperformed Re-
vFinder in recommending code reviewers for architecture violations. Furthermore,
we discovered that the sampling techniques used in recommending code reviewers
have an impact on the performance of reviewer recommendation approaches.

Samenvatting

Architectuurerosie weerspiegelt de neiging van een geı̈mplementeerde architectuur
van een softwaresysteem om geleidelijk af te wijken van de bedoelde architectuur.
Empirisch bewijs uit talrijke studies heeft aangetoond dat architectuurerosie aan-
zienlijk invloed heeft op verschillende aspecten van softwareontwikkeling, onder-
houd en evolutie. Dit komt omdat architectuurerosie vaak onmerkbaar optreedt en
zich in de loop van de tijd ophoopt, waardoor reparatie uitdagend, kostbaar en soms
zelfs onmogelijk is. Daarom wordt tijdige detectie en herstel van architectuurerosie
cruciaal.

Een manier om architectuurerosie te beheren is door vroegtijdige symptomen
te identificeren, zoals gebrek aan modulariteit en verschillende architecturale geu-
ren. Door deze symptomen en hun evolutie te identificeren en te beheren, kunnen
ontwikkelaars inzicht krijgen in de gezondheid van het softwaresysteem en proac-
tieve maatregelen nemen, zoals architectuurherstructurering. Dit vroege waarschu-
wingssysteem helpt niet alleen bij het repareren van eroderende architectuur, maar
helpt ook bij het begrijpen, identificeren, analyseren en optimaliseren van software-
architectuur, en uiteindelijk bij het verbeteren van de softwareproductkwaliteit. On-
danks verschillende onderzoeken naar het fenomeen van architectuurerosie, heeft
de huidige stand van de techniek bepaalde tekortkomingen. Specifiek, er is een ge-
brek aan een alomvattend begrip van de aard van architectuurerosie, het is ondui-
delijk welke symptomen van architectuurerosie het meest voorkomen, en er is een
gebrek aan effectieve methoden om deze symptomen te identificeren. Daarom is het
belangrijkste onderzoeksdoel van deze scriptie het vaststellen van een landschap
van architectuurerosie, het onderzoeken van veelvoorkomende erosiesymptomen
en het voorstellen van haalbare benaderingen om architectuurerosie te identifice-
ren en aan te pakken.

Om het gestelde doel te bereiken, moeten we eerst een landschap verkrijgen van

het fenomeen architectuurerosie en de huidige staat van onderzoek in de literatuur.
Hiervoor hebben we een systematische mappingstudie uitgevoerd die de literatuur
beslaat van januari 2006 tot mei 2019 voor een alomvattend begrip van architectuur-
erosie, inclusief de definities, symptomen, oorzaken en gevolgen. De belangrijkste
resultaten tonen aan dat (1) “architectuurerosie” de meest gebruikte term is gevolgd
door “architectuur verval”. Vier perspectieven (d.w.z. schending, structuur, kwaliteit
en evolutie) met betrekking tot de definitie van architectuurerosie zijn het waard
om te onderzoeken in zowel onderzoek als praktijk, samen met de respectievelijke
vier soorten erosiesymptomen. (2) Niet-technische redenen dragen bij aan archi-
tectuurerosie naast technische redenen. Architectuurerosie heeft negatieve effecten
op de kwaliteitskenmerken van software, en praktijkmensen kunnen pleiten voor
managementinterventie om prioriteit te geven aan het aanpakken van architectuur-
erosie en mogelijke systeemfouten te voorkomen. (3) Benaderingen en tools voor
het detecteren en aanpakken van architectuurerosie zijn gecategoriseerd in 19 en
35 categorieën, respectievelijk, met consistentie-gebaseerde en evolutie-gebaseerde
benaderingen die vaak worden genoemd.

Vervolgens, om inzicht te krijgen in de praktijk, hebben we een empirische studie
uitgevoerd die tot doel had te onderzoeken hoe ontwikkelaars het fenomeen van ar-
chitectuurerosie waarnemen en bespreken. Om relevante informatie te verzamelen
vanuit het perspectief van de beoefenaars, hebben we drie primaire gegevensbron-
nen gebruikt: online gemeenschappen van ontwikkelaars, enquêtes en interviews.
Deze uitgebreide benadering stelde ons in staat om diverse perspectieven te verza-
melen en een dieper inzicht te krijgen in het fenomeen van de architectuurerosie. De
bevindingen onthullen dat ondanks de afwezigheid van specifieke tools voor het de-
tecteren van architectuurerosie, ontwikkelaars geassocieerde praktijken (bijv. code
review, architectuurconformiteitscontrole) en tools (bijv. Lattix) kunnen gebruiken
om de symptomen van architectuurerosie te identificeren. Bewijs toonde aan dat de
verzamelde maatregelen van beoefenaars (bijv. architectuurbeoordeling, periodiek
onderhoud) kunnen worden gebruikt tijdens de implementatie van de architectuur
om architectuurerosie effectief aan te pakken.

Na een uitgebreid begrip van de stand van onderzoek en praktijk te hebben
verkregen, besloten we ons te richten op een gangbare praktijk (d.w.z. code re-
view) om architectuurerosie te analyseren. Specifiek kozen we voor code review-
opmerkingen, als een soort tekstueel artefact dat wordt geproduceerd in code re-
view, waardoor we een kijkje krijgen in de praktische kennis van ontwikkelaars
over erosiesymptomen. We hebben twee empirische studies uitgevoerd om die-
per in te gaan op de gangbare erosiesymptomen tijdens softwareontwikkeling. De
eerste studie richtte zich op symptomen van architectuurerosie in code reviews, en
analyseerde discussies uit de Nova- en Neutron-projecten in OpenStack. De resul-

taten onthulden dat de meest frequent geı̈dentificeerde erosiesymptomen architec-
turale schendingen, duplicatie van functionaliteiten en cyclische afhankelijkheden
zijn. Het aantal opmerkingen over erosiesymptomen nam in de loop van de tijd af,
wat duidt op een verhoogde stabiliteit in de architectuur. De meeste erosiesympto-
men werden aangepakt door ze te repareren of te laten varen na review-stemmen.
Voortbouwend op deze bevindingen, heeft de tweede studie de meest voorkomende
schendingssymptomen verder verkend, aangezien deze de meest onmiddellijke
symptomen van architectuurerosie zijn en ze de meeste aandacht van de beoefe-
naars vereisen. We verzamelden en analyseerden 606 code review-opmerkingen
van vier populaire open-source projecten (d.w.z. Nova, Neutron, Qt Base en Qt
Creator) om schendingssymptomen te bestuderen. De bevindingen tonen aan dat
ontwikkelaars tijdens code review 10 categorieën van schendingssymptomen be-
spreken. De voornaamste maatregelen om schendingssymptomen aan te pakken
zijn refactoring en het verwijderen van code, goed voor 90% van de gevallen, terwijl
sommige symptomen door ontwikkelaars werden genegeerd.

Gezien de beperkingen van bestaande tools bij het identificeren van symptomen
van architectuurerosie, hebben we gezocht naar de mogelijkheid om automatisch
schendingssymptomen te identificeren uit tekstuele artefacten in de praktijk. We
hebben 15 machine learning-gebaseerde en 4 deep learning-gebaseerde classifica-
toren ontwikkeld met behulp van drie voorgeleerde word embeddings om schen-
dingssymptomen van architectuurerosie te identificeren uit discussies van ontwik-
kelaars in code reviews. De resultaten geven aan dat (1) de SVM-classificator, die
gebruikmaakt van de voorgeleerde word2vec word embedding, de hoogste prestaties
behaalde met een F1-score van 0.779; (2) classificatoren die het fastText voorgeleerde
word embedding-model gebruiken, presteerden gunstig; (3) classificatoren die 200-
dimensionale voorgeleerde word embeddings gebruikten, presteerden beter dan die
met 100 of 300-dimensionale modellen; (4) door het gebruik van een meerderheids-
stemstrategie verbeterde een ensemble-classificator de prestaties en overtrof indi-
viduele classificatoren; en (5) beoefenaars zien de resultaten van de classificatoren
als waardevol, wat het praktische potentieel van geautomatiseerde identificatie van
schendingssymptomen bevestigt.

Na een oplossing te hebben voorgesteld voor de identificatie van architectuur-
schendingen in code reviews, gingen we verder met het ontwerpen van een aanpak
die gericht was op het beperken van de impact van menselijke factoren, en in het bij-
zonder het probleem van niet-gekwalificeerde code reviewers. Hiervoor stelden we
een geautomatiseerde aanbeveling voor van code reviewers die gekwalificeerd zijn
om architectuurschendingen te reviewen op basis van reviews van codeveranderin-
gen. Specifiek hebben we drie veelgebruikte gelijkenisdetectiemethoden gebruikt
om de bestandspadgelijkenis en de semantische gelijkenis van review-opmerkingen

te meten. Door middel van een reeks experimenten hebben we deze methoden af-
zonderlijk geëvalueerd en vergeleken met de basisbenadering (RevFinder). De re-
sultaten toonden aan dat de gangbare gelijkenisdetectiemethoden acceptabele pres-
tatiescores vertoonden en RevFinder overtroffen bij het aanbevelen van code revie-
wers voor architectuurschendingen. Bovendien ontdekten we dat de samplingtech-
nieken die worden gebruikt bij het aanbevelen van code reviewers, invloed hebben
op de prestaties van reviewer aanbevelingsbenaderingen.

Contents

Abstract

Samenvatting

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Architecture Erosion and Its Symptoms 1

1.1.1 Architecture and Its Erosion . 1
1.1.2 Erosion Symptoms . 2

1.2 Causes and Impact of Architecture Erosion 3
1.3 Mining Architecture Information from Textual Artifacts 5
1.4 Research Design . 5

1.4.1 Problem Statement . 5
1.4.2 Design Science Framework . 7
1.4.3 Problem Decomposition . 8
1.4.4 Empirical Research Methodology 12

1.5 Overview of the Dissertation . 15

2 Understanding Software Architecture Erosion: A Systematic Mapping
Study 17
2.1 Introduction . 17
2.2 Context . 19

i

Contents

2.2.1 Terms of architecture erosion 19
2.2.2 Characteristics of architecture erosion 20

2.3 Mapping study design . 21
2.3.1 Research questions . 21
2.3.2 Pilot search and selection . 21
2.3.3 Formal search and selection . 24
2.3.4 Data extraction . 30
2.3.5 Data synthesis . 31

2.4 Results . 33
2.4.1 Overview . 34
2.4.2 RQ1: What are the definitions of architecture erosion in soft-

ware development? . 39
2.4.3 RQ2: What are the symptoms of architecture erosion in soft-

ware development? . 42
2.4.4 RQ3: What are the reasons that cause architecture erosion in

software development? . 44
2.4.5 RQ4: What are the consequences of architecture erosion in

software development? . 51
2.4.6 RQ5: What approaches and tools have been used to detect ar-

chitecture erosion in software development? 54
2.4.7 RQ6: What measures have been used to address and prevent

architecture erosion in software development? 64
2.4.8 RQ7: What are the difficulties when detecting, addressing,

and preventing architecture erosion? 68
2.4.9 RQ8: What are the lessons learned about architecture erosion

in software development? . 70
2.5 Discussion . 72

2.5.1 Analysis of results . 73
2.5.2 Implications . 82

2.6 Threats to validity . 86
2.6.1 Construct validity . 86
2.6.2 Internal validity . 86
2.6.3 External validity . 87
2.6.4 Reliability . 87

2.7 Related Work . 88
2.8 Conclusions . 89

ii

Contents

3 Understanding Architecture Erosion: The Practitioners’ Perceptive 91
3.1 Introduction . 91
3.2 Related Work . 93

3.2.1 Architecture Erosion . 93
3.2.2 Online Developer Communities 93

3.3 Study Design . 94
3.3.1 Research Questions . 94
3.3.2 Research Process . 96

3.4 Results . 102
3.4.1 RQ1 - Description of architecture erosion 102
3.4.2 RQ2 - Causes and consequences of architecture erosion 103
3.4.3 RQ3 - Identifying architecture erosion 107
3.4.4 RQ4 - Addressing architecture erosion 109

3.5 Discussion . 111
3.5.1 Interpretation of Results . 111
3.5.2 Implications for Researchers and Practitioners 112

3.6 Threats to Validity . 113
3.7 Conclusions and Future Work . 114

4 Symptoms of architecture erosion in code reviews: A study of two Open-
Stack projects 115
4.1 Introduction . 116
4.2 Background . 118

4.2.1 Code Review Process . 118
4.2.2 Architecture Erosion Symptoms 118

4.3 Study Design . 119
4.3.1 Research Questions . 119
4.3.2 Data Collection and Analysis 120

4.4 Results . 125
4.4.1 Results of RQ1 . 125
4.4.2 Results of RQ2 . 128
4.4.3 Results of RQ3 . 131

4.5 Discussion . 133
4.5.1 RQ1: Frequently Identified Erosion Symptoms 133
4.5.2 RQ2: Trend of Identified Erosion Symptoms 133
4.5.3 RQ3: Impact of Identified Erosion Symptoms 134

4.6 Implications . 135
4.6.1 Implications for Researchers 135
4.6.2 Implications for Practitioners 135

iii

Contents

4.7 Threats to Validity . 136
4.8 Related Work . 137

4.8.1 Code Review . 137
4.8.2 Identification of Architecture Erosion Symptoms 137

4.9 Conclusions and Future Work . 138

5 Warnings: Violation Symptoms Indicating Architecture Erosion 141
5.1 Introduction . 142
5.2 Background . 144

5.2.1 Code Review . 144
5.2.2 Architecture Erosion . 145

5.3 Methodology . 146
5.3.1 Research Questions . 146
5.3.2 Project Selection . 147
5.3.3 Data Collection . 147
5.3.4 Data Labeling and Analysis . 150

5.4 Results . 152
5.4.1 Overview . 152
5.4.2 RQ1 - Categories of Violations Symptoms 153
5.4.3 RQ2 - Expression of Violation Symptoms 159
5.4.4 RQ3 - Dealing with Violation Symptoms 162

5.5 Discussion . 164
5.5.1 Interpretation of Results . 164
5.5.2 Implications . 166

5.6 Threats to Validity . 168
5.7 Related Work . 169

5.7.1 Architecture Violations . 169
5.7.2 Architecture Conformance Checking 170
5.7.3 Code Review Comments . 171

5.8 Conclusions . 171

6 Towards Automatic Identification of Violation Symptoms of Architecture
Erosion 173
6.1 Introduction . 174
6.2 Background . 176

6.2.1 Architecture Erosion and Related Symptoms 177
6.2.2 Code Review in Gerrit . 177

6.3 Study Design . 179
6.3.1 Research Questions . 180

iv

Contents

6.3.2 Data Collection . 182
6.3.3 Phase 1 - Automatic Classification of Violation Symptoms . . 183
6.3.4 Ensemble Classifier . 188
6.3.5 Phase 2 - Validation Survey . 189

6.4 Results . 191
6.4.1 RQ1: Identifying Violation Symptoms 191
6.4.2 RQ2: Improving Performance with Voting 195
6.4.3 RQ3: Validation in Practice . 197

6.5 Discussion . 199
6.5.1 Interpretation of Results . 199
6.5.2 Implications . 203

6.6 Threats to Validity . 204
6.6.1 Construct validity . 205
6.6.2 External validity . 205
6.6.3 Reliability . 206

6.7 Related Work . 206
6.7.1 Code Review Comments . 206
6.7.2 Architecture Violations . 207
6.7.3 Analyzing Software Repositories with Machine Learning and

Deep Learning . 208
6.8 Conclusions and Future Work . 209

7 Code Reviewer Recommendation for Architecture Violations: An Ex-
ploratory Study 211
7.1 Introduction . 211
7.2 Background . 214

7.2.1 Code Review Process in Gerrit 214
7.2.2 Code Reviewer Recommendation 214
7.2.3 Architecture Violations . 216

7.3 Research Methodology . 216
7.3.1 Research Questions . 216
7.3.2 Data Collection . 217
7.3.3 Recommendation Approach . 218
7.3.4 Baseline Approach . 222
7.3.5 Evaluation Metrics . 223

7.4 Results and Discussion . 224
7.4.1 RQ1: Effectiveness of Our Approach 224
7.4.2 RQ2: Comparison of Recommendation Approaches 227
7.4.3 RQ3: Comparison of Sampling Methods 229

v

Contents

7.4.4 Implications . 230
7.5 Threats to Validity . 233
7.6 Related Work . 234
7.7 Conclusions . 234

8 Conclusions and Future Work 237
8.1 Research Questions and Contributions 237
8.2 Future Work . 241

A Selected Studies for Chapter 2 243

Appendix A 243

Bibliography 253

vi

List of Figures

1.1 The design science framework proposed by Wieringa (Wieringa, 2014) 8
1.2 Decomposition of the research problem 13

2.1 Result of the trial search from 1992 to 2019 using the IEEE Xplore
database . 25

2.2 The process of this systematic mapping study 26
2.3 Results of search, selection, and snowballing in this SMS 34
2.4 Distribution of the selected studies over types of authors 38
2.5 Number of the selected studies over time period 38
2.6 Distribution of the selected studies over types of publication 38
2.7 A conceptual model of architecture erosion according to the RQ results 73

3.1 Overview of the research process . 96

4.1 An overview of the code review process 119
4.2 An overview of the data collection and analysis process 121
4.3 Number of the discussion threads on architecture erosion symptoms

in Nova and Neutron . 126
4.4 Trends of the discussion threads on architecture erosion symptoms in

Nova and Neutron . 129
4.5 Percentages of the discussion threads on architecture erosion symp-

toms in Nova (i.e., P1) and Neutron (i.e., P2) 129
4.6 Monthly distribution of the discussion threads on architecture erosion

symptoms per month in Nova and Neutron 130
4.7 An example of cyclic dependency remove operation 131

vii

List of Figures

5.1 An overview of the data collection and analysis process 148
5.2 Overview of the retrieved review comments containing the violation

symptom keywords and the identified review comments related to
violation symptoms in the four projects 153

5.3 Distribution of the frequently used terms related to description of vi-
olation symptoms . 160

5.4 Distribution of the developers’ reactions in response to violation
symptoms in code review comments 164

6.1 Code review process in Gerrit . 179
6.2 An overview of the research process 180
6.3 The framework of the experimental setup for classifying violation

symptoms of architecture erosion from code review comments 184
6.4 Practitioners’ responses to statements regarding the usefulness of the

trained models . 198

7.1 An overview of code review process in Gerrit 215
7.2 Overview of incremental sampling and fixed sampling 222
7.3 Performances of Top-k accuracy of mixed similarity detection meth-

ods compared to RevFinder . 229

viii

List of Tables

1.1 Overview of research methods . 14
1.2 Overview of dissertation . 15

2.1 Research questions and their rationale 22
2.2 Search string and electronic databases used in this SMS 29
2.3 Journals, conferences, and workshops included in this SMS 29
2.4 Data items extracted from selected studies 32
2.5 Relationship between data items, data analysis method, and research

questions . 33
2.6 Number and proportion of the selected studies 35
2.7 Terminologies that the selected studies mentioned to describe archi-

tecture erosion . 40
2.8 Understanding of architecture erosion phenomenon from four per-

spectives . 41
2.9 Categories of symptoms of architecture erosion 43
2.10 Reasons that cause architecture erosion 46
2.11 Reasons of architecture erosion in three categories 50
2.12 Consequences of architecture erosion 52
2.13 Approaches used to detect architecture erosion 55
2.14 Tools used to detect architecture erosion 59
2.15 Measures used to address architecture erosion 67
2.16 Classification for the difficulties of detecting, addressing, and pre-

venting architecture erosion . 68
2.17 Lessons learned about architecture erosion in software development 71

3.1 Eight most popular online developer communities 97

ix

3.2 Background of the participants . 100
3.3 Mapping between the extracted data items and RQs 101
3.4 Terms that developers used to describe architecture erosion 103
3.5 Causes of architecture erosion . 106
3.6 Consequences of architecture erosion 106
3.7 Tools used to detect architecture erosion 108

4.1 An overview of the subject projects . 121
4.2 Symptoms of architecture erosion used in this study 123
4.3 Mapping between the extracted data items and RQs 124
4.4 Status of the code changes . 131

5.1 An overview of the selected projects 149
5.2 Keywords related to violation symptoms of architecture erosion . . . 150
5.3 Categories of violation symptoms in code review comments 155
5.4 Categories and percentages of linguistic patterns used to express vio-

lation symptoms in code review comments 161
5.5 Linguistic patterns (frequency ≥ 3) used to express violation symp-

toms in code review comments . 163

6.1 Examples from our dataset that includes data from Nova, Neutron,
Qt Base, and Qt Creator . 178

6.2 Performance comparison among ML-based classifiers 192
6.3 Performance comparison of the classifiers based on the fastText

model with different dimension size 192
6.4 Performance comparison of ensemble classifiers 193
6.5 Performance comparison among ensemble ML-based classifiers with

three word embeddings . 193
6.6 Performance comparison among DL-based classifiers 194
6.7 Demographic information of the survey respondents 200

7.1 Details of the selected projects used in our work 218
7.2 Top-k (1, 3, 5, 10) accuracy and MRR results of the selected similarity

detection methods on four OSS projects 225
7.3 Average MRR results by the selected similarity detection methods

compared with RevFinder . 228
7.4 Top-k accuracy by the selected similarity detection methods com-

pared with RevFinder . 231

x

Acknowledgements

If I were to reflect on my accomplishments in the first half of my life, earning a
doctoral degree is definitely one of the significant milestones. Coming to a country
as diverse, open, and inclusive as the Netherlands is a decision I will never regret,
not to mention that here, I met a lot of lovely friends who left stamps on my life.

First of all, I want to express my sincere and heartfelt gratitude to my supervi-
sor, Professor Paris Avgeriou. His mentorship, guidance, and support have been
invaluable in helping me navigate the challenges of conducting research. From the
moment he accepted me as his student, he has been a constant source of wisdom,
motivation, and support. He has challenged me to think critically, develop my ideas
with rigor, and articulate my thoughts with clarity. His feedback and perspective
have helped shape my research and refine my thinking. Beyond his academic exper-
tise, he has also shown great care and kindness. I am so grateful for the opportunity
to have worked with him.

Meanwhile, I would like to sincerely extend thanks to my co-supervisor, Pro-
fessor Peng Liang. As one of the helmsmen of my scientific research during my
doctoral phase, Peng has not only guided me in academic research and scientific
writing but also provided me with care in my life. His rigorous attitude, patience,
and humility have deeply influenced me. The road of scientific research never goes
smoothly. Whenever I encountered problems and felt lost, he always encouraged
me through the examples of domestic and international scholars, helping me regain
my confidence and continue my research.

I consider myself fortunate to have completed my Ph.D. under the guidance
of these two excellent supervisors. The knowledge, skills, and experiences I have
gained during this period will undoubtedly serve me well throughout my life. I
am forever grateful for the roles my supervisors have played in shaping me as a
researcher, scholar, and the person I am today.

xi

I would like to thank all the members of the Software Engineering and Archi-
tecture (SEARCH) group of the Bernoulli Institute: Yikun Li, Jie Tan, Darius Daniel
Sas, Cezar Sas, João Paulo Biazotto, Sahar Ahmadisakha, Zaki Pauzi, Tien Rahayu
Tulili, Héctor Fabio Cadavid Rengifo, Emeralda Sesari, Edi Sutoyo, Ayushi Ras-
togi, Vasilios Andrikopoulos, Andrea Capiluppi, Daniel Feitosa, Tijs van der Storm.
Thank you for your company, working together, drinking coffee and having lunch
together. Special thanks to Mohamed A.M. Soliman, He was my daily supervisor
at the beginning of my Ph.D. journey in Groningen and helped me a lot. Besides,
I also want to thank the members from Wuhan University for their support and
company: Fangchao Tian, Tingting Bi, Zhuang Xiong, Tianlu Wang, Muhammad
Waseem, Xueying Li, Xiaofeng Han, Liming Fu, Beiqi Zhang, and other members.

Lastly, but certainly not least, I am also grateful for the unwavering support
from my parents. Despite the geographical distance, your emotional support and
love have been my pillars of strength. In an era where technology bridges distances,
your presence has been a constant source of comfort. You have always been there
to lend an ear, offer sage advice, and provide encouragement during challenging
times. Thank you for being my steadfast rock throughout my Ph.d. journey and for
your firm belief in me.

Ruiyin Li
Groningen

July 18, 2023

xii

Chapter 1

Introduction

Ideally, throughout the life cycle of a software system, its architecture should un-
dergo gradual, “organic” modifications to accommodate new requirements and

adapt to environmental changes. This implies that the evolution of the architecture
should proceed in parallel to the evolution of the software system (Bass et al., 2021).
However, in reality, the surge in software complexity and the perpetual fluctuation
of requirements tends to lead to architecture erosion over time (Perry and Wolf,
1992).

This chapter elaborates on the main concepts of this Ph.D. thesis, the context of
the study, and describes the overall research design. Section 1.1 introduces the con-
cepts of architecture erosion and its symptoms. Section 1.2 presents the potential
causes and impact of architecture erosion. Section 1.3 describes some background
knowledge regarding mining architecture information from textual artifacts. Sec-
tion 1.4 provides an overview of the problem statement and its decomposition, as
well as the research methods employed in this thesis. Finally, Section 1.5 presents
the organization of the remainder of this dissertation.

1.1 Architecture Erosion and Its Symptoms

1.1.1 Architecture and Its Erosion

Software architecture usually refers to the overarching framework of a software sys-
tem, which describes the structural components of the system (i.e., the architectural
elements) and their relationships and attributes that meet system requirements and
overall quality. In the past few decades, different definitions of software architec-
ture appeared from different perspectives. For example, Perry and Wolf (Perry and
Wolf, 1992) define software architecture as “a set of architectural elements that have a
particular form”; Booch (Booch, 2005) stated that “an architecture is the set of signifi-
cant decisions about the organization of a software system”; ISO/IEC 42010 defines
software architecture as “the fundamental concepts or properties of a system in its envi-
ronment embodied in its elements, their relationships, and in the principles of its design and

2 1. Introduction

evolution”. In this thesis, we adopt a widely used definition (Clements et al., 2010;
Bass et al., 2021):

“The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them, and
properties of both.”

The design of a software system takes into account multiple factors, including
requirements, budgetary considerations, time constraints, technical limitations, etc.
During the software development life cycle, the emergence of new requirements
and issues prompts a series of modifications to the system. The cumulative modi-
fications can gradually compromise the structural integrity of the software system,
undermining its fundamental design principles. Consequently, the implemented ar-
chitecture gradually diverges from the intended architecture, giving rise to what is
commonly called architecture erosion.

The phenomenon of architecture erosion was initially brought to light in 1992 by
Perry and Wolf alongside their definition of software architecture (Perry and Wolf,
1992). Since then, researchers and practitioners increasingly recognized the exis-
tence of architecture erosion, employing various terms to describe this phenomenon,
such as software erosion (De Silva and Balasubramaniam, 2012; Dalgarno, 2009),
design erosion (Baum et al., 2018), design decay (Izurieta and Bieman, 2013), archi-
tecture degeneration (Li and Long, 2011), architectural decay (Hassaine et al., 2012),
code decay (Bandi et al., 2015), and modular deterioration (Rama, 2010).

As a practical example of architecture erosion, we consider a famous case,
namely the Mozilla Web browser (Godfrey and Lee, 2000; van Gurp and Bosch,
2002). Mozilla is an application from Netscape comprised of over 2,000,000 lines of
code. Netscape engineers invested six months in assessing the architecture erosion
and irreparable state of the initial architecture of the application, as new require-
ments caused changes that gradually violated the optimal design decisions in the
original version. Subsequently, a two-year effort was dedicated to the redevelop-
ment of the Mozilla Web browser, as it was not carefully architected at the begin-
ning. This example implies the significance of addressing architecture erosion, as
neglecting it could lead to substantial expenditures of time and labor costs.

1.1.2 Erosion Symptoms

In many cases, by the time developers become aware of the occurrence of architec-
ture erosion, it will have already made a significantly negative impact on software
development and maintenance. Consequently, effectively addressing architecture
erosion becomes a challenging task, often proving to be exceedingly difficult and

1.2. Causes and Impact of Architecture Erosion 3

sometimes even impossible (considering the costs) (De Silva and Balasubramaniam,
2012). Hence, a more sensible way is to detect and (at least partially) fix the eroded
architecture as early as possible (Macia, Arcoverde, Garcia, Chavez and von Staa,
2012). One feasible means to achieve this, is to identify early-stage symptoms of ar-
chitecture erosion.

Symptoms of architecture erosion have been explicitly investigated in the litera-
ture, as signs or indicators of the advent of erosion. For example, common symp-
toms of architecture erosion include code anomaly agglomeration (Oizumi et al.,
2016, 2015), lack of modularity (Macia, Garcia, Popescu, Garcia, Medvidovic and
von Staa, 2012), various architectural smells (Le et al., 2016, 2018), etc.

Through the identification of architecture erosion symptoms and monitoring
their evolutionary trends, such as changes in density and quantity, developers can
gain valuable insights into the overall health status of a software system and then
mitigate (or repair) the erosion (De Silva and Balasubramaniam, 2012). This can be
achieved, for instance, by measuring the density of erosion symptoms in different
modules and taking proactive measures (e.g., through refactoring) when a certain
threshold is exceeded. Identifying and analyzing architecture erosion symptoms can
serve as an early warning mechanism for software engineers to repair the eroded
architecture. More importantly, it can assist researchers and practitioners in better
understanding, identifying, analyzing, and optimizing a software architecture, ulti-
mately resulting in improving software product quality.

1.2 Causes and Impact of Architecture Erosion

Software evolution is an inherently dynamic process, characterized by the gradual
erosion of system architecture over time (Merkle, 2010). Architecture erosion may
occur in each stage of the software development life cycle and has varying impacts
on the development speed and the cost of maintenance. Previous studies have in-
vestigated the factors leading to architecture erosion (De Silva and Balasubrama-
niam, 2012; Zhang et al., 2011; Macia, Garcia, Popescu, Garcia, Medvidovic and von
Staa, 2012). We briefly introduce three common causes of architectural erosion in
the following:

Architectural violations are one of the main causes of architecture erosion, as men-
tioned by Perry and Wolf when they proposed the concept of architecture ero-
sion (Perry and Wolf, 1992). There are many different types of architecture viola-
tions, for example, code changes that violate dependency rules (e.g., communication
rules, consistency rules) between different layers of the system architecture (Men-
doza et al., 2021; Macia, Arcoverde, Garcia, Chavez and von Staa, 2012). Further-
more, architectural violations occur when the architecture is implemented without

4 1. Introduction

strict adherence to design decisions and architectural guidelines.
The accumulation of technical debt is another common cause of architectural ero-

sion. Technical debt is a metaphor that reflects technical compromises that yield
short-term benefits but may harm the long-term health of a software system (Avge-
riou et al., 2016). For instance, this happens when new products are rushed to mar-
ket due to product launch time pressure (Merkle, 2010; Mair et al., 2014; Stal, 2014;
Bhattacharya and Perry, 2007). Such “shortcuts” may change architecturally rele-
vant elements (e.g., modules) and break architectural integrity (De Silva and Bala-
subramaniam, 2012; Feilkas et al., 2009), e.g., by breaking encapsulation rules and
introducing unneeded dependencies, or deliberately introducing technical debt.

In addition, software development is a knowledge-intensive activity, and knowl-
edge vaporization related to development is generally considered to be one of the
main causes of architecture erosion. For example, lack of documentation of design
decisions and their rationale or assumptions, hinders subsequent architectural en-
hancements and modifications (Feilkas et al., 2009; Strasser et al., 2014). Developer
turnover exacerbates architecture erosion due to lost knowledge about system re-
quirements and architectural decisions (Mair et al., 2014; de Oliveira Barros et al.,
2015; Reimanis and Izurieta, 2019).

Empirical evidence from numerous studies has demonstrated that architecture
erosion significantly impacts various aspects of software development, mainte-
nance, and evolution (De Silva and Balasubramaniam, 2012). The quality degrada-
tion of software systems is a very common consequence, as eroded architecture con-
tributes to the deterioration of system structure, diminished system flexibility, and
reduced degree of modularization of systems (Izurieta and Bieman, 2013; De Silva
and Balasubramaniam, 2012). In addition, in the case of legacy systems, architec-
ture erosion poses obstacles to developers’ comprehension and maintenance of the
software (Rama, 2010). Eroded architectures with implicit dependencies raise chal-
lenges for testers and maintainers, as preserving these dependencies while making
modifications can be arduous (Stal, 2014). Developers may not fully understand
the ramifications of breaking such dependencies, setting off a chain reaction of un-
intended consequences (Uchôa et al., 2020). Besides, the increased complexity of
eroded architectures, such as an excess of circular dependencies, significantly im-
pedes development and iteration speed. Activities, such as debugging or adding
new functions, can become painstakingly slow or even almost stagnate. Conse-
quently, additional time and labor costs must be invested in activities like mainte-
nance and refactoring, potentially prolonging the software product’s time-to-market
and exceeding the budgeted development costs (Dalgarno, 2009).

1.3. Mining Architecture Information from Textual Artifacts 5

1.3 Mining Architecture Information from Textual Ar-
tifacts

The entire software development life cycle is accompanied by generating a large
number of textual artifacts, such as source code, code comments, bug reports, docu-
mentation, code review comments, developer mailing lists, and so on. These textual
artifacts encapsulate a wealth of knowledge pertaining to software development.
As architecture design is a knowledge-intensive process, an extensive body of de-
velopment knowledge relevant to architecture design and implementation can be
extracted from these textual artifacts through the application of data mining tech-
niques.

Data mining has emerged as an invaluable and practical approach in the field
of software engineering. By extracting and analyzing data from textual artifacts,
researchers and practitioners can gain valuable insights and make well-informed
decisions throughout the software development life cycle. Data mining has been
used in different aspects of software engineering, including defect prediction, re-
quirements analysis, and software traceability.

A specific textual artifact that is used as the main data source in this thesis, is
code review comments; these typically document the understanding and discus-
sion of the source code by developers and code reviewers. Code review, as a critical
development activity, involves the systematic examination of assigned code to iden-
tify defects and enhance software quality (Bacchelli and Bird, 2013). A methodical
code review process not only improves the quality of software systems, but also fos-
ters the sharing of development knowledge and prevents the release of unstable and
defective products. Over time, code review practices have become increasingly im-
portant and have been widely employed in modern software development. These
practices have been integrated into modern code review workflows, supported by
diverse tools during development. Focusing on code reviews can extract valuable
knowledge from unstructured data. The insights from code reviews can empower
practitioners and researchers with practical insights, and lead to improved software
quality, enhanced decision-making, and more efficient development processes.

1.4 Research Design

1.4.1 Problem Statement

Even though there are currently several research studies that investigated the field
of architecture erosion, the current state of the art has three main shortcomings,

6 1. Introduction

elaborated in the following.
First, there is a lack of a systematic overview that comprehensively explores the

landscape of the architecture erosion phenomenon. Various terms (e.g., “architec-
ture erosion”, “architecture decay”, “architecture degradation”, and “architectural degen-
eration”) were used to describe the architecture erosion phenomenon in previous
studies (e.g., van Gurp and Bosch (2002); Mo et al. (2013); Macia, Arcoverde, Garcia,
Chavez and von Staa (2012); Hochstein and Lindvall (2005)). However, the mean-
ing of these terms is not always consistent; such an inconsistency might hinder a
thorough understanding of architecture erosion and prevent systematic investiga-
tion of this phenomenon. Considering the fundamental impact of architecture ero-
sion on software development, especially in terms of maintainability and evolvabil-
ity (De Silva and Balasubramaniam, 2012), it is imperative for researchers and prac-
titioners to gain a comprehensive understanding of this phenomenon. This includes
exploring the underlying causes behind the occurrence of architecture erosion and
the corresponding consequences, summarizing feasible countermeasures, and uti-
lizing supported approaches and tools to detect and address architecture erosion
systematically.

Second, when studying architecture erosion during development, existing stud-
ies tend to primarily focus on source code and rarely utilize textual artifacts, as it is
still challenging to effectively search and retrieve architectural knowledge from tex-
tual artifacts (Bi, Liang, Tang and Yang, 2018). For example, previous studies have
predominantly focused on identifying symptoms of architecture erosion through
examining source code to detect and analyze various issues, including architec-
tural smells and dependencies (Oizumi et al., 2019; Le et al., 2018, 2016; Mo et al.,
2013; Fontana et al., 2016). However, it is essential to acknowledge that architectural
knowledge is not solely contained within source code. While analyzing source code
is valuable, there are many architecture concepts, such as design decisions and their
rationale that cannot be simply mined from source code (Babar et al., 2009). There-
fore, it is worth mining and analyzing practical and useful architectural knowledge
pertaining to architecture erosion from textual artifacts. Such information could be
supplementary to source code analysis, and using both sources (source code and
textual artifacts) can help create a bigger picture of the architecture knowledge that
is more than the sum of its parts.

Third, to effectively identify and repair architectural erosion, existing tools suf-
fer from certain limitations, such as limited programming language support, insuf-
ficient coverage of architectural erosion symptoms, and restricted functionality and
availability (Mumtaz et al., 2021). The code review process and its supporting tools,
can effectively complement existing tools and source code analysis techniques re-
garding the identification and subsequently repair of architectural issues (Balachan-

1.4. Research Design 7

dran, 2013; Ruangwan et al., 2019). This is because the comments generated dur-
ing code review provide a wealth of textual information about the architectural
changes that developers have identified and discussed during the development pro-
cess (Paixao et al., 2019). Therefore, code review comments can be examined and
leveraged to investigate architecture changes and violations from the viewpoint of
the developers.

Summarizing the aforementioned challenges, this thesis addressed the core
problem as follows:

Current research on architecture erosion is still incomplete and lacks a compre-
hensive understanding of the nature of architecture erosion. Due to the limita-
tions of existing tools, it is essential and complementary to identify architecture
erosion from textual artifacts beyond source code, to gain insights into the prac-
tical erosion symptoms and their countermeasures. One textual artifact that is
particularly worth exploring for the identification of architectural violations, is
code reviews.

1.4.2 Design Science Framework

Design science was initially introduced by March and Smith (March and Smith,
1995), and refers to the design and investigation of artifacts in context. Later, a
design science framework for the field of Software Engineering was developed and
refined by Wieringa (Wieringa, 2014). As presented in Figure 1.1, design science
concerns two parts: design and investigation, and they correspond to two kinds of re-
search problems, namely, design problems and knowledge questions. Specifically, design
problems necessitate real-world changes and require an analysis of stakeholder goals,
whether actual or hypothetical. In contrast, knowledge questions do not seek a change
in the world; rather, they ask for knowledge about the world as it is (Wieringa, 2014).

The distinction between design problems and knowledge questions often be-
comes obscured within reports pertaining to design science research. If a request
asks for a solution to a design (e.g., design an algorithm to solve certain specific
problems), it falls under the category of design problems. In these cases, the solutions
may not be unique and are evaluated by utilities with respect to the stakeholder
goals. If there is a pursuit for answers about the world (e.g., whether certain algo-
rithms are useful for certain goals), it belongs to the realm of knowledge questions.
The answers can be a proposition or a hypothesis, which might be uncertain and
require testing through the verification of truth over time.

Design problems are treated by design cycles that can be organized in varying
ways, and are broken down into three tasks, problem investigation, treatment de-
sign, and treatment validation; knowledge questions can be answered by empirical

8 1. Introduction

Social context
(Location of stakeholders)

Artifacts & contexts to investigate

Knowledge & new design problems

Designs
Goals,

Budgets

Design

Designing an artifact
to improve a problem

context

Investigation
Answering knowledge
questions about the

artifact in context

Existing problem-solving
knowledge,

Existing designs

Existing answers to
knowledge questions

New problem-solving
knowledge,

New designs

New answers to
knowledge questions

Knowledge context

(Mathematics, social science, natural science, design science, design specifications, useful facts,
practical knowledge, common sense)

Figure 1.1: The design science framework proposed by Wieringa (Wieringa, 2014)

cycles, utilizing analytical or empirical research methods, such as experiments, case
studies, and surveys. Design problems and knowledge questions are usually nested
with each other to develop artifacts that can interact with problem contexts to bring
about improvements in context. The above characteristics make the design science
framework well-suited to design long-term research, such as Ph.D. projects. By de-
composing a research question into sub-questions, Ph.D. projects can be divided into
fine-grained research questions. In this way, the initial research problem described
in Section 1.4.1 can be decomposed into smaller research questions in Section 1.4.3,
which become more concrete along with in-depth understanding, and analysis.

1.4.3 Problem Decomposition

This section elaborates on the problem decomposition, that is, how the problem
statement is decomposed into design problems and knowledge questions, as well
as their interconnections. Figure 1.2 shows the decomposition of the main research
problem described in Section 1.4.1. For brevity, both design problems and knowl-
edge questions are marked as Research Questions (RQs); for instance, RQ1 denotes
the first knowledge question “What is the current state of the art of architecture ero-

1.4. Research Design 9

sion?” and RQ1.1 indicates one of its sub-RQs, “What is the current understanding
of architecture erosion in the literature?”. The thick arrows denote the main research
sequence and the thin arrows refer to the further decomposed sub-RQs.

To address the stated problem, the first step is to establish a broad and holis-
tic landscape on the architecture erosion phenomenon for a comprehensive under-
standing of the nature of architecture erosion; thus, we started our research with the
above-mentioned RQ1. To the best of our knowledge, there were no studies that
systematically investigate the phenomenon of architecture erosion, such as its def-
initions, symptoms, causes, and consequences. Therefore, we formulated RQ1.1:
“What is the current understanding of architecture erosion in the literature?”. Subse-
quently, RQ1.2 (i.e., “What are the existing supports for addressing architecture erosion
in the literature?”) concerns the existing approaches and tools used to identify and
address architecture erosion. Finally, RQ1.3 (i.e., “What are the difficulties and lessons
of addressing architecture erosion?”) investigated the challenges and lessons learned
on handling architecture erosion, such as dilemmas and trade-offs regarding ad-
dressing erosion.

To gain a comprehensive understanding of architecture erosion, it is paramount
to not only analyze the existing literature but also to investigate its current state
of practice in the industry. This is particularly important as it allows us to ascertain
whether a disparity exists between academic research and industry practices. To this
end, we formulated RQ2: “What is the current state of the practice regarding architecture
erosion from the developers’ perspective?”. RQ2.1 (i.e., “How do developers discuss archi-
tecture erosion in practice?”) investigated how developers perceive this phenomenon
and shed light on its manifestation in practice, as well as the potential causes and
consequences of architecture erosion based on their own experience. RQ2.2 (i.e.,
“What are the existing supports for addressing architecture erosion in practice?”) sought
to explore the existing practices and tools to address potential architecture erosion
in industrial practice.

The findings from RQ1 and RQ2 unveiled the current status regarding architec-
ture erosion within both research and industry. One of the main findings was that
symptoms of architecture erosion have received considerable attention from both
researchers and practitioners. More importantly, we found that erosion symptoms
can be regarded as useful signs and indicators to identify architecture erosion. How-
ever, the existing approaches and tools use source code analysis, and have various
limitations in identifying erosion symptoms from source code (Mumtaz et al., 2021).
Furthermore, code review is a common means of improving the quality attributes of
software systems and combating architecture erosion in practice. Meanwhile, rich
and fine-grained discussions on source code and system design are recorded as code
review comments, which makes it possible to investigate real-world issues related

10 1. Introduction

to architecture erosion. As mentioned previously, textual artifacts can act as com-
plementary data sources in mining architecture information that cannot be derived
from source code. Thus, we decided to investigate erosion symptoms in textual
artifacts in order to focus on the developers’ understanding of these symptoms in
practice. As a type of textual artifact, code review comments contain a large num-
ber of implementation discussions during development; thus we decided to focus
on this type.

Given the above, to further explore the erosion symptoms from the perspective
of practitioners during code reviews, we formulated RQ3: “How are architecture ero-
sion symptoms discussed in code review comments?”. Subsequently, RQ3.1 (i.e., “Which
symptoms of architecture erosion are frequently identified in code reviews?”) investigated
frequently discussed erosion symptoms and raised awareness about them; RQ3.2
(i.e., “How do architecture erosion symptoms identified in code reviews evolve over time?”)
provided valuable insights into the evolution of erosion symptoms throughout the
code review process, and consequently contributed to understanding the sustain-
ability and stability of architecture; RQ3.3 (i.e., “Do the architecture erosion symptoms
identified in code reviews get fixed in subsequent code changes?”) focused on the actions
that developers might take after identifying erosion symptoms, and explored the ex-
tent to which code reviews can assist in removing the identified erosion symptoms
and subsequently improving software quality.

One of the main findings of RQ3 revealed that violation symptoms are the most
frequently discussed erosion symptoms during code review. Architecture violations
are the core reason for architecture erosion, as mentioned by Perry and Wolf (Perry
and Wolf, 1992) and many previous studies, e.g., Mendoza et al. (2021); Brunet et al.
(2012); Terra et al. (2015); Maffort et al. (2016). They are often gradually accumu-
lated, undermining the quality attributes of systems and impeding their maintain-
ability and sustainability. Thus, we decided to conduct an in-depth study on viola-
tion symptoms, by asking RQ4, “Which violation symptoms are discussed during code
review?”. RQ4.1 (i.e., “What categories of violation symptoms do developers discuss?”)
delved deeper into the investigation of categories of violation symptoms (a.k.a ar-
chitecture violations), which may provide practitioners with valuable insights and
guidelines to avoid such violations in practice. In general, violation symptoms in
textual artifacts like code reviews are expressed in natural language. In this con-
text, RQ4.2 (i.e., “How do developers express violation symptoms?”) summarized the
linguistic patterns and frequent expressions associated with the identified violation
symptoms. Moreover, RQ4.3 (i.e., ‘What practices are used by developers to deal with
violation symptoms?”) explored how practitioners respond when they encounter vio-
lation symptoms during the development process. Specifically, it looks into whether
practitioners address the violation symptoms and how they do that.

1.4. Research Design 11

The first four research questions (RQ1-RQ4) are knowledge questions that focus on
investigating the architecture erosion phenomenon, including its definitions, symp-
toms, causes, consequences, and corresponding approaches and tools to address
architecture erosion, how practitioners perceive it, and how its symptoms are dis-
cussed and handled in practice. Ultimately, the goal of these knowledge questions is
to gain a comprehensive understanding of architecture erosion in order to manage it
better. By answering RQ3 and RQ4, we established that identifying symptoms of ar-
chitecture erosion is the prerequisite of its management; but it is labor-intensive and
time-consuming to manually identify such symptoms (especially violation symp-
toms), while no studies have yet explored the use of automated techniques to tackle
this problem. Therefore, the next step is to explore the possibility of automatically
identifying violation symptoms from textual artifacts in practice; similarly to RQ3
and RQ4 we use code reviews as a data source that is wealthy in architecture vio-
lation information. To this end, we formulated RQ5: “Design classifiers to automati-
cally identify violation symptoms of architecture erosion from code reviews”. RQ5 can be
decomposed into a design problem (i.e., RQ5.1 “Train and select classifiers that can
effectively identify violation symptoms from code review comments.”) and a knowledge
question (i.e., RQ5.2 “Are the violation symptoms identified by the trained classifier use-
ful?”). RQ5.1 aimed to design a solution to automatically and effectively identify
architecture violations from code review comments using Machine Learning (ML)
and Deep Learning (DL) techniques. In particular, we employed five widely-used
ML algorithms and a DL algorithm called TextCNN. These classifiers were trained
by leveraging three pre-trained word embeddings (word2vec, fastText, and GloVe).
Through a series of experiments, we explored the optimal approach for constructing
a high-performing classifier. After that, RQ5.2 was formulated to assess the useful-
ness of the trained classifier.

The main goal of RQ5 was to leverage automated techniques for the identifi-
cation of architecture violations during code reviews. However, while these auto-
mated techniques can enhance the development and code review process, several
crucial human factors still influence code review activities, such as unqualified re-
viewers and response delays. Hence, we proceeded to design an approach aimed at
mitigating the impact of human factors, and particularly finding qualified review-
ers. Specifically, we designed a recommendation approach leveraging historical
code review data to identify potential, qualified code reviewers, rather than sub-
jectively or randomly inviting code reviewers. Subsequently, we formulated RQ6:
“Recommend qualified code reviewers to handle architecture violations”. RQ6.1 (i.e., “Ex-
plore common similarity detection methods to recommend code reviewers for architecture
violations.”) focused on establishing an expertise model based on history code re-
view comments and the corresponding file paths, in order to recommend code re-

12 1. Introduction

viewers who are knowledgeable on architecture violations; RQ6.2 (i.e., “Compare
the performance of the proposed approach with existing code reviewer recommendation ap-
proaches.”) aimed to compare the proposed approach (i.e., similarity detection meth-
ods and their combinations) with an existing approach, RevFinder (Thongtanunam
et al., 2015); finally, RQ6.3 (i.e., “Do the sampling techniques affect the performance of the
proposed code reviewer recommendation approach?”) took a further step to investigate
whether sampling methods can impact the performance of reviewer recommenda-
tion approaches.

1.4.4 Empirical Research Methodology

The previous section decomposes the stated problem into fine-grained knowledge
questions and design problems. Each research question is supported by one or
more empirical or design cycles, which align with the studies carried out in this
Ph.D. project. Table 1.1 maps the empirical research methods to the corresponding
research questions, along with the respective sections that describe the empirical
study designs in this thesis.

We briefly introduce the empirical methods employed in this thesis.

• Systematic mapping study is aimed at providing a comprehensive overview
of a specific research area through classification and counting contributions in
relation to the categories of that classification (Petersen et al., 2015). A map-
ping study provides an overview of the scope of the research area, and allows
to discover research gaps and trends. In this thesis, a systematic mapping
study was employed to answer RQ1, that is, to outline the state of the art on
the architecture erosion phenomenon in the literature and unveil the defini-
tions, symptoms, causes, consequences, and corresponding approaches and
tools to address architecture erosion.

• Survey is a collection of standardized information from a specific population,
or some sample from one, usually, but not necessarily by means of a question-
naire or interview (Host et al., 2012). The purpose of a survey is to produce
statistics, that is, quantitative or numerical descriptions of some aspects of the
study population (Fowler Jr, 2013). In this thesis, surveys were employed to
answer RQ2 (personal opinion survey through questionnaires and interviews)
and RQ5.2 (technology evaluation survey through questionnaires) with the
goal of collecting data for analysis and interpretation.

• Case study is an empirical enquiry that investigates a contemporary phe-
nomenon within its real-life context (Yin, 2009). Case studies fit particularly
well in software engineering, and they can generate rich and nuanced insights

1.4. Research Design 13

Legend

Sequence

Decomposition

<<Problem Statement>>
Current research on architecture erosion is still incomplete and lacks a comprehensive

understanding of the nature of architecture erosion. Due to the limitations of existing tools, it
is essential and complementary to identify architecture erosion from textual artifacts beyond

source code, to gain insights into the practical erosion symptoms and their countermeasures.
One textual artifact that is particularly worth exploring for the identification of architectural

violations, is code reviews.

<<Knowledge Question>>
Are the violation symptoms identified by

the trained classifier useful?

RQ5.2

<<Design Problem>>
Train and select classifiers that can

effectively identify violation symptoms
from code review comments.

RQ5.1

<<Knowledge Question>>
What is the current state of the practice
regarding architecture erosion from the

developers' perspective?

RQ2

<<Knowledge Question>>
What is the current state of the art of

architecture erosion?

RQ1

<<Knowledge Question>>
Which violation symptoms are discussed

during code review?

RQ4

<<Design Problem>>
Design classifiers to automatically identify

violation symptoms of architecture
erosion.

RQ5

<<Design Problem>>
Explore common similarity detection

methods to recommend code reviewers
for architecture violations.

RQ6.1

<<Design Problem>>
Compare the performance of the

proposed approach with existing code
reviewer recommendation approaches.

RQ6.2

<<Knowledge Question>>
Do the sampling techniques affect the

performance of the proposed code
reviewer recommendation approach?

RQ6.3

<<Knowledge Question>>
What categories of violation symptoms do

developers discuss?

RQ4.1

<<Knowledge Question>>
How do developers express violation

symptoms?

RQ4.2

<<Knowledge Question>>
What practices are used by developers to

deal with violation symptoms?

RQ4.3

<<Knowledge Question>>
Which symptoms of architecture erosion
are frequently identified in code reviews?

RQ3.1

<<Knowledge Question>>
How do architecture erosion symptoms
identified in code reviews evolve over

time?

RQ3.2

<<Knowledge Question>>
Do the architecture erosion symptoms
identified in code reviews get fixed in

subsequent code changes?

RQ3.3

<<Knowledge Question>>
What is the current understanding of
architecture erosion in the literature?

RQ1.1

<<Knowledge Question>>
What are the existing supports for

addressing architecture erosion in the
literature?

RQ1.2

<<Knowledge Question>>
What are the difficulties and lessons of

addressing architecture erosion?

RQ1.3

<<Knowledge Question>>
How do developers discuss architecture

erosion in practice?

RQ2.1

<<Knowledge Question>>
What are the existing supports for
addressing architecture erosion in

practice?

RQ2.2

<<Design Problem>>
Recommend qualified code reviewers to

handle architecture violations.

RQ6

<<Knowledge Question>>
How are architecture erosion symptoms
discussed in code review comments?

RQ3

Figure 1.2: Decomposition of the research problem

14 1. Introduction

into software engineering practices, contribute to theory development, and in-
form decision-making in industry (Host et al., 2012). In this thesis, case studies
were used to answer RQ3 and RQ4, with the purpose of investigating the types
and evolution trends of erosion symptoms during code review.

• Experiment refers to measuring the effects of manipulating one variable on
another variable (Host et al., 2012). Experiments in the software engineer-
ing domain are suitable to investigate various aspects, including confirming
theories and conventional wisdom, evaluating the accuracy of models, and
validating measures (Wohlin et al., 2012). In this thesis, experiments were con-
ducted to answer RQ5 and RQ6, in order to determine the effects of different
variables (e.g., pre-trained word embeddings and sampling techniques) on the
performance of classification models (RQ5) and code reviewer recommenda-
tion approaches (RQ6).

Table 1.1: Overview of research methods

RQ Knowledge Question & Design Problem Empirical Method Section

RQ1 What is the current state of the art of ar-
chitecture erosion?

Systematic mapping
study

Section 2.3

RQ2 What is the current state of the practice re-
garding architecture erosion from the de-
velopers’ perspective?

Survey Section 3.3

RQ3 How are architecture erosion symptoms
discussed in code review comments?

Case study Section 4.3

RQ4 Which violation symptoms are discussed
during code review?

Case study Section 5.3

RQ5.1 Train and select classifiers that can effec-
tively identify violation symptoms from
code review comments.

Experiment Section 6.3

RQ5.2 Are the violation symptoms identified by
the trained classifier useful?

Survey Section 6.3

RQ6 Recommend qualified code reviewers to
handle architecture violations.

Experiment Section 7.3

1.5. Overview of the Dissertation 15

1.5 Overview of the Dissertation

The main body of this dissertation contains six chapters (i.e., Chapters 2 to 7). Ta-
ble 1.2 shows the research questions and their corresponding chapters, which have
been either published in peer-reviewed journals and conferences, or are under re-
view (i.e., Chapter 6). Finally, Chapter 8 concludes the dissertation by summarizing
the answers to the six main RQs and further discusses future research directions.

Table 1.2: Overview of dissertation

Research Question Chapter

RQ1: What is the current state of the art of architecture erosion? Chapter 2

RQ2: What is the current state of the practice regarding architecture ero-
sion from the developers’ perspective?

Chapter 3

RQ3: How are architecture erosion symptoms discussed in code review
comments?

Chapter 4

RQ4: Which violation symptoms are discussed during code review? Chapter 5

RQ5: Design classifiers to automatically identify violation symptoms of
architecture erosion.

Chapter 6

RQ6: Recommend qualified code reviewers to handle architecture viola-
tions.

Chapter 7

Chapter 2 is based on a published paper in the Journal of Software: Evolution
and Process (JSEP) (Li, Liang, Soliman and Avgeriou, 2022). This chapter aims to
understand and analyze the current state of the art of architecture erosion phe-
nomenon. It covers the literature from January 2006 to May 2019 based on a series
of criteria, and the results lay a solid theoretical foundation for follow-up research.

Chapter 3 reports a work accepted by the 29th International Conference on Pro-
gram Comprehension (ICPC) (Li, Liang, Soliman and Avgeriou, 2021b). This chap-
ter aims at investigating developers’ perceptions of architecture erosion in practice,
including its causes, consequences, and strategies for its identification and control.
Through data source triangulation (Runeson and Höst, 2009), we collected and ana-
lyzed qualitative data from six popular developer communities, surveys, and online
interviews.

Chapter 4 is based on a peer-reviewed conference paper in the proceedings of the
19th International Conference on Software Architecture (ICSA) (Li, Soliman, Liang
and Avgeriou, 2022). This chapter focuses on conducting an empirical study based
on discussions regarding architecture erosion symptoms in code reviews. The study

16 1. Introduction

involves collecting and analyzing review comments from the two prominent Open-
Stack projects, namely Nova and Neutron. The aim of this work is to provide re-
searchers and practitioners with a deeper understanding of commonly discussed
erosion symptoms and their evolving trends, along with insights into the actions
taken by developers to address them.

Chapter 5 is based on a peer-reviewed journal paper in the Journal of Informa-
tion and Software Technology (Li et al., 2023d). This chapter focuses on empirically
investigating the discussions on violation symptoms of architecture erosion from
code review comments. It includes the analysis of violation symptoms in code re-
views from four popular OSS projects in the OpenStack (i.e., Nova and Neutron)
and Qt (i.e., Qt Base and Qt Creator) communities.

Chapter 6 reports the work that is currently under review in a peer-reviewed
journal. This chapter aims at exploring and proposing effective classifiers to auto-
matically identify violation symptoms in code review comments by using several
popular ML/DL algorithms based on pre-trained word embeddings. We also sur-
veyed the involved participants who discussed architecture violations in code re-
views to validate the usefulness of the classifier.

Chapter 7 is based on a paper published in the 27th International Conference on
Evaluation and Assessment in Software Engineering (EASE) (Li et al., 2023a). This
chapter focuses on exploring the possibility of using similarity detection methods
to recommend code reviewers on architecture violations. Besides, we compared
the performance of our approach with one previous approach, and explored the
impact of different sampling techniques on the performance of recommendation
approaches.

Based on:

Ruiyin Li, Peng Liang, Mohamed Soliman, Paris Avgeriou, (2022) “Understanding Software Architecture
Erosion: A Systematic Mapping Study,” Journal of Software: Evolution and Process, vol. 34, no. 3, e2423,
DOI:10.1002/smr.2423

Chapter 2

Understanding Software Architecture Erosion:
A Systematic Mapping Study

Abstract

Architecture erosion (AEr) can adversely affect software development and has
received significant attention in the last decade. However, there is an absence of
a comprehensive understanding of the state of research about the reasons and
consequences of AEr, and the countermeasures to address AEr. This work aims
at systematically investigating, identifying, and analyzing the reasons, conse-
quences, and ways of detecting and handling AEr. With 73 studies included,
the main results are as follows: (1) AEr manifests not only through architectural
violations and structural issues but also causing problems in software quality
and during software evolution; (2) non-technical reasons that cause AEr should
receive the same attention as technical reasons, and practitioners should raise
awareness of the grave consequences of AEr, thereby taking actions to tackle
AEr-related issues; (3) a spectrum of approaches, tools, and measures has been
proposed and employed to detect and tackle AEr; and (4) three categories of
difficulties and five categories of lessons learned on tackling AEr were identi-
fied. The results can provide researchers with a comprehensive understanding
of AEr and help practitioners handle AEr and improve the sustainability of their
architecture. More empirical studies are required to investigate the practices of
detecting and addressing AEr in industrial settings.

2.1 Introduction

Architecture may exhibit an eroding tendency when changes are accumulated in the
software system. As the system evolves, the accumulation of such problems (e.g., ar-
chitectural violations) can cause the implemented architecture to deviate away from
the intended architecture. The phenomenon of divergence between the intended
and implemented architecture is regarded as Architecture Erosion (AEr) (Perry

18 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

and Wolf, 1992). An eroded architecture can aggravate the brittleness of the sys-
tem (Perry and Wolf, 1992) and decrease architecture sustainability (Koziolek et al.,
2013). For instance, a software system with an eroded architecture may lead to the
deterioration of the engineering quality of the system (De Silva and Balasubrama-
niam, 2012), and make it difficult for developers to understand the internal structure
of the system (Perry and Wolf, 1992). Furthermore, AEr might make it very hard to
implement new requirements and consequently negatively affect the extensibility of
the system (Macia, Arcoverde, Garcia, Chavez and von Staa, 2012).

Due to the severe consequences of AEr, it has been the subject in architecture
research since the architecture concept was coined, and the first definition of the
concept of AEr was given by Perry and Wolf (Perry and Wolf, 1992) almost 30 years
ago. However, the phenomenon of AEr has been described using various terms and
definitions in the literature, including software erosion (De Silva and Balasubrama-
niam, 2012; Dalgarno, 2009), design erosion (Baum et al., 2018), design decay (Izuri-
eta and Bieman, 2013), architecture degeneration (Li and Long, 2011), architectural
decay (Hassaine et al., 2012), code decay (Bandi et al., 2015), and modular dete-
rioration (Rama, 2010). Some of these terms focus on erosion at different levels
of abstraction, for example, code decay (Bandi et al., 2015) highlights more code
anomalies (i.e., at the code level), while modular deterioration (Rama, 2010) con-
centrates on the modularity of systems (i.e., at the architecture level). These terms
indicate that AEr might have an impact on different levels of software systems, and
the viewpoints of the aforementioned studies also imply that AEr is a multifaceted
phenomenon.

Since the research landscape on this field is diverse and perplexing, there is a
need for a comprehensive overview and systematic analysis of the literature on AEr.
To this end, we conducted a Systematic Mapping Study (SMS) (Petersen et al., 2015),
to investigate the definitions behind the AEr phenomenon, the reasons that incur it,
the consequences it imposes, and the research approaches for detecting and han-
dling AEr. This SMS aims at consolidating the existing research results and deriving
research directions for future work.

Both SMS and Systematic Literature Review (SLR) are typically employed to sur-
vey the literature on a specific topic area. An SLR focuses on investigating, evalu-
ating, and interpreting the available studies related to specific research questions
towards a topic or phenomenon (Kitchenham and Charters, 2007), while an SMS
provides an overview of a research area to systematically identify and evaluate the
evidence in literature (Petersen et al., 2015). One of the main differences between
an SMS and an SLR is that an SMS aims to discover the research trends and cov-
ers a broad topic in the literature, while an SLR usually has a relatively narrow
and in-depth research scope and focuses on specific research questions (Petersen

2.2. Context 19

et al., 2015). Specifically, the AEr phenomenon has an impact on different levels of
software systems and affects various aspects in software development (e.g., devel-
opment activities) (Li, Liang, Soliman and Avgeriou, 2021b). Hence, to establish an
overview of this topic area in the context of software development, we decided to
conduct an SMS rather than an SLR on the studied topic (i.e., architecture erosion
in software development). To this end, we comprehensively summarized the find-
ings of the research questions, discussed potential directions and trends of studies in
this domain, provided an overview regarding various aspects related to architecture
erosion phenomenon, and proposed a conceptual model of architecture erosion.

The remainder of this chapter is organized as follows: Section 2.2 introduces the
context of architecture erosion. Section 2.3 elaborates on the mapping study design
and the research questions. Section 2.4 presents the results of each research question.
Section 2.5 describes the results of the research questions and their implications for
researchers and practitioners. Section 2.6 examines the threats to validity, and Sec-
tion 2.7 discusses the related work. Section 2.8 summarizes this SMS.

2.2 Context

In this section, we present the context of this SMS by briefly introducing the terms
and some characteristics of architecture erosion.

2.2.1 Terms of architecture erosion

As mentioned in Section 2.1, many studies explored the phenomenon of AEr, but
they described this phenomenon with different terms. In the seminal paper on soft-
ware architecture, Perry and Wolf (Perry and Wolf, 1992) coined the concept of archi-
tecture erosion and drift and they argued that AEr happens due to the violations of
architecture. “Architecture decay” is also a common term used to describe this phe-
nomenon, for example, Behnamghader et al. (Behnamghader et al., 2017) explored
AEr through a large-scale empirical study of architectural evolution in open-source
projects. Dalgarno (Dalgarno, 2009) used “software erosion” to denote the constant
internal structural decay of software systems, which manifests that the implemented
architecture diverges from the intended architecture. Izurieta and Bieman (Izurieta
and Bieman, 2007) used “design decay” to express the deterioration of the internal
structure of system design, while they focused more on the decay of design patterns.
Besides, some other terms are also used to describe the same phenomenon, such as
design erosion (van Gurp and Bosch, 2002), architecture degeneration (Li and Long,
2011), and code decay (Bandi et al., 2013).

In this SMS, we proposed and refined the definition of architecture erosion:

20 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Architecture erosion happens when the implemented architecture vio-
lates the intended architecture with flawed internal structure or when
architecture becomes resistant to change.

The intended architecture means the conceptual architecture, which is also called
planned architecture, as-designed architecture, and prescriptive architecture; the imple-
mented architecture refers to the concrete architecture, which is also named as-
implemented architecture, as-built architecture, as-realized architecture, and descriptive ar-
chitecture (Tran and Holt, 1999). Note that, the intended architecture is not a static
architecture and it can evolve as new requirements emerge, therefore, the intended
architecture refers to the currently desired architecture instead of the initially doc-
umented architecture. In a sense, the intended architecture could be regarded as a
continuously evolving architecture, and the implemented architecture often evolves
at a pace either faster or slower than the intended architecture, influenced by vari-
ous factors. Besides, AEr does not mean temporary violations of design rules in one
or two versions, but refers to a decreasing tendency of the health status of software
systems at the architecture level.

2.2.2 Characteristics of architecture erosion

AEr occurs in the software development life cycle, which has the following charac-
teristics:

(1) AEr can exist in different phases of the software development process. AEr in
software systems is one of the main reasons and manifestations of software erosion
and aging (De Silva and Balasubramaniam, 2012; Parnas, 1994). The maintenance
and evolution phases account for a large part of the life cycle of software develop-
ment, therefore a common view is that erosion starts to creep into a system during
these two phases. Actually, the seed of erosion might be sowed in the system once
architecture patterns were chosen and AEr may already exist before implementing
the detailed design (e.g., Zhang et al. (2011); Reimanis and Izurieta (2019)).

(2) The existence of AEr does not depend on the size of a software system. Some
practitioners thought that AEr could only occur in large software systems with com-
plex structures and dependencies, which are harder to understand, but AEr can also
exist in small systems (Hochstein and Lindvall, 2005).

(3) AEr has an “incubation period”. AEr may have an “incubation period” and
be a long-term process (de Oliveira Barros et al., 2015), that is, when the architec-
ture of a software system suffer from erosion intentionally (e.g., incurring various
technical debt for short-term benefits) or unintentional (e.g., unconsciously break-
ing the design principles or architectural constraints), the effects of the potential
violations may not emerge immediately, such as drastically decreasing the system

2.3. Mapping study design 21

performance. Sometimes, a well-performed software system could already have an
eroded internal structure, and the performance is not the only indicator to judge
whether AEr happened or not (De Silva and Balasubramaniam, 2012).

(4) Uncertainty in the speed of AEr. Due to the possible “incubation period”,
there is a conjecture that AEr is a progressive process. Meanwhile, AEr can also
happen quickly in software systems (Hochstein and Lindvall, 2005). For example,
during the software development process, if newly added components or modifi-
cations violate the communication principles among modules specified in design
documents, the maintainability of the software system can slide rapidly.

2.3 Mapping study design

This SMS was designed according to the guideline for systematic mapping studies
proposed by Petersen et al. (Petersen et al., 2015). The design of the SMS is described
in the five following sub-sections: (1) research questions, (2) pilot search and selec-
tion, (3) formal search and selection, (4) data extraction, and (5) data synthesis.

2.3.1 Research questions

The goal of this SMS formulated based on the Goal-Question-Metric (GQM) ap-
proach (Basili et al., 1994) is to analyze the primary studies for the purpose of
analysis and categorization with respect to the concept, symptoms, reasons, con-
sequences, detecting, handling, and lessons learned of architecture erosion from
the point of view of researchers in the context of software development. The goal
is further decomposed into eight Research Questions (RQs) (see Table 2.1) in order
to get a comprehensive view of AEr, and the answers of these RQs can be directly
linked to the goal of this SMS.

2.3.2 Pilot search and selection

Before the formal search and selection, we conducted a pilot search and selection to
address the potential considerations in the formal SMS (i.e., search terms and time
period). These two considerations are elaborated in the following paragraphs.

First, the pilot search can help us settle the appropriate search terms for the for-
mal search (Petersen et al., 2015). As mentioned in Section 2.2.1, we realized that
the AEr phenomenon is described in various terms in the literature. Therefore, we
selected the synonyms of “erosion” (i.e., topic-related terms) from related studies
(see Section 2.2.1) (e.g., “decay”, “deterioration”, “degradation”), and formulated
a trial search string: (“erosion” OR “decay” OR “degrade” OR “degradation” OR

22 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Table 2.1: Research questions and their rationale

Research questions Rationale
RQ1: What are the definitions of
architecture erosion in software
development?

• RQ1.1: Which terms are
used to describe architec-
ture erosion in the defini-
tions?

• RQ1.2: What perspectives
do the architecture erosion
definitions concern about?

Researchers may have different definitions or under-
standing about the phenomenon of AEr in software
development, which are described by various terms
and from different perspectives. This might lead to
ambiguous interpretation of AEr phenomenon. RQ1
aims to examine which terms are commonly used to
define AEr phenomenon and understand AEr phe-
nomenon from different perspectives. By answering
RQ1, we can shed light on the common understand-
ing of AEr phenomenon and reach a common defini-
tion of AEr.

RQ2: What are the symptoms of
architecture erosion in software
development?

Various symptoms (e.g., violations of design deci-
sions (Macia, Arcoverde, Garcia, Chavez and von
Staa, 2012)) of AEr have been explicitly discussed in
the literature, which can be regarded as indicators of
AEr. The aim of this RQ is to provide a taxonomy of
different AEr symptoms according to their manifes-
tations, and such a taxonomy may provide a base for
future work on detecting AEr.

RQ3: What are the reasons that
cause architecture erosion in soft-
ware development?

The phenomenon of AEr does not happen coinciden-
tally, but rather due to specific reasons (e.g., architec-
tural violation (Gurgel et al., 2014)). These have been
separately mentioned in literature. By answering this
RQ, we want to determine which reasons of AEr are
mostly mentioned in the literature. This can increase
the awareness for both practitioners and researchers
on the reasons of AEr, and consequently support fu-
ture work on proactively preventing AEr.

RQ4: What are the consequences
of architecture erosion in soft-
ware development?

AEr can have a serious impact on a software system
and diverse consequences for different stakeholders
(e.g., increasing cost). This RQ aims at identifying
the potential consequences of AEr and their impact
on software development, which can raise the aware-
ness of related stakeholders on AEr and expose the
possible high risks of AEr.

2.3. Mapping study design 23

(Continued) Table 2.1

Research questions Rationale

RQ5: What approaches and tools
have been used to detect architec-
ture erosion in software develop-
ment?

Effective approaches and tools have been proposed
and used to identify the eroded structure of architec-
ture. Approaches and tools can facilitate the identifi-
cation of AEr and check the health status of software
systems. The answers to this RQ can tell us what
feasible approaches and tools can be used to detect
AEr, and to some extent inspire researchers to de-
velop new approaches and tools.

RQ6: What measures have been
used to address and prevent ar-
chitecture erosion in software de-
velopment?

By answering this RQ, we would like to investigate
what kinds of measures that have been developed,
proposed, and employed in addressing and prevent-
ing AEr. The measures may help to prolong the life-
time of systems and save substantial maintenance ef-
fort.

RQ7: What are the difficulties
when detecting, addressing, and
preventing architecture erosion?

The answers to this RQ can shed light on the difficul-
ties and limitations on handling AEr during software
development. Additionally, being aware of the dif-
ficulties and challenges of handling AEr can help to
avoid the pitfalls of AEr and provide a starting point
for future research.

RQ8: What are the lessons
learned about architecture ero-
sion in software development?

Lessons learned refer to the experience presented in
the primary studies on coping with AEr in software
development. The answers to this RQ will help re-
searchers and practitioners to obtain such experience
and get familiar with the AEr in software develop-
ment.

“deteriorate” OR “deterioration” OR “degenerate” OR “degeneration”) AND (“ar-
chitecture” OR “architectural” OR “structure” OR “structural”). Initially, to retrieve
as many related papers as possible, we excluded “software” in the software archi-
tecture search terms, but the retrieved results encompassed a large number of irrel-
evant studies (e.g., biochemistry, civil engineering). Then, we selected determiners
(i.e., area-related terms) and added several domain-specific terms, such as “soft-
ware”, “software system”, and “software engineering”, and formulated another
search string: (“software” OR “software system” OR “software engineering”) AND
(“architecture” OR “architectural” OR “structure” OR “structural”) AND (“ero-
sion” OR “decay” OR “degrade” OR “degradation” OR “deteriorate” OR “deterio-
ration” OR “degenerate” OR “degeneration”). We found that it was precise enough

24 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

to use “software” as the domain-specific term. As for the area-related terms, we
firstly selected “architecture”, “architectural”, “structure”, “structural”, and “sys-
tem”, and then we decided to add “design” as a complementary term after a dis-
cussion and a trial search, since the number of retrieved results showed a slight
increase, which is not a burden to the selection. More details of the formal search
terms are presented in Section 2.3.3.5.

Second, regarding the time period, we initially wanted to choose the search pe-
riod starting from 1992 when Perry and Wolf published the seminal paper on soft-
ware architecture and coined the concept of architecture erosion (Perry and Wolf,
1992). We did a trial search in the IEEE Xplore database using the query expression,
i.e., (architectural decay OR architecture decay OR architectural erosion OR archi-
tecture erosion OR architectural degradation OR architecture degradation) AND
software. The results (see Figure 2.1) showed that the total number of papers re-
trieved was 329, where the number of papers published between 1992 and 2005 was
69 (i.e., 21%) while the rest (i.e., published between 2006 and May 2019) was 260
(i.e., 79%). In addition, in 2006, Shaw et al. (Shaw and Clements, 2006) published
the milestone paper about the golden age of software architecture in research and
practice, which can also be partially reflected from the statistic result in Figure 2.1.
We decided to use the Pareto principle (the 80\20 rule) (Kiremire, 2011) to segment
the time period, since it is a popular segmentation approach that is widely used in
software engineering (e.g., Kiremire (2011); Chaniotaki and Sharma (2021)). Con-
sidering the distribution of the trial search results (i.e., following the 80\20 rule)
and the milestone paper (Shaw and Clements, 2006), we finally considered 2006 as
the starting year of the search period to study architecture erosion. The end search
period is settled as May 2019 when we started this SMS.

2.3.3 Formal search and selection

The search strategy is a critical prerequisite to an SMS or SLR, since a well-
established search strategy can help researchers to retrieve complete and relevant
studies as many as possible. In this section, we firstly describe the process of the
formal search and selection, and then we present the search strategy employed in
this SMS in three parts: (1) selection criteria, (2) search scope, and (3) search terms.
The process of this SMS is illustrated in Figure 2.2.

2.3.3.1 Process

The execution process of this SMS in four phases is shown in Figure 2.2, and we
conducted three rounds of study selection (described in Section 2.3.3.3). This SMS

2.3. Mapping study design 25

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

Nu
m
be

r o
f R

et
rie

ve
d
St
ud

ie
s

2 5 5 6 121619
232731

3746
57

69
8291

102
124

138148
168

190
207

229

258

289

316
329

Figure 2.1: Result of the trial search from 1992 to 2019 using the IEEE Xplore database

was conducted by four researchers; the author of this dissertation is the main author
and the other researchers are the supervisors.

Phase 1: The author specified the RQs (see Section 2.3.1) and formulated the
protocol for this SMS, which were reviewed by the other researchers. Then, a pilot
search was conducted to determine the search scope (see Section 2.3.3.4) and search
terms (see Section 2.3.3.5).

Phase 2: The author applied the search scope (see Section 2.3.3.4) to conduct
the study search in the seven electronic databases (see Table 2.2) and the manual
search in the supplementary venues (see Table 2.3). The 1st round selection was
conducted in this phase and the included studies of the search results were merged
by removing the duplicated studies.

Phase 3: The author conducted the 2nd round selection (by abstract) and the 3rd
round selection (by full paper). For the results of the 3rd round selection, any un-
certain studies were discussed to reach a consensus between two researchers about
whether the studies should be included or not. After that, the author conducted a
snowballing in this phase, which followed the same three rounds of selection (see
Section 2.3.3.3).

Phase 4: The author extracted data from the selected studies (see Section 2.3.4)
according to the data items defined in Table 2.4. Then, we synthesized the extracted
data to answer the RQs defined in Section 2.3.1, and we also conducted a pilot ex-
traction to reach an agreement on the controversial data items.

26 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Data extrac�on

Data synthesis
Formal search

(manual search)

Formal search

(electronic database)

Legend Task

sequence
Task

Phase

sequence

1st round selec�on

(by �tle)

Specify the

research ques�ons

De�ne the protocol

for the SMS

Pilot search Snowballing

2nd round selec�on

(by abstract and

keywords)

3rd round selec�on

(by full text)

Phase 1 Phase 2 Phase 3 Phase 4

Figure 2.2: The process of this systematic mapping study

2.3.3.2 Selection criteria

Before the study selection, the following inclusion and exclusion criteria were dis-
cussed and defined among the researchers after reaching an agreement. The criteria
were formulated to select relevant studies for answering the RQs (see Section 2.3.1)
in this SMS. Note that, the selection criteria were applied in all study selection tasks,
including pilot search, electronic databases, manual search, and snowballing (see
Figure 2.2).
(1) Inclusion criteria

• I1: The paper has been peer-reviewed and is available in full text.

• I2: The paper is related to software development and software architecture.

• I3: The paper mentioned the phenomenon or reasons about architecture ero-
sion, as well as the related measures to handle architecture erosion.

(2) Exclusion criteria

• E1: The paper is not written in English.

• E2: The paper is gray literature (e.g., technical reports).

2.3. Mapping study design 27

• E3: The content of the paper is only an abstract.

• E4: The paper only mentioned “architecture erosion”, but it cannot help to
answer the research questions.

• E5: If there are two papers about the same work that were published in dif-
ferent venues (e.g., conference and workshop), the less mature one will be
excluded.

2.3.3.3 Details of the study selection

The 1st round selection: The author applied the selection criteria (see Section
2.3.3.2) to identify the primary studies. In the 1st round, the author filtered stud-
ies based on the titles to select potential primary studies. In order to mitigate po-
tential bias during study selection, we randomly selected 100 papers as a sample
from the search results and a study selection was independently conducted by two
researchers. The inter-rater agreement on the 1st round selection in the Cohen’s
Kappa coefficient (Cohen, 1960) was 0.82. Any uncertain studies (i.e., they could
not be decided by the titles) were temporarily included and kept in the 2nd round
selection.

The 2nd round selection: The author selected studies left in the 1st round se-
lection by reading their abstracts and keywords. The potentially related studies
were selected based on the selection criteria. Similarly to the 1st round selection,
to mitigate potential bias, two researchers selected independently the remaining 52
papers left in the sample and the Cohen’s Kappa coefficient was 0.64. Note that,
the difference in this round is due to one researcher taking a conservative policy
in study selection with the purpose of not missing possibly relevant studies. Any
uncertain studies (i.e., those that could not be decided by abstracts and keywords)
were temporarily included and kept in the 3rd round selection. All the studies from
the sample that were included by one researcher and excluded by the other in this
round, were eventually excluded in the third round.

The 3rd round selection: The author selected studies by reading the full text
of the papers left in the 2nd round selection. The potentially related studies were
decided whether they should be finally selected based on the criteria. Again, to
mitigate potential bias in this round, two researchers independently read the full-
text of the remaining 26 papers left in the sample and the Cohen’s Kappa coefficient
was 0.92. Note that, in this final round, any uncertain judgments were discussed
together and reached an agreement among all the researchers.

Snowballing: To collect more potentially relevant studies about AEr, we em-
ployed the “snowballing” method (Wohlin, 2016) to avoid missing any AEr related

28 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

studies. Snowballing contains two strategies: backward snowballing and forward
snowballing. Backward snowballing refers to the review of the reference list of the
included papers, and forward snowballing means to identify the citations to the in-
cluded papers (Wohlin, 2016). In addition, snowballing is an iterative process: the
author checked the references and citations of the studies selected in the 3rd round
selection, then re-rechecked the newly included studies by references and citations.
This iterative process could stop until there is no any newly selected study. We con-
ducted forward and backward snowballing in Phase 3 (see Figure 2.2), and each
iteration entails the aforementioned three rounds of selection (see Section 2.3.3.3).
The newly selected studies in the snowballing process were merged into the final
results of the study selection.

2.3.3.4 Search scope

(1) Time period

As illustrated in Section 2.3.2, we conducted a pilot search to decide the time
period of this SMS. After that, we specified the time period of the published studies
between January 2006 and May 2019 (i.e., the starting time of this SMS).

(2) Electronic databases

The electronic databases selected in this SMS are listed in Table 2.2; these are
regarded as the most common and popular databases in the software engineering
field and the selected databases are considered appropriate to search relevant stud-
ies (Chen et al., 2010). We excluded Google Scholar in this SMS, since the preci-
sion of the search results was not acceptable and might include many duplicated
and irrelevant results. Additionally, the search results of Google Scholar have over-
lapped with the seven electronic databases and might omit many relevant paper
(e.g., newly published studies).

(3) Manual search

To retrieve as many relevant studies as possible, besides the seven electronic
databases, we also selected 9 journals, 10 conferences (merged conferences were
only counted once, such as WICSA and ICSA), and 2 workshops as supplemen-
tary sources to the electronic databases search (see Table 2.3). These supplementary
sources are reputable venues that publish research on software engineering and soft-
ware architecture, and are commonly used in related SMSs and SLRs (e.g., Shahin
et al. (2014a); Li et al. (2015)). Note that, the selected journals, conferences, and
workshops may not be complete, since they were selected as supplementary rather
than exhaustive sources.

2.3. Mapping study design 29

Table 2.2: Search string and electronic databases used in this SMS

Search string
(“software”) AND (“architecture” OR “architectural” OR “system” OR “structure”
OR “structural” OR “design”) AND (“decay” OR “erosion” OR “erode” OR “de-
grade” OR “degradation” OR “deteriorate” OR “deterioration” OR “degenerate”
OR “degeneration”)
Database Search scope in databases
DB1 ACM Digital Library Title, Abstract
DB2 EI Compendex Title, Abstract
DB3 IEEE Xplore Title, Keywords, Abstract
DB4 ISI Web of Science Title, Keywords, Abstract
DB5 Springer Link Title, Abstract
DB6 Science Direct Title, Keywords, Abstract
DB7 Wiley InterScience Title, Abstract

Table 2.3: Journals, conferences, and workshops included in this SMS

Journals, Conferences, and Workshops
J1 ACM Transactions on Software Engineering and Methodology (TOSEM)
J2 IEEE Transactions on Software Engineering (TSE)
J3 Empirical Software Engineering (ESE)
J4 IEEE Software
J5 Information and Software Technology (IST)
J6 Journal of Systems and Software (JSS)
J7 Science of Computer Programming (SCP)
J8 Software Quality Journal (SQJ)
J9 Software Practice and Experience (SPE)

C1 International Conference on Software Engineering (ICSE)
C2 International Conference on Automated Software Engineering (ASE)
C3 ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE)
C4 International Symposium on Empirical Software Engineering and Measurement

(ESEM)
C5 International Conference on Software Engineering and Knowledge Engineering

(SEKE)
C6 European Conference on Software Architecture (ECSA)
C7 Working IEEE/IFIP Conference on Software Architecture (WICSA)

International Conference on Software Architecture (ICSA)
C8 IEEE International Conference on Software Maintenance (ICSM)

IEEE International Conference on Software Maintenance and Evolution (ICSME)
C9 International Conference on Quality Software (QSIC)

30 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.3

Journals, Conferences, and Workshops
International Conference on Software Quality, Reliability and Security (QRS)

C10 IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER)
European Conference on Software Maintenance and Reengineering (CSMR)
IEEE Working Conference on Reverse Engineering (WCRE)

W1 Workshop on Software Architecture Erosion and Architectural Consistency (SAE-
roCon)

W2 International Workshop on Sharing and Reusing Architectural Knowledge
(SHARK)

2.3.3.5 Search terms

In this SMS, we defined the search terms according to the PICO criteria (i.e., Popu-
lation, Intervention, Comparison, and Outcome) (Kitchenham and Charters, 2007).
The population in this SMS is the primary studies on software engineering. The in-
tervention is about the topic of “architecture erosion”, which can be divided into two
types of search terms (i.e., area-related terms and topic-related terms). Through the
pilot search and selection (see Section 2.3.2), we chose the area-related terms “archi-
tecture”, “architectural”, “system”, “structure”, “structural”, and “design”, and the
topic-related terms “decay”, “erosion”, “erode”, “degrade”, “degradation”, “dete-
riorate”, “deterioration”, “degenerate”, and “degeneration”. Finally, the following
query string was used in the formal search. We used Boolean OR to join topic-
related terms and area-related terms (i.e., synonyms), respectively. we used Boolean
AND to join the major terms. The Boolean expression for retrieving relevant studies
in database search is:

(“software”) AND (“architecture” OR “architectural” OR “system” OR “struc-
ture” OR “structural” OR “design”) AND (“decay” OR “erosion” OR “erode” OR
“degrade” OR “degradation” OR “deteriorate” OR “deterioration” OR “degener-
ate” OR “degeneration”)

2.3.4 Data extraction

To answer the RQs presented in Section 2.3.1, we extracted and analyzed the data
according to the data items (i.e., D8-D16) from each included study. The sixteen data
items were discussed and formulated by all the researchers, see Table 2.4, which

2.3. Mapping study design 31

also shows the relevant RQs that are supposed to be answered by the extracted data
according to the specific data items.

Before the formal data extraction, we discussed the meaning of each data item
and the way about how to extract data. To ensure an unambiguous understanding
of the data items, a pilot data extraction with five studies was conducted by three
researchers. The author extracted data based on the data items from the selected five
studies, while another two researchers reviewed the extracted data. Furthermore,
we selected another five studies to conduct a sample data extraction by another two
researchers independently. By comparing the sample data extraction results from
the two researchers, we established that they largely overlap. We provided both the
pilot data extraction results and the sample data extraction results in the replication
package (Li, Liang, Soliman and Avgeriou, 2021a). Finally, all divergences and am-
biguities of the results of the extracted data were discussed together for reaching
an agreement. Likewise, in the formal data extraction process, the data extraction
was performed by the author and reviewed by another two researchers. Besides,
in the process of data synthesis and classification, the extracted data was repeat-
edly reviewed by another two researchers and any disagreements were discussed
between the author and another two researchers. In this way, we can ensure that the
extracted data in the formal data extraction process are valid.

2.3.5 Data synthesis

In this process, we conducted data synthesis with the extracted data (see Table 2.4).
We employed the descriptive statistics and Constant Comparison method (Adolph
et al., 2011) to analyze the qualitative data for answering the eight RQs (see Section
2.3.1). Note that, we employed both descriptive statistics and Constant Comparison
as the data analysis methods for answering RQ1, RQ3, RQ4, RQ5, and RQ6. Besides,
we also provided examples to clarify the data synthesis results.

Descriptive statistics can provide quantitative summaries based on the initial
description of the extracted data; specifically, they were used to analyze the defini-
tions of AEr (i.e., D8), symptoms of AEr (i.e., D9), approaches and tools (i.e., D12
and D13), difficulties (i.e., D15), and lessons learned (i.e., D16). These data can be
used to answer RQ1, RQ2, RQ3, RQ4, RQ5, and RQ6, respectively. For instance, we
extracted the descriptions of the approaches used to detect AEr from the selected
studies to classify the approaches into several categories (see Section 2.4.6) for an-
swering RQ5. We followed the guidelines of Constant Comparison (Adolph et al.,
2011; Stol et al., 2016) to analyze the extracted data (see Table 2.5) for answering
RQ1, RQ3, RQ4, RQ5, RQ6, RQ7, and RQ8.

In this SMS, Constant Comparison, which is a qualitative data analysis method

32 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Table 2.4: Data items extracted from selected studies

Data item name Description Relevant RQ
D1 ID The ID of the study. Overview
D2 Title The title of the study. Overview
D3 Author list The authors’ full names of the study. Overview
D4 Type of authors The type of authors (i.e., academia, industry,

and both).
Overview

D5 Publication type The type of the study (i.e., Journal, confer-
ence, workshop, or book chapter).

Overview

D6 Publication
venue

The name of the venue where the study was
published.

Overview

D7 Publication year The publication year of the study. Overview
D8 Definition The definition of architecture erosion. RQ1
D9 Symptoms The mentioned symptoms can be regarded as

indicators of architecture erosion.
RQ2

D10 Reasons The reasons that lead to architecture erosion. RQ3
D11 Consequences The consequence caused by architecture ero-

sion.
RQ4

D12 Approaches The approach used to detect architecture ero-
sion.

RQ5

D13 Tools The tool used to detect architecture erosion. RQ5
D14 Prevention and

remediation
The measure used to address and prevent ar-
chitecture erosion.

RQ6

D15 Difficulties The difficulties when detecting, addressing,
and preventing architecture erosion.

RQ7

D16 Lessons learned The lessons learned about architecture ero-
sion.

RQ8

to develop a grounded theory by consistently comparing with the existing findings,
was used to generate concepts and categories through a systematic analysis of the
qualitative data, including the definitions of AEr (i.e., D8), reasons of AEr (i.e., D10),
consequences of AEr (i.e., D11), approaches of AEr detection (i.e., D12), measures
of AEr prevention and remediation (i.e., D14), difficulties (i.e., D15), and lessons
learned (i.e., D16). The data can be used to answer RQ1, RQ2, RQ3, RQ4, RQ6, RQ7,
and RQ8, respectively. The process of Constant Comparison consists of three steps:
(1) Initial coding, executed by the author, examining the extracted data line by line
to identify the topics of the data. For example, “Erosion can happen as a result of many
different factors, e.g., there can be a lack of architectural documentation, a lack of developer
knowledge, ...” was labelled as “reason” (i.e., D10). (2) Focused coding, executed by
the author and reviewed by another two researchers, selecting categories from the
most frequent codes and using them to categorize the data. For example, “architec-
tural erosion is known as having a negative impact on the system quality, such as maintain-

2.4. Results 33

Table 2.5: Relationship between data items, data analysis method, and research questions

Data item name Data Analysis Methods RQs
D1-D7 Publication informa-

tion of selected studies
Descriptive Statistics Overview

D8 Definition of AEr Descriptive Statistics & Constant Com-
parison

RQ1

D9 Symptoms of AEr Descriptive Statistics RQ2
D10 Reasons of AEr Descriptive Statistics & Constant Com-

parison
RQ3

D11 Consequences of AEr Descriptive Statistics & Constant Com-
parison

RQ4

D12 Approaches Descriptive Statistics & Constant Com-
parison

RQ5

D13 Tools Descriptive Statistics RQ5
D14 Measures of preven-

tion and remediation
Descriptive Statistics & Constant Com-
parison

RQ6

D15 Difficulties Constant Comparison RQ7
D16 Lessons learned Constant Comparison RQ8

ability, evolvability, performance, and reliability, ...” is regarded as a type of “quality
degradation” and we mapped the collected quality attributes to the software prod-
uct quality model (i.e., the ISO/IEC 25010 standard (ISO/IEC25010, 2011)). (3) The
disagreements on the coding results were checked and settled down by three re-
searchers to reduce potential bias and ambiguity. For example, for answering RQ3,
we initially coded a reason that causes AEr “this problem is at least partially caused by
developers’ lack of underlying architectural knowledge” as “knowledge vaporization”. Then
we discussed and agreed that this reason better fits into “understanding issue”, and
finally we got 13 categories of reasons as shown in Table 2.10.

To facilitate the replicability of our SMS, we provide the replication package of
this SMS as an online resource (Li, Liang, Soliman and Avgeriou, 2021a). The repli-
cation package includes the detailed information of the 73 selected studies (see Ap-
pendix A) and the extracted data based on the 16 data items listed in Table 2.4.

2.4 Results

We present the number of searched and selected papers in Section 2.4.1.1, the de-
mographic data of the selected studies in Section 2.4.1.2, and the results of the eight
RQs from Section 2.4.2 to Section 2.4.9.

34 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

2.4.1 Overview

2.4.1.1 Number of searched and selected papers

The overview of the search, selection, and snowballing results is shown in Figure
2.3. In the study search phase, we collected 41,723 papers, including 20,551 papers
from the seven databases (see Table 2.2) and 21,172 papers from the 21 venues (see
Table 2.3). In total, 1,220 papers were retained after the first round selection by title,
982 papers were left after removing duplicated papers, 492 papers were kept after
the second round selection by abstract, and 68 papers were selected after the third
round selection by full text. Then, we conducted snowballing iterations (including
forward and backward snowballing) also with the three rounds selection, and 5
more papers were added by snowballing. Ultimately, 73 (i.e., 68+5) papers were
finally selected (see Appendix A).

Electronic database

(20,551)

Electronic database

(733)

2nd round results

(492)

3nd round results

(68)
Final results (73)

Manual search

(21,172)

1st round

results (1,220)

Manual search

(487)

Duplica�on

removal (982)

1st round selec�on

(by �tle)

Search

2nd round selec�on

(by abstract)

3rd round selec�on

(by full text)

Merge

Snowballing (5)

Legend
SequenceTask

Figure 2.3: Results of search, selection, and snowballing in this SMS

2.4.1.2 Demographic results

We present the statistical information of the selected studies, including types of au-
thors (see Figure 2.4), publication years (see Figure 2.5), and publication venues (see

2.4. Results 35

Figure 2.6).
Figure 2.4 shows that 82.2% of the selected studies (60 out of 73) are authored

by researchers from academia, authors of 9.6% of the selected studies (7 out of 73)
work in industry, and the rest (8.2%, 6 out of 73) of the selected studies are collab-
oration outcomes between academia and industry. Additionally, Figure 2.5 shows
the distribution of the selected studies over the last 13 years (i.e., from 2006 to 2019),
from which we can see a fair amount of attention on architecture erosion from 2011
to 2018 (6-10 papers were published per year) with the peak year around 2013. Note
that only two papers published in 2019 were included because we stopped our lit-
erature search by May 2019.

As shown in Table 2.6, we list the venues where the selected studies were pub-
lished, including their names, types, and counts. The 73 studies are published in 49
publication venues (note that merged conferences were only counted once, for ex-
ample, WICSA and ICSA were counted as one conference). The leading venues are
SANER (6 studies including CSMR and WCRE), ICSA (6 studies including WICSA
and ICSA), ECSA (5 studies), ICSE (3 studies), JSS (3 studies), and IEEE Software
(3 studies). Figure 2.6 provides the distribution of the publication venues of the se-
lected studies. Most of the studies were published in conferences (58.9%, 43 out of
73), followed by journals (27.4%, 20 out of 73), workshops (9.6%, 7 out of 73), and
book chapters (4.1%, 3 out of 73).

Table 2.6: Number and proportion of the selected studies

Publication Venue Venue Type Count
International Conference on Software Analysis, Evolution, and
Reengineering (SANER)

Conference 6

European Conference on Software Maintenance and Reengineer-
ing (CSMR)
Working Conference on Reverse Engineering (WCRE)
Conference on Software Maintenance, Reengineering, and Re-
verse Engineering (CSMR-WCRE)
International Conference on Software Architecture (ICSA) Conference 6
Working IEEE/IFIP Conference on Software Architecture
(WICSA)
European Conference on Software Architecture (ECSA) Conference 5
International Conference on Software Engineering (ICSE) Conference 3
Journal of Systems and Software (JSS) Journal 3
IEEE Software Journal 3
International Conference on Modularity (MODULARITY) Conference 2

36 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.6

Publication Venue Venue Type Count
Workshop on Software Architecture Erosion and Architectural
Consistency (SAEroCon)

Workshop 2

Software: Practice and Experience (SPE) Journal 2
IEEE Transactions on Software Engineering (TSE) Journal 1
Information and Software Technology (IST) Journal 1
Science of Computer Programming (SCP) Journal 1
Automated Software Engineering (ASE) Journal 1
Journal of Object Technology (JOT) Journal 1
Software Quality Journal (SQJ) Journal 1
International Journal of Software Engineering and Knowledge
Engineering (IJSEKE)

Journal 1

International Journal of Computer, Control, Quantum and Infor-
mation Engineering (IJCCQIE)

Journal 1

Journal of the Brazilian Computer Society (JBCS) Journal 1
Electronic Notes in Theoretical Computer Science Journal 1
Journal of King Saud University-Computer and Information Sci-
ences (JKSUCIS)

Journal 1

Methods and Tools Journal 1
Relating System Quality and Software Architecture Book

Chapter
1

Agile Software Architecture Book
Chapter

1

Transactions on Foundations for Mastering Change I Book
Chapter

1

Working IEEE/IFIP Conference on Software Architecture and Eu-
ropean Conference on Software Architecture (WICSA/ECSA)

Conference 1

International Symposium on Foundations of Software Engineer-
ing (FSE)

Conference 1

International Conference on Software Maintenance (ICSM) Conference 1
IEEE International Conference on Program Comprehension
(ICPC)

Conference 1

IEEE Working Conference on Mining Software Repositories
(MSR)

Conference 1

Asia-Pacific Software Engineering Conference (APSEC) Conference 1
International Conference on Software Engineering and Knowl-
edge Engineering (SEKE)

Conference 1

International Conference on Software and Systems Reuse (ICSR) Conference 1
International Conference on Current Trends in Theory and Prac-
tice of Informatics (SOFSEM)

Conference 1

Annual ACM Symposium on Applied Computing (SAC) Conference 1

2.4. Results 37

(Continued) Table 2.6

Publication Venue Venue Type Count
IEEE Working Conference on Software Visualization (VISSOFT) Conference 1
International Doctoral Symposium on Components and Architec-
ture (WCOP)

Conference 1

International Conference on Advanced Software Engineering
and Its Applications (ASEA)

Conference 1

Annual International Conference on Aspect-oriented Software
Development (AOSD)

Conference 1

International Conference on Software Engineering and Data En-
gineering (SEDE)

Conference 1

IEEE Prognostics and System Health Management Conference
(PHM)

Conference 1

Annual India Software Engineering Conference (ISEC) Conference 1
Conference on Pattern Languages of Programs (PLoP) Conference 1
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA)

Conference 1

IEEE Symposium on Computational Intelligence in Dynamic and
Uncertain Environments (CIDUE)

Conference 1

International Conference on Advances in ICT for Emerging Re-
gions (ICTer)

Conference 1

International Workshop on Managing Technical Debt (MTD) Workshop 1
International Workshop on Modeling in Software Engineering
(MiSE)

Workshop 1

International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering
(ECASE)

Workshop 1

International Conference on Software Architecture Workshops
(ICSAW)

Workshop 1

Workshop on Sustainable Architecture: Global Collaboration, Re-
quirements, Analysis (SAGRA)

Workshop 1

38 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

60 (82.2%)

7 (9.6%)

6 (8.2%)

Academia Both Industry

Figure 2.4: Distribution of the selected studies over types of authors

20062007200820092010201120122013201420152016201720182019
0

1

2

3

4

5

6

7

8

9

10

11

12

Nu
m
be

rs
 o
f S

tu
di
es

2

1

0

4 4

7 7

9

8

9

8

6 6

2

Figure 2.5: Number of the selected studies over time period

43 (58.9%)20 (27.4%)

7 (9.6%)

3 (4.1%)

Conference Journal Workshop Book Chapter

Figure 2.6: Distribution of the selected studies over types of publication

2.4. Results 39

2.4.2 RQ1: What are the definitions of architecture erosion in soft-
ware development?

2.4.2.1 RQ1.1 Terms of different definitions

As mentioned in Section 2.2.1, the concept of AEr was proposed by Perry and
Wolf (Perry and Wolf, 1992) in 1992, which is the earliest study that provided the
definition of AEr. In the last decades, many studies described the phenomenon of
AEr with different terms, such as architectural decay (e.g., [S64]), architecture de-
generation (e.g., [S1]), design erosion (e.g., [S72]), and code decay (e.g., [S28]). Table
2.7 presents all the terms that the selected studies used to describe the phenomenon
of AEr. We can see that most studies prefer to use “architecture erosion” to describe
this phenomenon, followed by the term “architecture decay”. The terms, e.g., “ar-
chitecture degeneration”, “design erosion”, “code decay”, “software erosion” are
also used to represent the phenomenon of AEr. The rest terms are only used in one
or two studies to describe the eroded architecture, such as design deterioration (e.g.,
[S9]) and structure decay (e.g., [S3]).

2.4.2.2 RQ1.2 Perspectives of different definitions

According to the extraction results of data item D8, we analyzed the definitions
of AEr and found that researchers described the AEr phenomenon from different
perspectives (i.e., understanding AEr phenomenon from different angles). Based on
the analysis of the definitions, we classified the definitions into four perspectives
(see Table 2.8).

Violation perspective is the most common description of AEr, which denotes
that the implemented architecture of a software system violates the design princi-
ples or architecture constraints, and consequently results in system problems and
the increasing brittleness of the system (Perry and Wolf, 1992). For example, the
authors of [S57] stated that “architectural erosion is the process of introducing changes
into a system architecture design that violates the rules of the system’s intended architec-
ture”. Violations mainly occur in two phases: (1) Design phase. Developers inten-
tionally or unintentionally change the planned structure of the system architecture
due to various reasons (e.g., introducing new design decisions), which gives rise to
the violations of original design rules in the design phase of software development
(e.g., [S17], [S21]). (2) Maintenance and evolution phase. Developers accidentally
or deliberately make modifications (e.g., for short-term benefits, unfamiliar with the
dependencies among components) that violate the design time architectural intents
during maintenance and evolution activities (e.g., [S47], [S57]).

40 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Table 2.7: Terminologies that the selected studies mentioned to describe architecture erosion

Term Studies Count
Architecture erosion [S2][S3][S4][S6][S7][S8][S12][S13][S14][S18][S20][S22]

[S23][S24][S25][S26][S27][S29][S31][S32][S33][S34][S35]
[S37][S39][S40][S43][S45][S47][S48][S50][S51][S52][S53]
[S55][S57][S58][S60][S61][S63][S65][S66][S67][S69][S70]
[S71]

46

Architecture decay [S7][S11][S15][S16][S17][S19][S21][S37][S42][S44][S49]
[S50][S64][S68]

14

Architecture degradation [S7][S10][S18][S26][S31][S39][S45][S48][S57][S67] 10
Architecture degeneration [S1][S3][S27][S28][S36][S44][S50] 7
Design erosion [S1][S9][S15][S18][S55][S62][S72] 7
Software erosion [S41][S54][S59][S73] 4
Code decay [S28][S56] 2
Modularity/modular
structure deterioration

[S5][S46] 2

design pattern rot/de-
cay/grime

[S9][S30] 2

Architecture deterioration [S5] 1
Design deterioration [S9] 1
Structure decay [S3] 1
Software decay [S73] 1
Software aging [S5] 1
System rot [S72] 1
Design rot [S7] 1
Code rot [S73] 1

Structure perspective highlights the structural problems due to constant erosion
of the structure of system systems, where the structure of a software system encom-
passes its components and their relationships to each other (Bass et al., 2021). For
example, the authors of [S9] mentioned that “we define decay as the deterioration of the
internal structure of system designs”. From this perspective, the constant erosion of the
structure of architecture is derived from the damage to the structure integrity, such
as gradually breaking the encapsulation and dependency relationships (e.g., [S9]).

Quality perspective refers to the gradually declining product qual-
ity (ISO/IEC25010, 2011) of software systems due to architectural changes or
increasing architectural smells (Garcia et al., 2009) (e.g., extraneous connector,
ambiguous interface, component overload). A system with an eroded architecture
might also have a good runtime performance (De Silva and Balasubramaniam,

2.4. Results 41

Table 2.8: Understanding of architecture erosion phenomenon from four perspectives

Perspective Description Studies Count
Violation The implemented architec-

ture (as-built) violates the
intended architecture (as-
planned)

[S6][S7][S9][S12][S13][S14][S15][S16]
[S17][S18][S21][S23][S25][S27][S28][S31]
[S33][S34][S35][S47][S48][S51][S56][S57]
[S58][S60][S63][S65][S71][S73]

30

Structure Constant erosion of the
structure of the system ar-
chitecture

[S3][S5][S7][S9][S22][S24][S26][S27][S73] 9

Quality Quality of the software
system gradually de-
clines due to architectural
changes

[S1][S30][S34][S59][S63][S72] 6

Evolution Decreasing maintainabil-
ity makes it hard to change
the eroded architecture

[S21][S28][S50] 3

2012) that is one quality attribute of software systems specified in the ISO/IEC
25010 standard (ISO/IEC25010, 2011), while the other quality attributes (e.g., relia-
bility, maintainability) may be negatively affected by AEr. Once the environment or
requirements changed, it might bring serious consequences to the software system.
For example, the authors of [S34] mentioned that “we regard erosion as the overall
deterioration of the engineering quality of a software system”.

Evolution perspective denotes the loss of flexibility at the architectural level,
which manifests a state of architecture that is almost stagnated and becoming harder
to add more changes than before. In this perspective, researchers find that eroding
architecture continuously reduces the maintainability and evolvability of the archi-
tecture (e.g., [S21], [S28]). For example, the authors of [S21] stated that “when the
architecture of a software system allows no more changes to it due to changes introduced in
the system over time and renders it unmaintainable”.

We found that certain definitions contain multiple perspectives. For example,
the authors of [S21] proposed a definition of AEr from three perspectives: violation,
quality, and evolution. The definition of AEr provided by [S21] is “when concrete
(as-built) architecture of a software system deviates from its conceptual (as-planned) archi-
tecture [violation perspective] where it no longer satisfies the key quality attributes [quality
perspective] that led to its construction OR when architecture of a software system allows
no more changes to it due to changes introduced in the system over time and renders it
un-maintainable [evolution perspective]”.

42 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

2.4.3 RQ2: What are the symptoms of architecture erosion in soft-
ware development?

AEr shows a tendency to decrease the engineering quality of a system, during which
AEr can be detected by miscellaneous signs. Those signs are explicitly mentioned in
the literature that can be regarded as symptoms and indicators of AEr phenomenon,
while the symptoms have not been systematically categorized. Therefore, to better
understand various symptoms, we collected the AEr symptoms and classified them
into four categories as shown in Table 2.9.

Structural symptom includes various structural problems in software systems.
Code anomaly agglomeration (e.g., [S17]) and architectural smell (e.g., undesired
dependencies [S20], cyclic dependencies [S38]) are the most frequently mentioned
structural symptoms. For example, the authors of [S26] mentioned that “several stud-
ies confirmed co-occurrences of code anomalies are effective indicators of architectural degra-
dation symptoms”. Another example is that the authors of [S64] mentioned “we use the
(architectural) smells as indicators of architecture erosion and consequently to analyze better
the sustainability of a system”. Moreover, modular problems (e.g., deteriorated mod-
ules and lack of modularity [S36]) can also be regarded as signs of AEr phenomenon.
For instance, the authors of [S43] stated that “we ignore this case and consider lack of
modularity as a symptom of architecture erosion”.

Violation symptom is a common type of AEr symptoms, which derive from
the most common definition of AEr (see Section 2.4.2) and refers to the violations
of prescribed design decisions or constraints (e.g., abstraction and encapsulation).
The violations of design decisions or constraints are regarded as a symptom of AEr,
which is mentioned in ten selected studies (e.g., [S31], [S57]). In [S57], the authors
proposed two types of architectural violations: divergence and absence relationship
(see Table 2.9).

Quality symptom is comparatively obvious symptom and often manifests in
quality attributes of products that can receive attentions of maintainers, such as high
defect rate (e.g., [S21]), losing functionality (e.g., [S22]), and gradually decreasing
productivity (e.g., [S7], [S53]). For example, the authors of [S21] mentioned that
“some common symptoms of decay in software architecture include poor code quality, un-
localized changes and regressions, high defect rates”.

Evolution symptom covers the symptoms related to the evolution process of
software systems. For example, rigidity refers to the tendency that architecture be-
comes difficult to change, since a simple change might cause a ripple effect across
all the coupling classes or components (Martin, 2000) (e.g., [S7]). Another exam-
ple is that, the authors of [S1] mentioned that “increasing (change) difficulty in further
evolution and maintenance is a sign of code decay”.

2.4. Results 43

Table 2.9: Categories of symptoms of architecture erosion

Type Subtype Description Studies
Structural
symptom

Code anomaly
agglomeration
and architectural
smell

Certain structural issues (e.g.,
code anomaly agglomeration,
architectural smells) can be re-
garded as a sign of AEr

[S5][S7][S17][S18][S20]
[S21][S27][S31][S36]
[S38][S41][S47][S57]
[S64]

Co-occurrence of
code smells

Certain patterns of co-
occurring code smells tend to
be stronger indicators of AEr

[S1][S26][S27][S36]

Modularity prob-
lem

It refers to the modular issues,
such as deteriorated modular-
ization and lack of modularity

[S5][S27][S43]

Class and modu-
lar grime

Grime refers to the increase
in the number of harmful re-
lationships (e.g., generaliza-
tions, associations, dependen-
cies)

[S9][S41]

Others The study has a generic de-
scription about structural
symptoms not included in the
other subtypes

[S1][S21][S22][S26]
[S40]

Violation
symptom

Divergence A module or relationship that
is in the extracted architecture
but not in the intended archi-
tecture

[S1][S57]

Absence relation-
ship

A module or relationship that
is in the intended architecture
but not the extracted architec-
ture

[S57]

Others The study has a generic
description about violation
symptoms not included in the
other subtypes

[S1][S12][S18][S21]
[S27][S31][S36][S38]
[S57][S69]

Quality
symptom

A gradually lower
productivity

Decreasing productivity or in-
vesting costs cannot receive
higher output

[S7][S53]

Functional erosion Decreasing functionality in
software systems

[S22]

44 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.9

Type Subtype Description Studies

High defect rate The high portion of defec-
tive elements compared to all
items produced

[S21]

Evolution
symptom

Rigidity The tendency for software to
be difficult to change, as a
change could cause a cascade
of subsequent changes in de-
pendent modules

[S1][S7][S21]

Brittleness The tendency of the software
to break in many places every
time it is changed, since the
changes might cause break in
unexpected ways

[S7]

Immobility The inability to reuse software
from other projects or from
parts of the same project

[S7]

Increasing correc-
tion cost

Gradually increasing cost for
correcting architectural defects

[S1]

2.4.4 RQ3: What are the reasons that cause architecture erosion in
software development?

In fact, AEr can be caused by various reasons. In Table 2.10, we list the 13 reasons
according to the data collected from the selected studies, as well as their subtypes,
description, and related studies. The results show that 64.4% (47 out of 73) of the
studies explicitly mention the reasons that cause AEr and we classified these reasons
into 13 categories (see Table 2.10).

Architecture violation. An architecture gradually erodes when architecture vi-
olations are introduced into the system by several ways: (1) Rules governing the
dependencies between different levels of the system architecture are violated (e.g.,
[S31]), such as communication rules, conformance rules. (2) Design decisions and
architectural guidelines are not strictly followed (e.g., [S34], [S44], [S46]), such as
presentation layer frameworks.

Evolution issue. Architecture could hardly keep intact when evolution hap-
pens. As the software maintenance and evolution, certain inappropriate changes

2.4. Results 45

could break the original architectural integrity and introduce superfluous depen-
dencies. Some seemingly innocuous architecture changes (e.g., bug-fixings, refac-
toring) could also cause ripple effects to the system architecture (e.g., [S36]). Uncon-
trollable evolution process (e.g., [S58]) might increase the risk of AEr and give rise
to software failure. For example, AEr could be also caused by technological evo-
lution (e.g., [S7]), including operating systems, hardware, and programming lan-
guages (Fellah and Bandi, 2019).

Technical debt is a metaphor reflecting technical compromises that can yield
short-term benefits but may hurt the long-term goal of a software system (Li et al.,
2015). For example, new products are hastily released to the market because of time
pressure (e.g., [S66]). Some shortcuts can change architecturally relevant elements
(such as classes, components, modules) and break architectural integrity (such as
breaking the encapsulation rules, introducing undesired dependencies), or inten-
tionally incur technical debt (e.g., [S55]). Such suboptimal operations or techniques
might increase potential risks to the system quality (such as reliability, extensibil-
ity), thereby leading to AEr. More details of technical debt as a reason for AEr are
discussed in Section 2.5.1.3.

Knowledge vaporization could cause a series of problems, for example, a poor
understanding of project contexts can hinder knowledge transfer among team mem-
bers, which is often regarded as one of the reasons that cause AEr. Lack of documen-
tation denotes that the previous knowledge (such as design decisions and their ratio-
nales) is not available or documented (such as undocumented design decisions and
assumptions), which hinders the subsequent architecture enhancements and modi-
fications (e.g., [S57], [S66]). Besides, developer turnover (Ma et al., 2020) aggravates
AEr by losing knowledge about system requirements and architectural decisions
(e.g., [S50]).

Requirement issue challenges the architecture sustainability. For example,
newly-added or constantly changing requirements may conflict with the intended
architectural design decisions (e.g., [S4], [S37], [S45]). Conflicting requirements that
are possibly unforeseen in the early stage, and vague requirements may break the
consistency and integrity of the intended architecture and negatively influence the
maintainability and extensibility of the system architecture (e.g., [S48]).

Understanding issue. Poor understanding of the system architecture stems from
various factors, such as poor code readability (e.g., bad code quality, lack of code
comments), which may act as a trigger for making wrong changes during mainte-
nance and modification. For example, the authors of [S45] pointed out that AEr can
derive from bad practices and developer mistakes when developers change the code
without understanding the intended architecture which may be violated. Another
example is from [S34] that inadequate understanding of the design documentation

46 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

and principles (e.g., due to poor training) may be a trigger of AEr. Moreover, lack
of architecture knowledge can also lead to the understanding problem, for example,
developers who are not aware of previous design decisions or have poor knowledge
about the intended architecture [S45] could cause damages to the original decisions
and architectural structure [S39].

Suboptimal design decision is a kind of design defect that often occurs during
the design process. Design defects might creep into a system architecture during the
design phase, which can be regarded as a hidden danger to system sustainability, as
design defects might not be discovered through static analysis (Li, Liang, Soliman
and Avgeriou, 2021b). If the target architecture style is initially a suboptimal choice,
then trying to fix the design defects later may be impossible (Barney et al., 2012). For
example, the authors of [S47] mentioned that many maintenance issues originate
from inappropriate design. Another example is that the original architecture is not
designed to accommodate potential changes (e.g., low extensibility [S34], [S73]).

Increasing complexity usually happens when there are increasing couplings and
oversized architecture elements (such as class, component, module) during evolu-
tion. Increasing complexity can reduce the understandability of systems and makes
it easier to damage the architectural integrity when changes happen (e.g., [S34],
[S56]), since the clean initial architecture cannot be recognized anymore (e.g., [S66]).
For example, the authors of [S54] mentioned that the increase in complexity com-
bined with an evident lack of documentation hinders stakeholder to maintain the
design aspects of a system, and consequently lead to AEr.

Organization issue. According to Conway’s law (Conway, 1968), a bad organi-
zation can probably generate bad architecture. Various management problems (e.g.,
lack of maintenance [S47], [S53]) can generate a bad organization, which finally mir-
rors negative impact in architecture, including high turnover rate, poor training and
education of developers, unfair rewarding and punishment metrics, and incompe-
tent code view process. For example, the authors of [S34] mentioned that poor de-
veloper training could be a key trigger of AEr. Consequently, AEr can happen due
to various organization and management issues.

Table 2.10: Reasons that cause architecture erosion

Reason Subtype Description Studies
Architecture
violation

Architectural
rule and con-
straint

Architecture violation happens by
violating architectural guidelines
(e.g., dependencies between com-
ponents)

[S34][S46][S54]
[S58]

2.4. Results 47

(Continued) Table 2.10

Reason Subtype Description Studies
Design decision Developers mistakenly violate de-

sign decisions
[S35][S42][S45]

Others The study has a generic description
about architecture violation not in-
cluded in the other subtypes

[S13][S21][S23]
[S27][S28][S31]
[S32][S50][S62]
[S66][S73]

Evolution is-
sue

Inappropriate
architecture
change

The changes to a system often erode
the fundamental characteristics of
the original architecture

[S1][S2][S3][S9]
[S10][S16][S21]
[S26][S31][S37]
[S45][S50][S73]

Uncontrolled
evolution pro-
cess

Uncontrolled evolution process
might increase the complexity of
system and decrease the mainte-
nance

[S56][S58]

Process change Architecture changes due to the
business and development process
change

[S7][S22]

Others The study has a generic description
about evolution issue not included
in the other subtypes

[S7][S45]

Technical
debt

Deadline pres-
sure

Due to deadline pressures, architec-
ture changes or compromises have
been taken to system architecture

[S9][S12][S22]
[S46][S47][S48]
[S53][S62][S66]
[S69]

Others The study has a generic description
about technical debt not included in
the other subtypes

[S4][S55][S73]

Knowledge
vaporization

Lack of docu-
mentation

Incomplete and unavailable doc-
umentation and undocumented
knowledge

[S34][S36][S37]
[S45][S47][S50]
[S53][S54][S57]
[S66]

Developer
turnover

Knowledge lost due to developer
turnover

[S34][S69]

Requirement
issue

Unforeseen and
conflicting re-
quirement

Unforeseen, conflicting, and vague
requirements may bring uncertain-
ties to software development and
cause conflicting design decisions

[S4][S12][S34]
[S37][S48][S54]
[S60][S62][S66]
[S69]

48 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.10

Reason Subtype Description Studies
Constantly
changing re-
quirement

Constantly changing requirements
could lead to multiple impacts (e.g.,
dramatically increase the project
budget, development schedule)

[S45]

Understanding
issue

Poor under-
standing of
intended archi-
tecture

Lack of a full understanding of a
system may let the system conflict
with the original design during evo-
lution

[S25][S34][S37]
[S45]

Lack of architec-
ture knowledge

Developers (e.g., novice) who lacks
enough architecture knowledge to
support the development and evo-
lution

[S39][S44][S45]
[S53]

Suboptimal
design deci-
sion

Inflexible design The architecture has low extensi-
bility and is hard to accommodate
changes

[S34][S73]

Others The study has a generic description
about design flaw not included in
the other subtypes

[S7][S17][S26]
[S36][S47]

Increasing
complexity

Design pattern
grime

Increasing unrelated artifacts to
original design patterns

[S9][S38]

Others The study has a generic description
about increasing complexity not in-
cluded in the other subtypes

[S34][S51][S54]
[S56][S64][S66]

Organization
issue

Poor developer
training

Lack of training and education
makes it harder to establish uniform
programming styles

[S34][S47]

Lack of mainte-
nance

Lack of long-term maintenance (e.g.,
commitment) to the projects

[S47][S53]

Poor code re-
view process

Bad quality of code review cannot
ensure the code quality

[S45]

Increasing
workload

Increasing workload might have
a negative impact on the devel-
opment productivity and software
quality

[S47]

Non-
architectural-
centered prac-
tice

Focusing on coding efforts instead
of the architecture will doom to suf-
fer architecture erosion

[S61]

2.4. Results 49

(Continued) Table 2.10

Reason Subtype Description Studies

Communication
issue

Lack of commu-
nication

Lack of communication between
stakeholders

[S12][S25][S34]
[S47]

MiscommunicationMiscommunication includes inac-
curate information and misunder-
standing

[S12][S34]

Environment
change

Operational
environment
change

Application environment changed
(e.g., standards changes)

[S9][S73]

Obsolete soft-
ware and hard-
ware compo-
nent

Third party libraries update and be-
come incompatible with the current
architecture

[S62]

Lack of archi-
tecture tools

- Manually fixing problems probably
contributes to AEr due to lack of ar-
chitecture and design tools

[S23][S34][S40]

Iterative
software de-
velopment
process

- Modern iterative software develop-
ment processes (e.g., agile program-
ming methods) may give rise to the
occurrence of AEr sooner

[S34]

Communication issue. Both miscommunication and lack of communication can
incur AEr during the development process. Miscommunication refers to convey-
ing wrong information between stakeholders, while lack of communication can be
unconscious. For example, the authors of [S34] stated that communication is vital
during system evolution, which is a common cause of AEr including unavailable or
misunderstood design decisions.

Environment change. The retention of outdated technologies and software (or
hardware) components can reduce architecture evolvability, where the software
does not follow the changes and AEr will be incurred very soon (e.g., [S73]). There-
fore, when the environment changes, the system architecture should also be revised
to adapt to the new operational environment, otherwise, environment changes can
contribute to the deterioration and erosion of system designs (e.g., [S9]).

Lack of architecture tools is a potential cause of AEr for software systems. For
example, the authors of [S24] mentioned that AEr might even more severe in sys-
tems implemented in dynamic languages, since certain features of dynamic lan-
guages (e.g., dynamic invocations and buildings) make developers more likely to

50 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Table 2.11: Reasons of architecture erosion in three categories

Category Reason Studies
Technical rea-
son

Architecture violation [S13][S21][S23][S27][S28][S31][S32][S34][S35]
[S42][S45][S46][S50][S54][S58][S62][S66][S73]

Evolution issue [S1][S2][S3][S7][S9][S10][S16][S21][S22][S26]
[S31][S37][S45][S50][S56][S58][S73]

Technical debt [S4][S9][S12][S22][S46][S47][S48][S53][S55][S62]
[S66][S69][S73]

Suboptimal design de-
cision

[S7][S17][S26][S34][S36][S47][S73]

Increasing complexity [S9][S34][S38][S51][S54][S56][S64][S66]
Lack of architecture
tools

[S23][S34][S40]

Non-technical
reason

Knowledge vaporiza-
tion

[S34][S36][S37][S45][S47][S50][S53][S54][S57]
[S66][S69]

Understanding issue [S25][S34][S39][S37][S44][S45][S53]
Organization issue [S34][S45][S47][S53][S61]
Communication issue [S12][S25][S34][S47]
Environment change [S9][S62][S73]

Both Requirement issue [S4][S12][S34][S37][S45][S48][S54][S60][S62]
[S66][S69]

Iterative software de-
velopment process

[S34]

break the planned architecture and these languages suffer from lack of architecture
tools.

Iterative software development process (e.g., agile development methods, ex-
treme programming) can give rise to the occurrence of AEr sooner, since they place
less emphasis on upfront architectural design (e.g., [S34]). Recent studies show that
the agile process may not make a project agile (Sturtevant, 2017), and architecture
might become the bottleneck of agile projects and rapidly erode if the developers
focus on following the agile process rather than increasing architectural agility.

Table 2.11 shows that the 13 reasons that cause AEr can be further classified into
three categories: (1) technical reason, (2) non-technical reason, and (3) both. Tech-
nical reason refers to the reasons related to technical application, and non-technical
reason denotes the reasons closely related to the human factors in software engineer-
ing. Both means that the type consists of both technical and non-technical reasons.
The results in Table 2.10 and Table 2.11 show that technical reasons of AEr (46.6%, 34
out of 73 studies) derive from design, implementation, maintenance, and evolution
phases; non-technical reasons of AEr (24.7%, 18 out of 73 studies) stem from organi-
zation and management issues; 15.1% (11 out of 73) of the studies mentioned both

2.4. Results 51

technical reasons and non-technical reasons. Additionally, the results also indicate
that AEr exists in different phases of software development and interacts with many
stakeholders.

2.4.5 RQ4: What are the consequences of architecture erosion in
software development?

We identified various consequences of AEr mentioned in the selected studies (see
Table 2.12). These consequences can be classified into eight categories.

Quality degradation is the most frequently mentioned consequence and AEr can
result in various Quality Attributes (QAs) degradation. In this SMS, we mapped
the degraded QAs according to the ISO/IEC 25010 standard (ISO/IEC25010, 2011)
(see Table 2.12). For example, AEr can give rise to the deterioration of the architec-
tural structure, make the system less flexible (e.g., hard to enhance and extend [S7]),
decrease modularity of systems (e.g., reduce the components’ cohesion [S50]), and
make systems harder to maintain without breaking certain dependencies. For in-
stance, the authors of [S34] mentioned that “even if a system does not become unusable,
erosion makes software more susceptible to defects, incurs high maintenance costs, degrades
performance and, of course, leads to more erosion”. Besides, stakeholders may not even
be able to understand the ramification of breaking these dependencies.

Architectural defect denotes that an eroded architecture will make the architec-
ture to have more defects (i.e., defect proneness), e.g., anti-patterns [S9], superfluous
dependencies [S47], [S73], which in turn is likely to give rise to more erosion. For
example, the authors of [S54] mentioned that “even if a software system does not become
completely inoperative, erosion will make the system more predisposed to defects”. Archi-
tecture mismatch (Garlan et al., 2009) is also an architecturally relevant defect arose
in eroded software systems (e.g., [S47]). The potential problems of architectural mis-
match may derive from the assumptions made to the components, connectors, and
global architecture structure (Garlan et al., 2009).

Increased cost denotes that rising costs (including time and labor cost) need to be
invested into activities like maintenance and refactoring. Moreover, it may increase
the time-to-market of software products and bring about the budget of development
cost overrun (e.g., [S51], [S69]).

Failure of software projects might be the worst consequence of AEr. Once un-
controllable AEr has led to irreversible effects and irreparable software systems (or
become less cost-effective to be maintained), it marks the failure of software projects
and the systems need to go through a process of reengineering and redevelopment
(e.g., [S34], [S44]). Besides, AEr shorten the lifetime of software projects and cause
rapid obsolescence, or trigger bottom-up system reengineering (e.g., [S1]).

52 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Table 2.12: Consequences of architecture erosion

Category Type Subtype Studies
Quality degra-
dation

Maintainability Modifiability [S1][S7][S9][S17][S21][S34][S49]
[S71][S73]

Modularity [S9][S12][S43][S46][S49][S51][S52]
Reusability [S13][S24][S33][S47][S49][S53]
Testability [S9][S30][S47][S51][S52][S73]
- [S9][S13][S16][S21][S24][S25][S29]

[S33][S42][S46][S47][S54][S62]
[S63][S69]

Evolvability - [S12][S24][S29][S46][S47]
[S53][S63][S69][S71]

Conceptual In-
tegrity of the
Architecture

Understandability [S21][S42][S47][S51][S54][S73]

Performance effi-
ciency

Capacity [S22]

- [S9][S29][S30][S34][S54][S62]
Portability Adaptability [S9][S13][S15][S30][S33][S69]
Extensibility - [S51][S52][S54]
Reliability - [S29][S49]
Security - [S30]
Usability Operability [S29]

- [S54]

Others - [S7][S9][S15][S34][S40][S53]
Architectural
defect

Brittleness - [S11][S32][S48][S73]

Architecture mis-
match

- [S16][S40][S47]

Anti-pattern - [S9]

Poor system in-
tegrity

- [S21]

Others - [S1][S9][S15][S21][S34][S54][S71]
[S73]

Increased cost - - [S34][S38][S48][S49][S51][S52]
[S53][S54][S69][S73]

Failure of soft-
ware projects

Shortened system
lifetime

- [S1]

2.4. Results 53

(Continued) Table 2.12

Category Type Subtype Studies

Others - [S7][S13][S33][S34][S44][S54]
[S69][S73]

Failure to meet
requirements

- - [S7][S48][S73]

Software ag-
ing

- - [S9][S34][S48]

Technical debt Architectural debt - [S49]

Others - [S42][S49]

Organization
disintegration

- - [S7]

Failure to meet requirements means that AEr can result in the decreasing ability
of a system to satisfy the requirements of stakeholders. For example, the authors of
[S48] mentioned that the potential consequences of AEr encompass failure to meet
the requirements, as changes become difficult to be made on software systems due
to various reasons, such as increasing complexity in eroded architecture (e.g., [S7]).

Software aging is a phenomenon caused by AEr that refers to the tendency of
performance degradation and failure of software systems, and a general charac-
teristic of this phenomenon is that the systems failure rate will increase and many
aging-related errors occur (e.g., erroneous outcomes) (Parnas, 1994; Grottke et al.,
2008). For example, the authors of [S9], [S34], [S48] mentioned that the low adapt-
ability and extensibility arose in an eroded architecture could further deteriorate the
systems, and AEr could accelerate software aging.

Technical debt would be incurred in software systems that AEr exists and de-
grades the quality of software systems, where short-term compromises lead to sig-
nificantly potential hidden danger to software systems regarding fixing bugs or
adding new features (e.g., [S49]). For example, the authors of [S42] mentioned that
AEr has been shown to incur technical debt and decrease a system’s maintainability,
therefore, tracking AEr is critical. Besides, the authors of [S49] stated that “such an
(eroded) system incurs a technical debt, where short-term compromises lead to significant
long-term problems in terms of reduced ability of fixing bugs or adding new features”.

Organization disintegration denotes that AEr could cause inconsistent manage-
ment issues, thereby disintegrating the organization. For example, the authors of
[S7] argued that the newly hired developers in a development team cannot com-
pletely understand the eroded architecture and the workload finally falls on the

54 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

original developers who might have to work hard and not resist the stress, which
may incur high turnover in the long run.

2.4.6 RQ5: What approaches and tools have been used to detect
architecture erosion in software development?

2.4.6.1 Approaches

As shown in Table 2.13, we classified the collected approaches of AEr detection into
four categories, which are detailed below.

Consistency-based approach refers to approaches based on the evaluation of
architecture consistency (Ali et al., 2018), which aims to align the implemented sys-
tem with the intended architecture. Consistency-based approaches are one type of
the most commonly applied approaches for detecting AEr during the development
process. 34.2% (25 out of 73) of the studies propose consistency-based approaches to
detect AEr through evaluating architecture consistency, in which around 56.0% (14
out of 25) of the studies use the Architecture Conformance Checking (ACC) tech-
niques to detect AEr through checking the conformance between the implemented
architecture and the intended architecture (e.g., [S28], [S38], [S43]). For example,
specific architectural rules can be defined and used to compare the implemented ar-
chitecture against the specified constraints, such as rules of constraints (e.g., [S33],
[S45], [S53]), formal representation (e.g., [S13], [S68]), Architecture Description Lan-
guages (ADL) (e.g., [S29], [S48]), and Domain-Specific Language (DSL) (e.g., [S14],
[S31], [S58]). In addition, other approaches can also be used to evaluate architecture
consistency. Reflexion Modelling (RM) technique (Murphy et al., 2001) enables de-
velopers to extract high-level models and map the modules to source code elements
for building high-level models that capture the intended architecture of the system,
thereby identifying AEr. Design Structure Matrix (DSM) can establish a dependency
matrix among classes of a system without relying on the higher level components,
which enables developers to visually check violations for detecting AEr (e.g., [S49],
[S51]).

Evolution-based approach is commonly used to identify AEr by checking dif-
ferent history versions of projects. For example, the authors of [S15] proposed the
ADvISE approach to analyze the evolution of the architecture at different levels.
The authors proposed a representation approach of architecture based on classes
and their relationships, and they analyzed the architectural history at various levels
(e.g., classes, triplets, micro-architectures) to identify and measure AEr. Besides, to
study architectural changes and erosion, the authors of [S16] conducted an empirical
study that they employed the ARCADE approach to analyze the evolution history

2.4. Results 55

of the architecture of 14 open-sourced Apache projects using architectural recovery,
architectural change metrics, dependency analysis, and evolution paths.

Defect-based detection is extensively employed to detect AEr, which refers to
the review and inspection process of detecting AEr, e.g., through identifying an in-
creasing number of system defects. For example, the authors of [S1] conducted a
case study of defect-based measurement and they found that hotspot components
contain 50% more defects which contribute most to AEr. Other approaches can also
help to detect AEr by identifying the symptoms of AEr (see Section 2.4.3). For ex-
ample, the authors of [S64] proposed the symptoms of AEr (e.g., interface-based
smells, dependency-based smells) and AEr metrics to analyze the AEr trend in soft-
ware systems.

Decision-based approach aims to detect AEr by capturing important design de-
cisions, including the selected architectural patterns and tactics. For example, the
authors of [S37] detected AEr by redefining a collection of architectural patterns.
They leveraged the proposed ABC tool to capture design decisions and generate
OCL code to specify the constraints of the patterns, in order to detect AEr during
the design phase and validate the runtime architecture.

Table 2.13: Approaches used to detect architecture erosion

Category Approach Description Studies
Consistency-
based ap-
proach

Architecture Con-
formance Checking
(ACC)

Checking whether the imple-
mented architecture is consistent
with the intended architecture
(e.g., checking architectural viola-
tions)

[S13][S14][S28]
[S29][S31][S33]
[S38][S43][S45]
[S48][S53][S58]
[S68][S73]

Reflexion Modelling
(RM)

It helps to extract high-level mod-
els, map the implementation enti-
ties into these models, and com-
pare the two artifacts

[S27][S40][S55]
[S57][S65][S69]

Design Structure
Matrix (DSM)

Detecting relations of modules by a
creating dependency matrix to vi-
sually check for violations

[S49][S51]

Light-weight sanity
Check for Imple-
mented Architec-
tures (LiSCIA)

LiSCIA can help to derive archi-
tectural constraints from the imple-
mented architecture and spot po-
tential problems leading to AEr

[S8][S28]

56 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.13

Category Approach Description Studies
Detection of design
pattern grime and
rot

Comparing the specified design
patterns with realized patterns

[S9]

Detection of depen-
dencies between
architectural com-
ponents

Analyzing the number and types
of dependencies between architec-
tural components

[S11]

Evolution-
based
approach

Architectural Decay
In Software Evolu-
tion (ADvISE)

ADvISE aims to analyze architec-
ture evolution at various levels that
helps to analyze how and where
AEr occurred

[S15][S56][S61]

Architecture Recov-
ery, Change, And
Decay Evaluator
(ARCADE)

A software workbench used to con-
duct architecture recovery, archi-
tectural changes metrics, and AEr
metrics

[S16][S17]

MORPHOSIS Detecting AEr through analyzing
evolution scenarios, checking ar-
chitecture enforcement, and track-
ing architecture-level code metrics

[S51][S52]

Profilo Detecting AEr by analyzing the his-
tory and trends of system evolution

[S56]

Architecture Analy-
sis and Monitoring
Infrastructure
(ARAMIS)

Detecting AEr by runtime mon-
itoring, interaction validation
among architectural components,
mapping the captured behavior of
architectural elements

[S67]

Variant Analysis
(VA)

Detecting and comparing architec-
tural violations across different ver-
sions

[S44]

Defect-
based
detection

Defect-based mea-
surement

Investigating the defect-fix history
and detecting hotspots that con-
tribute to AEr by analyzing certain
defects (e.g., interface defects)

[S1][S73]

Detection of archi-
tectural smells

Detecting AEr by detecting archi-
tectural smells

[S36][S64]

2.4. Results 57

(Continued) Table 2.13

Category Approach Description Studies

Software Prognos-
tics and Health
Management
(PHM) approach

Building a PHM model to iden-
tify and predict the health sta-
tus of software systems based on
Discriminant Coordinates Analysis
(DCA)

[S3]

Detection of design
pattern grime and
rot

Comparing the specified design
patterns with realized patterns to
identify AEr

[S9]

Decision-
based
approach

Capturing design
decisions about the
adopted architec-
tural patterns

Detecting AEr by capturing the
most important design decisions
about the adopted architectural
patterns

[S37]

Detect and trace ar-
chitectural tactics

Detecting AEr through identifying
and tracing the presence of archi-
tectural tactics and keeping devel-
opers informed of underlying ar-
chitecture decisions

[S39]

2.4.6.2 Tools

Versatile tools can facilitate the understanding of the system architecture, and make
it more convenient for developers to visualize, identify, track the symptoms of AEr,
and finally repair or mitigate AEr. There are 41.1% (30 out of 73) of selected studies
that proposed or investigated relevant tools for detecting AEr. In total, 35 tools were
collected from the selected studies, and the numbers of open-source tools (51.4%, 18
out of 35) and commercial tools (48.6%, 17 out of 35) are close to each other. Six tools
are not available for download now.

The tools have various features and the classification of tools is presented in a
similar manner developed for AEr detection approaches according to their main
purposes mentioned in the studies. In Table 2.14, we classified the 35 tools into
four categories based on their distinctive purposes. The results in the “URL” col-
umn were mainly collected from the selected studies, part of which were collected
from the Internet. “Not available” means that we cannot find an available URL link
regarding whether the tools are still available now.

Conformance checking denotes that this type of tools is used to check archi-

58 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

tecture conformance for ensuring the developers and maintainers have followed
the architectural edicts set and not eroding the architecture by breaking down ab-
stractions, bridging layers, compromising information hiding, and so on (Bass et al.,
2021). Tools in this type support detection of architectural violations, analysis of de-
pendencies, and so forth. For example, Axivion allows developers and architects to
conduct dependency analysis, quality metrics, and visualization for checking archi-
tecture conformance by identifying and stopping AEr (e.g., [S18], [S34]).

Quality measurement means that tools of this type provide various metrics to
evaluate the quality of systems, monitor software systems, trace decisions, etc. For
example, Archie is an Eclipse plugin that helps developers know about the impact
of modifications and refactorings on sensitive areas of code, thereby contributing to
mitigating the long-term problems related to AEr in the system.

History analysis denotes that this type of tools can be used to analyze the evo-
lution trend, trace evolutionary scenarios, and parse the software architecture. For
example, Sotograph consists of a suite of tools and supports the analysis of detailed
structure, quality, and dependency on different abstraction levels, such as cyclical
dependencies and duplicated code blocks (e.g., [S63], [S65], [S66]).

Visualization refers to the tools that employ graphical representation of archi-
tectural elements to detect AEr, such as the visualization of anti-patterns and ar-
chitectural smells (e.g., cyclic dependencies). Visualization techniques contribute to
the understanding of the structure of large software systems by graphic or multiple-
dimensional representations. For instance, the authors of [S72] demonstrated that
Getaviz is an easy-to-use tool for visualizing software evolution, which enables de-
velopers to visualize the erosion of system design and architecture, such as the evo-
lution of cyclic dependencies and anti-patterns.

2.4.R
esults

59

Table 2.14: Tools used to detect architecture erosion

Type Tool URL link Description Open source Studies
Conformance
checking

Lattix https://www.lattix.
com/products-
architecture-issues/

It can be used to extract the architecture depen-
dencies for identifying architectural violations.

No [S18][S23][S25]
[S28][S34][S51]
[S52][S63][S65]

Structure101 https://structure101.
com/

It offers visualized views of code organization
and helps practitioners to better understand
the structure and remove cyclic dependencies.

No [S13][S18][S23]
[S25][S34][S63]
[S65][S66]

Axivion https://www.axivion.
com/en

It supports various dependency analysis and
helps stop software erosion, analyze, and re-
cover the methods developed for legacy soft-
ware by understanding the software architec-
ture.

No [S18][S34][S51]
[S52][S63][S65]
[S66]

Sonargraph https://www.
hello2morrow.com/
products/sonargraph

It is a static code analyzer that allows develop-
ers to monitor a software system for technical
quality, enforce architectural rules (e.g., rela-
tionships between layers), and detect violated
dependencies.

No [S18][S23][S25]
[S34][S63]

ArCh https://wiki.
archlinux.org/index.
php/Java_package_
guidelines

It can be used to check dependencies violations
and generate reports about the conformance
checking of system architecture.

Yes [S13][S60][S69]

ConQAT https://www.cqse.eu/
en/news/blog/conqat-
end-of-life/

It can depict all modules as UML components
and check the consistency of the defined archi-
tectural model.

No [S23][S63][S68]

SAVE Not available It provides a graphical editor to define the in-
tended architecture and show violations after
the evaluation.

No [S23][S44][S65]

ARCADE https://softarch.usc.
edu/wiki/doku.php?id=
arcade:start

It supports architecture recovery, architectural
change and decay metrics, and helps perform
different statistical analyses.

Yes [S11][S16]

https://www.lattix.com/products-architecture-issues/
https://www.lattix.com/products-architecture-issues/
https://www.lattix.com/products-architecture-issues/
https://structure101.com/
https://structure101.com/
https://www.axivion.com/en
https://www.axivion.com/en
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph
https://wiki.archlinux.org/index.php/Java_package_guidelines
https://wiki.archlinux.org/index.php/Java_package_guidelines
https://wiki.archlinux.org/index.php/Java_package_guidelines
https://wiki.archlinux.org/index.php/Java_package_guidelines
https://www.cqse.eu/en/news/blog/conqat-end-of-life/
https://www.cqse.eu/en/news/blog/conqat-end-of-life/
https://www.cqse.eu/en/news/blog/conqat-end-of-life/
https://softarch.usc.edu/wiki/doku.php?id=arcade:start
https://softarch.usc.edu/wiki/doku.php?id=arcade:start
https://softarch.usc.edu/wiki/doku.php?id=arcade:start

60
2.U

nderstanding
Softw

are
A

rchitecture
Erosion:A

System
atic

M
apping

Study

(Continued) Table 2.14

Type Tool URL link Description Open source Studies

Dclcheck https://github.com/
rterrabh/pi-dclcheck

It can be used to verify whether the imple-
mented architecture respects the specific con-
straints.

Yes [S4][S69]

Macker https://sourceforge.
net/projects/macker/

It can be used to define a diversity of confor-
mance rules and provide violation reports.

Yes [S23][S63]

ArchRuby https://aserg.labsoft.
dcc.ufmg.br/archruby/
manual.html

It can generate reports about the illustration
of the architectural conformance and visualiza-
tion processes.

No [S24]

DCL2Check https://github.com/
aserg-ufmg/dcl2check

As a plugin for Eclipse IDE, it supports ar-
chitectural conformance verification and high-
level architectural visualization.

Yes [S35]

Card Not available As a plugin for Eclipse IDE, it can be used to
search for UML and Java files, as well as con-
formance checking.

Yes [S48]

ReflexML Not available It can be used to create a UML-embedded
mapping of architecture models to code and
check the consistency (e.g., architecture-to-
code traceability information) based on the
mapping results.

Yes [S63]

dTangler https://github.com/
vladdu/dtangler

It helps conduct conformance checking based
on the DSM technique that is complemented
with text-based editors to define rules.

Yes [S23]

Coverity https://www.synopsys.
com/software-
integrity/security-
testing/static-
analysis-sast.html

It provides a set of quality metrics and various
forms of dependency analysis to check archi-
tecture conformance.

No [S34]

https://github.com/rterrabh/pi-dclcheck
https://github.com/rterrabh/pi-dclcheck
https://sourceforge.net/projects/macker/
https://sourceforge.net/projects/macker/
https://aserg.labsoft.dcc.ufmg.br/archruby/manual.html
https://aserg.labsoft.dcc.ufmg.br/archruby/manual.html
https://aserg.labsoft.dcc.ufmg.br/archruby/manual.html
https://github.com/aserg-ufmg/dcl2check
https://github.com/aserg-ufmg/dcl2check
https://github.com/vladdu/dtangler
https://github.com/vladdu/dtangler
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

2.4.R
esults

61

(Continued) Table 2.14

Type Tool URL link Description Open source Studies

STAN http://stan4j.com/ It helps to detect design flaws, analyze depen-
dencies, and visually understand system struc-
ture.

No [S18]

Dependometerhttps://sourceforge.
net/projects/
dependometer/

It helps validate dependencies against the log-
ical architecture structuring the system into
classes, packages, subsystems, vertical slices,
and layers and detects cycles between these
structural elements.

Yes [S63]

Classycle https://classycle.
sourceforge.net/

It allows to define and analyze the dependen-
cies of classes and packages (especially helpful
for finding cyclic dependencies).

Yes [S63]

FIS sys-
tem

https://www.fispro.
org/en/

It is a fuzzy rule-based system (a.k.a Fuzzy In-
ference System) used to detect AEr symptoms
and recommend treatments to reduce or miti-
gate AEr symptoms.

Yes [S41]

Klocwork https://www.perforce.
com/products/klocwork

It is a static analysis tool that provides sup-
port to architecture visualization in the form of
graphs, which helps detect security issues and
increase code reliability for ensuring architec-
ture conformance.

No [S34][S65]

ABC Not available It provides support to design architecture,
adopting predefined architectural patterns,
capturing design decisions, and detecting AEr.

Yes [S37]

SIC Not available It helps to extract the descriptive architecture
using JavaDoc comments and detect the archi-
tecture violations of a codebase change.

Yes [S45]

http://stan4j.com/
https://sourceforge.net/projects/dependometer/
https://sourceforge.net/projects/dependometer/
https://sourceforge.net/projects/dependometer/
https://classycle.sourceforge.net/
https://classycle.sourceforge.net/
https://www.fispro.org/en/
https://www.fispro.org/en/
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork

62
2.U

nderstanding
Softw

are
A

rchitecture
Erosion:A

System
atic

M
apping

Study

(Continued) Table 2.14

Type Tool URL link Description Open source Studies

Quality
measure-
ment

JDepend https://github.com/
clarkware/jdepend

It allows to automatically measure the quality
of a design in terms of its extensibility, reusabil-
ity, and maintainability to effectively manage
and control package dependencies.

Yes [S18][S34][S65]

Archie https://github.com/
ArchieProject/Archie-
Smart-IDE

As a plugin for Eclipse IDE, it helps to
automate the creation and maintenance of
architecturally-relevant trace links between
code, architectural decisions, and related re-
quirements.

Yes [S19][S39]

SourceAudit Not available It can measure the maintainability of source
code and automatically monitor the source
code quality of software system.

No [S59]

JArchitect https://www.
jarchitect.com/

It can provide various metrics to analyze the
architecture and generate evaluation reports.

No [S53]

SonarQube https://www.sonarqube.
org/

It supports inspecting code quality by perform-
ing automatic reviews.

No [S18]

Xradar https://xradar.
sourceforge.net/

It is an open extensible code report tool and can
generate HTML/SVG reports of the systems’
current state and development over time.

No [S63]

History
analysis

Sotograph http://www.
hello2morrow.com/
products/sotograph

It consists of a number of tools and supports
the trend monitoring, quality and dependency
analysis on different abstraction levels, as well
as the changes in architecture violations be-
tween various versions.

No [S63][S65][S66]

CppDepend https://www.cppdepend.
com/

(For C++) It is used to measure some basic met-
rics and trace evolution scenarios to the code
and reveal potential ripple effects.

No [S51][S52]

https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend
https://github.com/ArchieProject/Archie-Smart-IDE
https://github.com/ArchieProject/Archie-Smart-IDE
https://github.com/ArchieProject/Archie-Smart-IDE
https://www.jarchitect.com/
https://www.jarchitect.com/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://xradar.sourceforge.net/
https://xradar.sourceforge.net/
http://www.hello2morrow.com/products/sotograph
http://www.hello2morrow.com/products/sotograph
http://www.hello2morrow.com/products/sotograph
https://www.cppdepend.com/
https://www.cppdepend.com/

2.4.R
esults

63

(Continued) Table 2.14

Type Tool URL link Description Open source Studies

NDepend https://www.ndepend.
com/

(For C#) It is used to measure some basic met-
rics and trace evolution scenarios to the code
and reveal potential ripple effects.

No [S51][S52]

EVA https://github.com/
namdy0429/EVA

EVA helps explore, visualize, and understand
multiple facets of architectural evolution.

Yes [S42]

Visualization Understand https://scitools.com/ It helps to understand and maintain the poorly
documented legacy systems by visualizing and
metrics.

No [S18]

Getaviz https://github.com/
softvis-research/
Getaviz

It is a toolkit that automatically generates the
visualization of the eroded part of systems,
thereby assisting developers and architects in
evaluating, tracing, and combating AEr.

Yes [S72]

https://www.ndepend.com/
https://www.ndepend.com/
https://github.com/namdy0429/EVA
https://github.com/namdy0429/EVA
https://scitools.com/
https://github.com/softvis-research/Getaviz
https://github.com/softvis-research/Getaviz
https://github.com/softvis-research/Getaviz

64 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

2.4.7 RQ6: What measures have been used to address and prevent
architecture erosion in software development?

We find that the measures used to address and prevent AEr encompass preventive
and remedial measures. As shown in Table 2.15, we classified the measures used
to address AEr into three categories: (1) preventive measure, (2) remedial measure,
and (3) both. Preventive measures are usually employed in different architecture
activities (e.g., architecture analysis, architecture evaluation), and these measures
refer to the proactive countermeasures for avoiding AEr or mitigating the risk of
AEr. Remedial measures aim at repairing (or improving) the existing eroded parts
of the implementation. Both means the measures help to address AEr including the
above-mentioned two measures.

2.4.7.1 Preventive measures

Architecture Conformance Checking (ACC) are employed to review the process-
based activities during software development for ensuring the implemented ar-
chitecture aligns with the intended architecture. The authors of [S23] mentioned
that “checking architecture conformance bridges the gap between high-level models of ar-
chitectural design and implemented program code, and to prevent decreased maintainabil-
ity, caused by architectural erosion”, which indicates that ACC can help identify and
correct architectural violations and further avoid constant AEr during the software
development life cycle. In addition, establishing architecture constraints can be
used to support ACC. Architecture constraints refer to the rules for the specifica-
tion and enforcement of architecture, which help to keep the architecture consistent
with the specified restrictions, such as constraints for consistency checking between
architecture decisions and component models. Establishing architecture constraints
contributes to the reliability and robustness of software systems and reduces AEr
risks. For example, the authors of [S4] proposed a Dependency Constraint Lan-
guage (DCL) to restrict the spectrum of architectural dependencies. Additionally,
the authors of [S35] proposed a domain-specific language (i.e., DCL 2.0) with a sup-
porting tool (i.e., DCL2Check) to facilitate modular and hierarchical architectural
specifications, which helps the development teams to handle architectural viola-
tions for addressing AEr.

Architecture monitoring and evaluation aims at employing means to moni-
tor the health status of software systems and evaluate whether the symptoms of
AEr (Garcia et al., 2009), such as architectural smells (e.g., extraneous connector,
ambiguous interface, component overload) crept into a system. For example, the au-
thors of [S8] applied LiSCIA, an architecture evaluation method, at different stages

2.4. Results 65

of software development and periodically evaluated the implemented architecture,
which can produce evaluation reports and guidelines to improve the implemented
architecture, thereby helping to identify and prevent AEr. Besides, dependency
analysis is a feasible measure for identifying and determining the interdependence
between various entities (e.g., classes, packages, modules, components), which en-
ables developers to understand the relationships and directions of the dependencies.
For example, the authors of [S20] proposed a constraints concerning plugin based
on a domain-specific language (i.e., DepCoL) to define constraints regarding plug-
ins and feature dependencies. In this way, AEr can be prevented in plugin-based
software systems.

Establishing traceable mechanism denotes that available mechanisms should
be established to manage and trace software artifacts and support maintenance ac-
tivities during the software development and evolution process, such as design de-
cisions and tactics. For example, in order to mitigate and avoid pervasive prob-
lems of AEr, the authors of [S10] established six trace creation patterns for creating
traceability between concrete architectural elements and design decisions, which
can keep developers informed about implemented architectural tactics, styles, and
design patterns.

Evolving architecture as changes occur refers to the measures with the goal
of evolving an architecture when changes to the system happen, such as environ-
ment, requirements, and workflows changes. For instance, the authors of [S25]
claimed that architecture should be built for satisfying all current requirements
and incrementally evolved once requirements changed. Although it might be time-
consuming, to some extent these measures are feasible to prevent and minimize
AEr. Another example is from [S34], the authors mentioned that “the contribution of
self-adaptation strategies towards preventing architecture erosion relies on minimising hu-
man interference in routine maintenance activities”. Self-adaptation techniques are em-
ployed to build and manage the systems by following the principles of autonomic
computing, in order to respond to possible changes (e.g., requirement and environ-
ment changes) and address uncertainty at runtime (Oreizy et al., 1999). With this
measure, architectural problems might be detected and resolved early during the
development process, which reduces the demands for making fixes afterwards that
are potentially error-prone.

Explicitly specifying architecture could partially help to prevent AEr by defin-
ing architecture explicitly and exposing underlying design decisions, architecture
tactics, and constraints, in order to ensure stakeholders and maintainers completely
understand the details of what they will implement and reduce the risk from the
implementation phase (e.g., [S19]). For example, the authors of [S29] argued that
the AEr control techniques should provide mechanisms for explicitly defining the

66 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

intended architecture and checking whether the implemented system conforms to
the intended design.

2.4.7.2 Remedial measures

Architecture maintenance is a common measure used to repair eroded architec-
ture with the purpose of maintaining architectural sustainability. Architecture repair
aims at using repairing strategies to fix up architectural anomalies, such as synchro-
nizing the implementation with intended architecture and repairing detected viola-
tions. For example, the authors of [S18] employed tools (e.g., Sonargraph, Structure
101) to repair certain architecture problems (e.g., design violations, cyclic depen-
dencies). Another example is that, the authors of [S12] proposed an architectural
repair recommendation system that provides refactoring guidelines for developers
and maintainers to fix architectural violations. Note that, inappropriate architectural
modifications (e.g., violating architectural rules) could break the system structure
over time, while suitable modifications can help to reverse or minimize AEr for the
purpose of architecture optimization. For example, the authors of [S9] optimized
the architecture by removing design pattern grime and rot, which can potentially
reduce maintenance costs and improve system adaptability, consequently stop and
remedy the eroding architecture.

Architecture restoration typically includes reverse engineering techniques to
discover and recover architectural structures from software artifacts, as well as spec-
ulate the intended architectural design. For example, the authors of [S50] proposed
an approach to regenerate architecture and extract architecturally-significant con-
cerns that led to eroded model artifacts, in order to counteract the erosion process.

2.4.7.3 Both

Architecture refactoring aims to improve the structure of a system without chang-
ing the external behaviors of the system. For example, the authors of [S46] proposed
a multi-objective optimization method for improving the original package structure,
preserving the original design decisions, and remedying eroded parts in an archi-
tecture. Besides, simplifying architecture is also one of the purposes of architecture
refactoring, which aims at deliberately controlling architectural complexity and fur-
ther simplifying the system during the maintenance and evolution phases. When
architectural complexity proliferates towards being uncontrollable, simplifying the
system architecture can be useful for understanding the architecture of the system
(e.g., [S18], [S69]), reducing the risk of AEr occurrence from the increasing complex-
ity, and decreasing the difficulty of conformance checking.

2.4. Results 67

Visualization is the way of using tools or feasible techniques to represent the ar-
chitectural structure through visual notations for helping practitioners have better
insights into the system design and relationships within/between various compo-
nents and modules. In design phases, visualizing architecture can help to avoid
architecture violations; in the maintenance phase, it can be conducive to repairing
various code and architecture anomalies. Hence, this type of measures could be
classified into both preventive and remedial measures.

Management optimization denotes that optimizing the management methods
of controlling or stopping the constant erosion tendency of the system architecture.
For example, the author of [S73] claimed that creating a culture is valued to stop
erosion with management support, and this culture is likely to have the characteris-
tics, including emphasizing regular refactoring, clear assignment of responsibilities,
sharing architectural knowledge, and frequent communication within development
teams.

Table 2.15: Measures used to address architecture erosion

Category Type Description Studies
Preventive
measure

Architecture con-
formance checking

Checking and correcting the in-
consistencies between the in-
tended architecture and the im-
plemented architecture

[S2][S4][S6][S13]
[S14][S20][S23][S24]
[S25][S29][S31][S34]
[S35][S40][S48][S52]
[S58][S61][S63][S65]

Architecture moni-
toring and evalua-
tion

Monitoring and evaluating ar-
chitectural status (e.g., assessing
QAs metrics, dependency analy-
sis)

[S8][S17][S20][S34]
[S43][S51][S62][S67]
[S70][S73]

Establishing trace-
able mechanism

Tracing and managing artifacts
(e.g., decisions, tactics) by certain
feasible methods and tools (e.g.,
documentation, links)

[S10][S14][S34][S61]

Evolving architec-
ture as changes oc-
cur

Evolving architecture (and archi-
tecture model) when changes oc-
curred (e.g., environment change,
requirements change, workflows
change)

[S25][S32][S34]

Explicitly defining
architecture

Explicitly defining the intended
architecture and exposing related
knowledge

[S19][S29][S31]

68 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

(Continued) Table 2.15

Category Type Description Studies

Remedial
measure

Architecture main-
tenance

Conducting maintenance activi-
ties to repair architectural defects
and adapt the system architecture

[S7][S9][S12][S26]
[S29][S34][S41][S53]
[S57][S60][S73]

Architecture
restoration

Restoring architecture (e.g., re-
verse engineering, model discov-
ery)

[S50][S53][S54][S71]

Both Architecture refac-
toring

Refactoring the codebase (e.g., re-
modularizing, restructuring)

[S5][S18][S45][S46]
[S62][S69]

Visualization Architecture visualization can
help to understand the architec-
tural structure

[S35][S72][S73]

Management opti-
mization

Optimizing management skills
and improving management
commitment

[S73]

2.4.8 RQ7: What are the difficulties when detecting, addressing,
and preventing architecture erosion?

The difficulties refer to the obstacles of detecting, addressing, and preventing AEr
during the development process. We collected and extracted the difficulties from the
selected studies and classified them into three types. We list the main difficulties,
types, and descriptions of the difficulties in Table 2.16.

Table 2.16: Classification for the difficulties of detecting, addressing, and preventing architec-
ture erosion

Category Type Description Studies
Detection of
AEr

Lack of dedicated
techniques and
tools

Due to a lack of efficient tools and
techniques, it is very hard to manu-
ally detect AEr in software systems

[S10][S13][S24]
[S27][S29][S31]
[S35][S48][S57]

2.4. Results 69

(Continued) Table 2.16

Category Type Description Studies

Hard to establish
mapping rela-
tions

Due to various factors, it is hard
to establish mapping relations be-
tween source code and architectural
elements (e.g., components, depen-
dencies)

[S10][S26][S29]
[S36][S37][S39]
[S47][S51][S57]

Limitation of
detection ap-
proaches

Due to the specification of domains
and software models, some meth-
ods can hardly be generalized to de-
tect AEr in different development
scenarios

[S9][S13][S14]
[S33][S35][S38]
[S48]

Handling of
AEr

Hard to keep the
architectural con-
sistency

When the system evolves over time,
it is hard to keep the implemented
architecture aligns with the in-
tended architecture

[S6][S18][S20]
[S45][S60][S71]

Labor and time
constraint

It is usually hard to manually keep
the architecture consistent with
source code and completely remove
AEr due to the labor and time
constraints

[S20][S45][S53]
[S54]

Lack of broad
understanding of
software systems

Hard to get access to a broad under-
standing of the whole system for re-
pairing AEr

[S60][S69]

Others diffi-
culties

Verification Hard to validate the effects of AEr
repairing

[S46]

Assessing the
cost of stopping
erosion

Hard to evaluate the cost to stop
AEr in software systems

[S73]

Detection of AEr. Studies in this category can be classified into three types as
shown in Table 2.16). (a) Lack of dedicated techniques and tools/plug-ins for detecting
AEr. For example, in [S24] and [S29], the authors mentioned that there was a lack
of tools specifically geared towards addressing AEr. (b) Hard to establish a mapping
relation. For instance, due to various reasons (e.g., lack of documentation, devel-
oper turnover), the authors of [S10] mentioned that it could be very difficult to
know about the original design decisions for establishing mapping relations be-

70 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

tween source code and architectural elements (e.g., components, dependencies).
When the correlation of this kind of understanding is missing and it will become
the obstacle for identifying their impact on AEr. (c) Limitation of detection approaches.
Due to the specialization of domains and software models, some of the existing
approaches can hardly be reused in the typical software development. For exam-
ple, the authors of [S13] claimed that the specification of consistency constraints
depended on the syntax and definitions of specialized models, and it may need to
repeatedly define all the models where AEr might occur. This kind of redundancy
constrains the reusability of this type of methods and the extensive use for detecting
AEr in industry.

Handling of AEr. Even if erosion is found in software systems, it is still a chal-
lenge to handle AEr. (d) Hard to keep the architectural consistency. For example, the
authors of [S18] mentioned that keeping the intended architecture consistent with
the implemented architecture is still very hard for software engineers in mainte-
nance phases, since engineers must cope with obsolescence and maintenance when
systems evolve. (e) Labor and time constraints. Manually ensuring the architecture
keep consistent with the implementation of a system might be quite labor-intensive
and time-consuming. For example, the authors of [S20] stated that manually en-
suring the consistency between the implementation and the dependency model is a
laborious, time-consuming, and error-prone task, even for smaller systems. (f) Lack
of broad understanding. Lack of a broad and in-depth understanding of the whole sys-
tem is also an obstacle for completely removing and repairing erosion (e.g., [S60],
[S69]). Hence, it is a challenge for practitioners to find optimal ways to fix the eroded
architecture.

Other difficulties. (g) Verification. In most of the cases, maintainers are not the
original developers, for example, the authors of [S46] mentioned that this situation
increased the difficulties for optimizing the original modularization. Meanwhile,
re-modularizing the system structure might obtain new modularizations that are
different from the original structure, and it is hard to validate the effect of such kind
of erosion repairing. (h) Assessing the cost of stopping erosion. Besides, the authors of
[S73] mentioned that it is hard to assess the cost of stopping AEr to software systems
and convey the cost to non-technical stakeholders.

2.4.9 RQ8: What are the lessons learned about architecture erosion
in software development?

The selected studies provide numerous and valuable lessons on the handling of AEr.
The lessons discussed in most of the selected studies are about the experience on
handling AEr. Generally, a lesson could be one or more sentences, or a paragraph,

2.4. Results 71

we collected more than 200 lessons learned from the selected studies. Moreover,
we classified the collected lessons into five types below and provide representative
examples of each type in Table 2.17.

Table 2.17: Lessons learned about architecture erosion in software development

Lessons learned Description Studies
Tackling of
AEr

(1) Detecting and removing deviations might
not efficiently mitigate erosion [S1].
(2) Dealing with AEr after it has happened is
more difficult and costly, and AEr should be
handled once it has been introduced in a sys-
tem [S8].

[S1][S7][S8][S11][S16]
[S17][S21][S27][S28]
[S31][S34][S37][S40]
[S41][S44][S45][S46]
[S47][S48][S51][S52]
[S53][S54][S55][S57]
[S60][S62][S69][S70]

Manifestation
of AEr

(1) The authors found that the erosion process
often intertwined with the drift process [S31].
(2) The authors learned that eroded architec-
ture might not be observed by performance
[S34].

[S1][S7][S11][S17][S22]
[S27][S28][S30][S31]
[S34][S35][S41][S47]
[S49][S51][S53][S55]
[S56][S57][S62][S64]
[S68][S69][S73]

Detection
of AEr

(1) Identifying the hotspots in the architecture
can help to identify erosion [S1].
(2) The detection strategies of erosion must
rely on certain captured architectural informa-
tion [S27].

[S1][S22][S27][S31]
[S33][S34][S35][S36]
[S49][S51][S52][S53]
[S57][S60][S63][S65]
[S66][S68][S69][S73]

Understanding
of AEr

(1) The more the software system evolves, the
greater possibility of erosion happens [S21].
(2) The authors mentioned that AEr cannot be
avoided completely [S69].

[S1][S7][S9][S13][S21]
[S33][S34][S35][S44]
[S45][S47][S53][S55]
[S56][S57][S60][S66]
[S69]

Prevention
of AEr

(1) Establishing a culture and offering support-
ive management is crucial for preventing ero-
sion [S7].
(2) The authors suggested that minimizing hu-
man interference in routine maintenance ac-
tivities contributes to erosion prevention when
employed self-adaptation strategies [S34].

[S7][S11][S13][S34]
[S51][S53][S61][S73]

Tackling of AEr. The lessons in this type contain the experience on how to tackle
erosion in the software development life cycle. For example, in [S41] and [S51],
the authors mentioned that blindly optimizing one symptom of AEr might make
other symptoms worse. Therefore, it is necessary for developers to understand the
relationships between AEr symptoms and maintenance activities.

Manifestation of AEr. This type of lessons refers to the manifestation of eroded

72 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

architecture in software development, such as characteristics and impact on per-
formance. For example, in [S1], the authors mentioned that not all deviations
(e.g., short-term deviations only in few versions) in an architecture manifest erosion
trend.

Detection of AEr. The lessons in this type are about the experience on detect-
ing erosion in the software development process. For example, the authors of [S31]
found that the drift process often intertwined with the erosion process, and detec-
tion of drift symptoms might help to detect erosion symptoms or vice versa.

Understanding of AEr. This type of lessons contains how practitioners under-
stand AEr in software development, such as characteristics and attributes of eroded
architecture in software development. For example, the authors of [S7] mentioned
that almost all projects would suffer from erosion sooner or later unless taking some
effort to overcome it.

Prevention of AEr. The lessons in this type include the findings about which
means are effective in preventing AEr. For example, the authors of [S13] found that
AEr might also occur in model-driven software development. Hence, formulating
and regularly checking the architectural rules with the model-implementation pro-
cess can help to prevent architecture from sliding into erosion during the software
development life cycle.

2.5 Discussion

In this section, we analyze the results of each RQ (see Section 2.5.1) and discuss
their implications for researchers and practitioners (see Section 2.5.2), respectively.
To demystify the AEr phenomenon, we first provide a conceptual model of AEr (see
Figure 2.7) to present our findings and the relationships between various aspects
(i.e., definitions, symptoms, reasons, and consequences) of AEr according to the
results of this SMS in Section 2.4. This conceptual model acts as a panorama to
understand the nature of the AEr phenomenon.

Regarding each aspect shown in Figure 2.7, we discuss their elements in Section
2.5.1. The conceptual model shows that the understanding of AEr (i.e., definition
perspective) consist of four perspectives (see Section 2.4.2), and presents the types of
AEr symptoms (see Section 2.4.3) that can be considered as the manifestation of AEr.
On the other side, the AEr symptoms can directly or indirectly give rise to diverse
consequences to software projects. Moreover, the conceptual model highlights that
both technical and non-technical reasons that can trigger the occurrence of AEr (see
Section 2.4.4), as well as the negative effects caused by AEr (see Section 2.4.5).

2.5. Discussion 73

Architecture
erosion

Symptom

Cause Consequenceleads tois caused by

is defined by

Definition
perspective

Structural
symptom

Violation
symptom

Evolution
symptom

Quality
symptom

Violation Structure Quality Evolution

Technical
reason

Non-technical
reason

Quality degradation

Architectural defect

Increased cost

Failure of software projects

Failure to meet requirements

Software aging

Technical debt

Organization disintegration

manifests

Figure 2.7: A conceptual model of architecture erosion according to the RQ results

2.5.1 Analysis of results

2.5.1.1 Definition of architecture erosion

Section 2.4.2 reveals that the concept of AEr has been defined in different terms and
perspectives. Table 2.8 shows that only 54.8% (40 out of 73) of the studies proposed a
definition of the AEr phenomenon. According to the terms listed in Table 2.7, some
of these terms are general concepts, which refer to the constant decay of the system
structure (at the system level), such as software aging (e.g., [S5]), software erosion
(e.g., [S41]), design rot (e.g., [S7]), system rot (e.g., [S72]), and modular/modularity
deterioration (e.g., [S46]); certain terms are used to describe software anomalies at
the code level, such as code decay and code rot (e.g., [S28]); some other terms focus
on the AEr phenomenon at the architectural level, and the architectural problems
are described as architecture degradation or architecture degeneration, which rep-
resents the introduction of architecturally-relevant problems and continuous decline
of architectural modularity (e.g., [S27], [S31], [S45], [S57], [S67]). Moreover, accord-
ing to the extracted definitions of AEr, we found that architecture erosion, architec-
ture decay, and architecture deterioration have the same meaning when describing
the AEr phenomenon (e.g., [S15], [S16], [S17], [S21]), which refers to the architec-
tural deviation between the intended and implemented architecture, and both the
intended and implemented architecture may change with the changing demands of
stakeholders.

Besides, certain definitions of AEr are not included in this SMS, since the publi-
cation years of these studies are not within the time period of our SMS. For example,

74 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Jaktman et al. (Jaktman et al., 1999) defined AEr as “structure of a software architecture
to be eroded when the software becomes resistant to change or software changes become risky
and time consuming”, and this definition focuses on the structure perspective (see
Table 2.8); Wang et al. (Wang et al., 2019) defined that “architecture erosion is a phe-
nomenon that occurs when architecture quality is decreased with software evolution”, and
this definition focuses on the quality perspective (see Table 2.8). The two defini-
tions above can also support that AEr is more than a simple phenomenon about the
violations of intended architecture, and the relationships between the four perspec-
tives are worth further investigation. Furthermore, the AEr definitions in four per-
spectives imply that AEr occurred at different levels of abstraction, and this finding
also shows that AEr is a multifaceted phenomenon. The results of our recent study
from the practitioners’ perspective (Li, Liang, Soliman and Avgeriou, 2021b) also
indicate that AEr is a multifaceted phenomenon and practitioners describe this phe-
nomenon from four perspectives: structure, quality, maintenance, and evolution.
Interestingly, we noticed that there is only a slight difference in the perspectives of
AEr between academia and industry. Compared to the violation perspective identi-
fied in this SMS, practitioners care more about the maintenance perspective of AEr.
One potential reason could be that the maintainers may not be the original archi-
tects in practice, thus practitioners discuss more about the maintainability issues
caused by AEr, while academia might focus more on the nature of AEr. Considering
this, we provide a refined definition of AEr according to the results (i.e., the four
perspectives) of our SMS: architecture erosion happens when the implemented
architecture violates the intended architecture with flawed internal structure or
when architecture becomes resistant to change.

Finding 1: AEr is a multifaceted phenomenon, which is often described from four
perspectives: violation, structure, quality, and evolution.
Finding 2: we provide a refined definition of AEr according to the results (i.e., the
four perspectives) of our SMS: architecture erosion happens when the implemented
architecture violates the intended architecture with flawed internal structure or when
architecture becomes resistant to change.

2.5.1.2 Symptoms of architecture erosion

Table 2.9 shows that the symptoms of AEr can be mapped into the perspectives of
AEr phenomenon (see Section 2.4.2). We found that 32.9% (24 out of 73) of the se-
lected studies mention the symptoms of AEr, and nearly half of them (41.7%, 10 out
of 24) regard violations of design decisions, principles (e.g., abstraction, encapsu-

2.5. Discussion 75

lation), or constraints as the symptoms of AEr. Moreover, most of the symptoms
(70.8%, 17 out of 24) are related to structural anomalies, especially some architec-
tural smells (e.g., undesired dependencies).

According to Table 2.9, we observed that structural symptoms receive more at-
tention among the majority of symptoms. One potential reason could be that it is
relatively easy to detect structural issues by employing various tools or visualiz-
ing the dependency relationships of components. Besides, compared to individual
structural symptoms, the agglomerations of structural symptoms are even stronger
indicators of AEr. For example, Oizumi et al. (Oizumi et al., 2016, 2015) studied the
impact of code anomaly agglomeration (i.e., a group of inter-related code anomalies)
on software architecture and the results show that more than 70% of architectural
problems are related to code anomaly agglomerations. Their studies confirm that
code anomaly agglomerations are better than individual code anomalies to indicate
the presence of architectural problems. Besides, Microservices Architecture (MSA),
as a popular architectural style used to increase resilience to AEr (Chen, 2018), can
also show certain AEr symptoms (such as architectural smells). For example, Mum-
taz et al. (Mumtaz et al., 2021) presented several service-oriented and service-specific
architectural smells (e.g., Shared Libraries, Missing Package Abstractness) in MSA,
which are a typical type of structural symptoms of AEr (see Table 2.9). Considering
the popularity of using MSA in industry in recent years, the potential shortcomings
and risks of MSA related to AEr need to be further investigated.

In addition, we found that it is a challenge to adequately quantify various AEr
symptoms, though several studies (e.g., [S16], [S41], [S26]) attempted to propose
metrics and tools for detecting AEr symptoms. For example, ARCADE mentioned
in [S16] is a tool used to analyze and quantify different structural symptoms (e.g., ar-
chitectural smells, dependency information) for given systems, which is employed
to identify and recover the eroded architecture (e.g., Schmitt Laser et al. (2020); Gar-
cia et al. (2022)). A potential drawback of entirely relying on structural symptoms
might ignore other AEr symptoms (e.g., evolution symptoms). Besides, note that,
although quality degradation (as a quality symptom) could emerge alongside con-
tinuously eroding architectures, not all quality degradation is related to architectural
issues; for example, inconsistent coding styles may not have an impact on architec-
tural integrity but lead to reduced readability and maintainability. Quantifying the
AEr symptoms can help to recognize AEr and its degree in software development.
Although a wide variety of studies mentioned diverse AEr symptoms, there is a lack
of diversity about AEr symptoms in the empirical validations. For example, we did
not find many in-depth validations of which symptoms are strong indicators of AEr
and how to detect those symptoms.

76 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Finding 3: AEr symptoms can be classified into four categories: structural symp-
tom, violation symptom, evolution symptom, and quality symptom, where structural
symptoms receive the most attention.

2.5.1.3 Reasons of architecture erosion

Every architecture will undergo erosion sooner or later as long as the evolution hap-
pens (Merkle, 2010), which is a process of increasing entropy. In a broad sense,
AEr does not arise spontaneously and the root reason of AEr comes about through
change. According to Table 2.10 and Table 2.11, we observed that the reasons of AEr
are more than from technical factors, but also related to non-technical factors. The
findings show that architecture violation (24.7%, 18 out of 73 studies), evolution issue
(23.3%, 17 out of 73 studies), and technical debt (17.8%, 13 out of 73 studies) are the
three main technical reasons of AEr, and knowledge vaporization (15.1%, 11 out of 73
studies) is the most frequently mentioned non-technical reason. One possible rea-
son is that the maintenance and evolution phases account for a large part of the life
cycle of software development, and these frequently mentioned reasons are rela-
tively easy to be involved in various artifacts and software development activities.
Requirement issue (15.1%, 11 out of 73 studies) is a common reason of AEr related to
both technical and non-technical reasons, since requirements (including functional
and non-functional requirements) have a significant impact on system design and
evolution, and the requirements-design gap can affect different development activ-
ities during the software development life cycle.

Additionally, the reasons of AEr listed in Table 2.10 may have interactive rela-
tionships. For example, increasing complexity can lead to understanding issue (e.g.,
[S34]), while understanding issue may be caused by other reasons, such as architec-
ture violation (e.g., [S45]). Technical debt might give rise to suboptimal design decisions,
but not all of the suboptimal design decisions are derived from technical debt (e.g., spe-
cific design constraints with low extensibility). Thus, the potential relationships be-
tween the reasons are also worthy of further exploration. We believe that our work
can serve as a good starting point for future research on exploring the relationships
between the collected reasons.

Finding 4: AEr does not arise spontaneously and the root reason of AEr comes about
through change. AEr is caused both by technical factors (e.g., architecture violation,
evolution issue, and technical debt) and non-technical factors (e.g., knowledge vapor-
ization) which are intertwined.

2.5. Discussion 77

2.5.1.4 Consequences of architecture erosion

As shown in Table 2.12, we mapped the consequences extracted from the selected
studies into eight categories. 50.7% (37 out of 73) of the studies mention or inves-
tigate the impact of eroded architecture on software systems, where most of them
(83.8%, 31 out of 37 studies) are related to quality degradation issues. The prior-
ity of tackling the consequences relies on the severity and degree of impact on dif-
ferent software Quality Attributes (QAs) (e.g., maintainability, evolvability, exten-
sibility), and the significance of these QAs to the companies. For instance, Mozilla
Web browser (Godfrey and Lee, 2000), an application from Netscape comprised over
2,000,000 source lines of code, is a frequently mentioned example of AEr in indus-
try. Netscape engineers took six months to conclude that the original architecture
layers of this application were eroded and irreparable. However, they spent two
years redeveloping Mozilla Web browser and re-architecting the source code and
dependencies. For small companies, it might lead to failure of software projects, while
it might bring about increased cost to redevelop this application for big companies
like Netscape.

Not surprisingly, the consequences might damage architectural structures and
generate software defects. Ultimately, massive labor and time cost have to be in-
vested into the projects for incorporating the new requirements and restructuring
the source code, and the worst situation is to rebuild a system from scratch. The
results of RQ4 can shed light on the significance of AEr in software development.
Knowing about various consequences can draw more attention to AEr phenomenon
and further warn researchers and practitioners to avoid the potential consequences
of AEr. Notably, the findings indicate that technical debt might not only be one
of the AEr reasons, but also one of the AEr consequences. It is worth noting that
correlation does not imply causation and the accumulated unpaid technical debt
might give rise to AEr with high probability. For example, Mo et al. [S49] mentioned
that systems with AEr happened can incur technical debt where short-term com-
promises lead to significant long-term problems (e.g., fixing bugs or adding new
features). The findings imply that technical debt might have a feedback loop with
negative consequences, including decreasing reliability and increasing complexity.
This observation suggests that more empirical work should be performed to inves-
tigate the relationships between technical debt and AEr.

78 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Finding 5: AEr can lead to various consequences, such as damaging architectural
structures and generating software defects. The priority of tackling the consequences
of AEr often relies on the severity and degree of impact on different software quality
attributes.
Finding 6: Technical debt might not only be one of the AEr reasons, but also one of
the AEr consequences, forming a vicious circle between the two phenomena.

2.5.1.5 Approaches and tools for architecture erosion detection

We found that 54.8% (40 out of 73) of the selected studies proposed or employed
approaches for detecting AEr and we classified these approaches into four cate-
gories (see Table 2.13). The results of RQ5 reveal that the research effort on AEr
detection has mainly focused on the consistency-based approaches (62.5%, 25 out
of 40 studies), where the most frequently employed evaluation-based approach is
Architecture Conformance Checking (ACC). One potential reason is that ACC is
straightforward to assist stakeholders in checking whether the implemented archi-
tecture complies with the intended architecture. Moreover, our results show that
the evolution-based approaches (22.5%, 9 out of 40 studies) and defect-based ap-
proaches (15.0%, 6 out of 40 studies) receive similar concerns from the literature.
One reason may be that the diversity of source code analysis tools makes the two
types of approaches more applicable to different software projects.

The findings also show that 39.7% (29 out of 73) of the selected studies mentioned
relevant tools that can be employed in detecting AEr (see Table 2.14), where the ma-
jority of the tools (57.1%, 20 out of 35 tools) used to detect AEr are designed based on
ACC. Additionally, we observed that many tools employed to detect AEr are imple-
mented to support the approaches in Table 2.13 besides ACC, which demonstrates
the necessity of close collaboration between academia and industry. Moreover, we
noticed that half of the tools are commercial tools and more than half of the tools
only support one specific programming language, which could be an obstacle for
the tools to be widely employed in industry, especially when multi-programming-
language development is booming (Li, Qi, Yu, Liang, Mo and Yang, 2021). Although
some tools are not specifically devoted to AEr detection, to some extent these tools
can provide support for detecting AEr symptoms, which would be beneficial to
identify architectural anomalies at the early stage of AEr occurrence during the soft-
ware development life cycle.

In our recent work (Li, Liang, Soliman and Avgeriou, 2021b), we found that de-
velopers claimed that there are no dedicated tools for detecting AEr. However, ac-
cording to the results in this SMS, for example, the Axivion tool can help to detect

2.5. Discussion 79

and stop AEr. One potential reason is that a gap still exists on AEr between research
and practice, and developers might not be familiar with the existing approaches and
tools in the literature. Therefore, AEr detection approaches and tools can be empir-
ically evaluated through case studies. For instance, it is interesting to see some ap-
proaches and tools proposed in the literature, but there is limited empirical evidence
regarding their effectiveness and productivity. Hence, we encourage more collabo-
rations between academia and industry in the area of AEr detection and advocate
more empirical studies on the validation of existing approaches and tools.

Finding 7: The majority of the approaches and tools used to detect AEr are mainly
focused on architectural consistency. The diversity of the existing approaches and
tools should be increased, since more than half of the tools only support one specific
programming language.
Finding 8: A gap still exists on AEr between research and practice. More dedicated
approaches and tools should be designed to detect AEr and empirical studies should
be conducted to evaluate the existing approaches and tools.

2.5.1.6 Measures for addressing architecture erosion

We identified and collected the measures for addressing AEr from the selected stud-
ies and classified the measures into three categories (see Table 2.15). Table 2.15
shows that most of the preventive measures are employed to prevent AEr by check-
ing, monitoring, and evaluating system architecture. One reason is that establishing
and checking the consistency between the specifications and implementation (e.g.,
using formal methods and traceability mechanisms) can effectively eliminate the
possibility of deviating the implemented architecture from the intended architec-
ture. In comparison to preventive measures, remedial measures are maintenance-
oriented measures and closely related to reverse engineering and re-engineering
techniques, such as architecture recovery. To address AEr in software systems, engi-
neers need to understand the architectural structure (e.g., the layered pattern) and
reasons about the changes through the recovered architecture (e.g., restoring archi-
tecture views from source code). According to Table 2.15, remedial measures are
not as widely employed in practice compared to preventive measures. The reason
could be that the extent of architecture recovery is largely dependent on code quality
(e.g., code readability) and the availability of architecture knowledge. In addition, if
the system has been severely eroded, then maintenance may not be a cost-effective
choice; consequently, discarding the eroded system and building a new system from
scratch would be a feasible option in terms of return on investment.

80 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

Nevertheless, prevention is better than cure. In recent years, Microservices Ar-
chitecture (MSA), as a cloud-native architecture, has grown in popularity in indus-
try due to its benefits of flexibility, loose coupling, and scalability. To some extent,
decomposing the original monolithic architecture into microservices can improve
architecture extensibility and increase its resilience to AEr. Moreover, with the ris-
ing popularity of MSA, there is a growing number of companies choosing to mi-
grate their existing monolithic applications to MSA through decomposition and ser-
vice interactions. Migrating a monolithic architecture to a cloud-native architecture
like MSA can help engineers maintain large software systems, through increasing
flexibility to adopt new technologies, reducing the time-to-market, and managing
independent resources for diverse components (Balalaie et al., 2016). For exam-
ple, Chen (Chen, 2018) reported their practices and experience when they moved
their eroded applications to an MSA, and they observed increased deployability,
modifiability, and resilience to AEr. The reason is that MSA can create physical
boundaries between microservices, since each microservice has its own codebase,
development team, and runs in its own containers. Thus, MSA provides better
protection against the temptation of breaking the boundaries between services (a
typical violation symptom of AEr, see Table 2.9). Therefore, architects can choose
well-accepted architecture patterns (e.g., MSA) to gain control of the systems when
facing increasing complexity, as well as adhere to design principles that allow the
decomposition of a complex system into more understandable chunks (Sturtevant,
2017). Note that, although MSA provides a promising way to deal with complicated
architectural issues, MSA is definitely not a silver bullet and it can raise new archi-
tectural problems. For example, an experience report from Balalaie et al. (Balalaie
et al., 2016) indicates potential risks that might be related to AEr, for example, mi-
croservices implemented based on different programming languages could lead to
major issues, rendering the system unmaintainable.

Finding 9: Measures used to address AEr include preventive measures (e.g., archi-
tecture conformance checking, architecture monitoring and evaluation) and remedial
measures (e.g., architecture maintenance and restoration).

2.5.1.7 Difficulties on handling architecture erosion

As shown in Table 2.16, we classified the difficulties in detecting, addressing, and
preventing AEr into three categories. Most of the difficulties presented in Section
2.4.8 are still challenges in the current research and practice of software engineer-
ing, but a few difficulties have been partly addressed by the measures presented in

2.5. Discussion 81

Section 2.4.7, such as establishing the mapping relationships between design and
architectural elements. For example, there are still no effective mechanisms to deal
with the consistency between System-of-System (SoS) architectural instance models
and SoS abstract architecture models (e.g., [S29]). Besides, architects and developers
need suitable tool support for AEr detection and the lack of dedicated tools raises
difficulties for detecting and addressing AEr. For example, Python has become a
popular programming language in recent years1, while we found that more than
half of the tools (see Section 2.4.6.2) only support one specific programming lan-
guage (e.g., Java) and only a few tools support Python projects. Additionally, the
results reflect the significance of understanding and handling AEr. It is critical to
raise the awareness of the AEr risks in software systems and identify potential AEr
symptoms, since having a holistic understanding of the whole system is the prereq-
uisite for mitigating the negative consequences of AEr.

Finding 10: The difficulties of detecting, addressing, and preventing AEr are mainly
derived from the detection and handling of AEr, while we still lack effective mecha-
nisms (e.g., dedicated approaches and tools) to handle AEr in various software sys-
tems (e.g., SoS, MSA).

2.5.1.8 Lessons learned on handling architecture erosion

As mentioned in Section 2.4.9, the lessons refer to the experience on handling AEr.
The lessons learned on handling AEr are classified into five types, and we pro-
vide two examples for each type of lessons learned (see Table 2.17). The findings
show that the majority (39.7%, 29 out of 73) of the selected studies mentioned the
lessons about the tackling of AEr, followed by lessons about the manifestation of
AEr (32.9%, 24 out of 73 studies) and detection of AEr (27.4%, 20 out of 73 studies).
One reason is that maintenance and evolution phases account for a large part of the
software development life cycle, and AEr phenomenon is most likely to be observed
by maintainers and testers during the maintenance and evolution phases. Moreover,
we observed that only 11.0% (8 out of 73) of the studies discuss the lessons about
AEr prevention. One potential reason is that AEr prevention is relatively difficult
and not always feasible. For example, the authors of [S34] mentioned that “pre-
venting erosion completely is a difficult task and may not be feasible” and the authors of
[S69] mentioned “in general architecture erosion cannot be avoided completely”. Another
reason is that there are various causes related to AEr (see Section 2.4.4) that it is
nearly impossible to completely prevent the reasons from happening, especially for

1https://insights.stackoverflow.com/survey/2020

https://insights.stackoverflow.com/survey/2020

82 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

complex software systems with millions of lines of code. To some extent, AEr pre-
vention means that taking feasible measures to extend the software system life cycle
as long as possible. Additionally, we suggest that stakeholders should raise aware-
ness of AEr, create a culture of organizational support, and practitioners should be
encouraged to fight for AEr.

Finding 11: More than 200 lessons are collected from the selected studies that are
concentrated on five types: tackling, manifestation, detection, understanding, and
prevention of AEr; the majority of these lessons concern tackling AEr.

2.5.2 Implications

This SMS provides a comprehensive insight into the AEr-relevant studies and the
results of the RQs provide significant implications for both researchers and practi-
tioners. In this section, we discuss the implications of the findings and highlight the
promising research directions on AEr.

2.5.2.1 Implications for researchers

As shown in Figure 2.4, we found that most (82.2%, 60 out of 73) of the selected
studies are solely from academia, and we encourage researchers to seek more col-
laborations with industrial partners to fill the gap between academia and industry
and solve the existing challenges.

According to the results of RQ1 (see Section 2.4.2.1) and their analysis (see Sec-
tion 2.5.1.1) about the AEr definitions, we highly recommend that both researchers
and practitioners can describe and define the term when they refer to AEr phe-
nomenon and use the common term “architecture erosion” consistently for mini-
mizing ambiguities and misunderstanding. In addition, the results of RQ1 (see Sec-
tion 2.4.2.2) and their analysis (see Section 2.5.1.1) also indicate that AEr is a mul-
tifaceted phenomenon and it manifests not only through architectural violations
and structural issues, but also affects the quality and evolution of software systems.
Future research should consider the four perspectives of AEr when evaluating archi-
tecture and analyzing architecture evolution. For example, different metrics-based
evaluations can be conducted from the four perspectives when software engineers
are engaged in maintenance and evolution activities.

As discussed in Section 2.5.1.2 (the analysis of the results of RQ2), although a
wide variety of studies mentioned diverse AEr symptoms, we notice that there is a
lack of empirical validation of these AEr symptoms. Researchers can investigate
which AEr symptoms are strong indicators of AEr and how to detect and further

2.5. Discussion 83

quantify the symptoms. For example, researchers can attempt to establish a com-
prehensive evaluation method by either employing the existing or proposing new
approaches and tools to evaluate and quantify the structural symptoms (e.g., archi-
tectural smells).

The results of RQ3 (see Section 2.4.4) show that the occurrence of AEr in soft-
ware systems may derive from various reasons, and researchers can empirically
investigate the potential relationships between the reasons of AEr. Additionally, we
notice that technical debt might be related to part of the technical and non-technical
reasons of AEr. We believe that it is valuable to investigate when and how technical
debt can induce AEr.

The results of RQ4 (see Section 2.4.5) and their analysis (see Section 2.5.1.4) show
that the prevalence of AEr leads to varying degrees of impact on software systems,
and not all types of consequences have received the same attention. As shown in
Table 2.12, researchers are more likely to notice the quality attributes degradation
when AEr happens. It would be interesting to empirically study the measures and
costs taken to handle the eroded architecture. For example, researchers can conduct
case studies with industrial partners to investigate the financial loss of different con-
sequences identified in this SMS brought into the software projects suffered from
AEr.

As discussed in Section 2.5.1.5 (the analysis of RQ5 in Section 2.4.6), although our
recent work (Li, Liang, Soliman and Avgeriou, 2021b) investigated part of the causes
and consequences of AEr from the practitioners’ perspective, there remains a dearth
of empirical case studies on exploring the reasons and consequences of AEr in a
real-life industrial setting. Besides, comparative studies about different approaches
for tackling AEr are deficient in the field of software architecture. Therefore, further
research can focus on exploring the potential reasons and consequences of AEr, as
well as the effectiveness of relevant approaches for tackling AEr using industrial
cases.

Although some approaches and tools (the results of RQ5, see Section 2.4.6) can
be useful to detect AEr (e.g., Axivion, Structure101, Lattix), there exists a demand to
evaluate the performance of different approaches and tools and verify the capability
(e.g., merits and demerits) of these approaches and tools. We encourage researchers
to conduct empirical studies for evaluating these AEr detection approaches and
tools. Besides, researchers can evaluate the approaches and tools reported in Sec-
tion 2.4.6 and explore their scope, characteristics, and metrics for providing a solid
foundation on designing dedicated tools.

As discussed in Section 2.5.1.6 (the analysis of the results of RQ6), there are scarce
research on the measures for addressing AEr in emerging systems, architecture
styles, and development methods, such as SoS, MSA, and DevOps, which is an

84 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

interesting and meaningful research field to be explored. For example, researchers
can pay more attention to the potential risk of AEr (e.g., erosion symptoms, the gap
between designed and implemented architecture) in MSA-based systems.

From the identified difficulties (the results of RQ7 in Section 2.4.8 and their anal-
ysis in Section 2.5.1.7) and the lessons learned on handling AEr (the results of RQ8
in Section 2.4.9 and their analysis in Section 2.5.1.8), we observed that the results
provide the challenges in this area that would inspire more academic and industrial
collaboration and promising measures for the identification, handling, and preven-
tion of AEr. For example, automatically detecting the AEr symptoms by leveraging
machine learning techniques can be an effective and efficient way compared to man-
ual analysis of components and source code.

2.5.2.2 Implications for practitioners

As discussed in Section 2.5.1.1 (the analysis of the results of RQ1), practitioners are
encouraged to reach an agreement on the understanding of AEr phenomenon for
reducing the ambiguity of the AEr concept. For example, we recommend prac-
titioners to use the common term “architecture erosion” to refer to the AEr phe-
nomenon, which helps to minimize the misunderstanding and confusion for reach-
ing a common ground on the description of the AEr phenomenon.

There are diverse technical reasons and non-technical reasons that can give
rise to AEr (see Table 2.10 and Table 2.11, the results of RQ3). It is critical for
practitioners to realize that certain technical reasons (e.g., technical debt) and non-
technical reasons (e.g., knowledge vaporization) of AEr, which may not have a no-
ticeable effect on system quality in a short time, but they can negatively impact
architectural understanding and integrity in the long term, thereby leading to AEr.
For example, practitioners can attach importance to the non-technical reasons of
AEr and cultivate a culture of AEr prevention, such as exposing and discussing ar-
chitectural changes, improving organization management skills (especially about
the training and education of developers to help them be familiar with system ar-
chitecture).

The analysis of the results of RQ4 in Section 2.5.1.4 indicate that practitioners
need to raise awareness of the grave consequences of AEr and request actions at
the management level, in order to obtain a high priority to tackle AEr related issues
and reduce the risk of architecture sliding into erosion and failure. To prevent and
repair AEr to some extent, we suggest that practitioners should build the mecha-
nisms that support recording and tracing architectural knowledge (e.g., decisions,
assumptions) to source code and architectural changes, and regularly conduct ar-
chitecture assessment (e.g., architecture conformance checking).

2.5. Discussion 85

Practitioners should also pay attention to the state of the art of academic research
results, since we noticed that there is a gap between research and practice (see
the analysis of the results of RQ5 in Section 2.5.1.5). Practitioners are encouraged
to apply and adapt the proposed approaches and tools according to their needs
and project contexts, which can help to identify not only the limitation of those
approaches and tools but also the real needs from practitioners for detecting AEr in
practice.

It is critical to conduct early diagnoses of AEr in software systems. The ap-
proaches and tools for detecting AEr are still scarce and have some limitations
(e.g., domain/language-specific features). The results of RQ5 (see Section 2.4.6) im-
ply that there exists a demand for dedicated approaches and tools to support AEr
detection in practice. Therefore, practitioners are encouraged to collaborate with
researchers and employ dedicated approaches and tools for detecting AEr. Such
dedicated tools can better support multiple programming languages, detection of
the AEr symptoms, and the quantitative visualization of the trend of AEr.

Some measures used to address AEr are specific to the contexts in the studies
(see the analysis of the results of RQ6 in Section 2.4.7). When it comes to AEr pre-
vention and remediation, practitioners need to first understand the corresponding
contexts of employing the measures, and then adapt the measures according to the
specific situations.

It is never too late to fight against AEr. The difficulties (see the analysis of the
results of RQ7 in Section 2.4.8) and valuable lessons (see the analysis of the results
of RQ8 in Section 2.4.9) we collected can be beneficial for practitioners to better cope
with AEr during the development life cycle, avoid the pitfalls of AEr, and further
explore the benefits and limitations of applying the measures for addressing AEr in
practice. Besides, further industrial evidence is required to validate the benefits of
the measures as well as the potential pitfalls.

To sum up, the findings of this mapping study can help practitioners to better
understand the practical impact of the AEr phenomenon, supplementing our previ-
ous industrial survey on AEr (Li, Liang, Soliman and Avgeriou, 2021b) and empiri-
cal study on AEr symptoms identified by code review in OSS projects (Li, Soliman,
Liang and Avgeriou, 2022). Specifically, Findings 1, 2, and 3 provide a comprehen-
sive understanding of the AEr phenomenon; Findings 4, 5, and 6 shed light on the
potential reasons and consequences of AEr; Findings 7 and 8 show the increasing
demand for dedicated AEr detection tools; and Findings 9, 10, and 11 highlight the
importance of tackling AEr in practice.

86 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

2.6 Threats to validity

In this section, we discuss the potential threats to the validity of our SMS, as well
as the measures that we took to mitigate the threats according to the guidelines
in (Zhou et al., 2016; Wohlin et al., 2012).

2.6.1 Construct validity

Construct validity concerns whether the theoretical and conceptual constructs are
correctly interpreted and measured. In this SMS, the main threats to construct va-
lidity include study search and selection:

Study search. There may be relevant studies that were omitted, which will af-
fect the completeness of the retrieved results. To mitigate this threat, we searched
seven popular electronic databases (see Table 2.2) that publish software engineering
research, and we also conducted a manual search from well-known venues (includ-
ing conferences, journals, and workshops) closely related to the topic of our SMS,
i.e., architecture erosion. Before the formal search, a pilot search was performed to
enhance the suitability (e.g., the search terms and time period) and quality of this
SMS. Additionally, to ensure the completeness of the study search, we employed the
“snowballing” technique (Wohlin, 2016) to include any potentially relevant studies.

Study selection. Whether or not to include relevant studies mainly depends on
the understanding of the researchers who were involved in the study search and
selection, and this inevitably introduced personal bias due to the limitation of per-
sonal knowledge. To minimize the selection bias, (1) we selected 100 papers as a
sample, which were selected by two researchers independently in three rounds, to
measure their inter-rater agreement on study selection; (2) we also defined a set of
inclusion and exclusion criteria regarding the study selection and discussed among
four researchers about the uncertain studies for reaching an agreement and reducing
the risk that relevant studies were omitted.

2.6.2 Internal validity

Internal validity pertains to the study design that has a potential impact on the re-
sults. In this SMS, the main threats to internal validity are concerned with the ex-
tracted data and the synthesis of the results:

Data extraction. One potential threat is about the quality of the extracted data,
which might have a negative impact on the data synthesis and classification results.
Several measures were taken to mitigate the bias of researchers who conducted data
extraction. First, to ensure the consistency of data extraction results, we discussed
and formulated the data items by four researchers to reach a consensus on the con-

2.6. Threats to validity 87

tent of data to be extracted. Moreover, before the formal data extraction, a trial data
extraction with five selected studies was performed by the author and checked by
another two researchers. Furthermore, we selected another five papers from the se-
lected results to conduct a data extraction by two researchers, independently. Any
disagreement was discussed and resolved together for reaching an agreement about
the understanding of the data items (specified in Table 2.4). Furthermore, the data
extraction results from the author were checked by another two researchers accord-
ing to the description of each data item.

Data synthesis. The quality of data synthesis may affect the correctness of the
answers to the eight RQs (see Section 2.3.1). Different researchers may have their
own understanding on the extracted data, for example, the classifications of ex-
tracted data. To minimize the personal bias, we conducted continuous discussions
about the divergent classifications and any conflicts were discussed until an agree-
ment was reached. Besides, during the data synthesis process, we excluded the
extracted data if we could not find any valuable information.

2.6.3 External validity

External validity concerns the extent to which the findings of a study can be gener-
alized. This SMS provides an overview of the state of the art of the studies on AEr
phenomenon in software development. Although we took measures to increase the
completeness of our study search, there are still limitations and we may miss rele-
vant studies that investigate AEr but are not covered by this SMS. To alleviate the
threats to external validity, we provided the search protocol of this SMS (see Section
2.3) that rigorously specifies the execution process of this SMS, and we searched and
selected peer-reviewed studies using both popular electronic databases and relevant
target venues (i.e., the manual search).

2.6.4 Reliability

Reliability refers to whether the study produces the same results when other re-
searchers replicate it. This threat is related to several factors, such as missing stud-
ies, incomplete data extraction, and improper categorization of the extracted data.
We only searched and selected relevant studies written in English according to the
inclusion and exclusion criteria. Nevertheless, relevant studies might still be omit-
ted for various reasons, such as different terms used to describe the phenomenon of
AEr, incompleteness of the selected venues. Additionally, a replication package of
this SMS has been made available online (Li, Liang, Soliman and Avgeriou, 2021a)
to improve its replicability. With these measures, we strove to ensure that this SMS
can be repeated by following the procedure in Section 2.3.

88 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

2.7 Related Work

To the best of our knowledge, there are no systematic mapping studies (SMSs) or
literature reviews (SLRs) that specifically focus on the AEr phenomenon. However,
there are several secondary studies that are close to the topic of our SMS (i.e., archi-
tecture erosion). Therefore, we provide a brief overview of these secondary studies
in this section.

Baabad et al. (Baabad et al., 2020) conducted an SLR with 73 primary studies
focusing on the architecture degradation in OSS projects. They performed a coarse-
grained SLR that mainly focuses on the reasons and solutions of architectural degra-
dation problems in OSS projects. Their results show that architectural degradation
problems, including identifying, addressing, avoiding, and predicting architectural
degradation within OSS projects, are still open research issues. Compared to their
SLR, our SMS has a broader scope on the AEr phenomenon. We analyzed the dif-
ference between various terms of the AEr phenomenon, provided a refined defini-
tion of AEr, and systematically analyzed and categorized the reasons, consequences,
measures, difficulties, and lessons learned of AEr.

Brogi et al. (Neri et al., 2020) recently conducted a multivocal review on the archi-
tectural smells possibly violating the design principles of microservices architecture
(MSA). The authors identified the design principles of MSA from 54 peer-reviewed
papers and grey literature published before the end of January 2019. This multi-
vocal review focuses on the architectural smells on MSA and why the smells vio-
late the design principles, as well as the refactorings used to fix the smells. Besker
et al. (Besker et al., 2018) conducted an SLR on architectural technical debt. They
proposed a unified model of architectural technical debt that provides a new and
comprehensive interpretation of architectural technical debt, since negative effects
(e.g., architecture erosion) might be caused by architectural technical debt, which is
also the result of this SMS (see Section 2.4.4). Bandi et al. (Bandi et al., 2013) con-
ducted an SMS with 30 studies investigating the techniques and metrics which have
been empirically evaluated for addressing code decay. Their SMS mainly covers the
identification and minimization approaches for code decay. Herold et al. (Herold
et al., 2016) reported the preliminary results of a literature review about architecture
degradation and consistency checking. Their results show that empirical evaluation
on this field is still missing and experiments and surveys should be complemented
for assessing the impact of architectural degradation in practice.

The aforementioned secondary studies have a different focus, and our SMS is
the only one that focuses on the AEr phenomenon. To be more specific, we system-
atically analyzed and categorized the concept, symptoms, reasons, consequences,
detecting, handling, and lessons learned of architecture erosion through this SMS.

2.8. Conclusions 89

2.8 Conclusions

Through this SMS, we investigated the understanding, reasons, and consequences
of AEr, the available approaches and tools for detecting AEr and the measures for
tackling AEr, as well as the difficulties and lessons learned from the selected stud-
ies. We searched the papers in seven electric databases and manually checked the
papers in 22 related venues published between Jan 2006 and May 2019 on the topic
of AEr in software development, and finally selected 73 primary studies for further
data extraction and analysis. Based on the extracted data, we got a comprehensive
understanding of the concept of AEr and an overview of various aspects of AEr. The
main points of this SMS are summarized as follows:

1. Most (82.2%) of the selected studies are from academia, and the studies from
conferences (58.9%) and journals (27.4%) make up the large majority of the
selected papers. The tendency in Figure 2.5 shows that AEr related studies
received a fair amount of attention in the last decade.

2. Among the different terms used to describe the AEr phenomenon, “architec-
ture erosion” is the most frequently-used term followed by “architecture de-
cay”. Both practitioners and researchers should clearly define the terms when
they mention the AEr phenomenon and better use the common term “archi-
tecture erosion” to refer to the phenomenon.

3. AEr manifests not only through architectural violations and structural issues,
but also causing problems in software quality and during the evolution of
software systems. The four perspectives are worthy of investigation in both
research and practice.

4. The AEr symptoms can be classified into four categories according to the four
perspectives of AEr, and structural and violation symptoms are the most com-
mon symptoms. Additionally, AEr exists not only in maintenance and evolu-
tion phases, but may also exist in the design and implementation phases.

5. Apart from technical reasons, non-technical reasons are also significant factors
that lead to AEr, which indicates that non-technical reasons (e.g., management
and organization issues) cannot be ignored, and AEr can exist in different
phases of software development and interacts with various stakeholders.

6. Most of the studies deem that AEr has a negative impact on QAs of soft-
ware systems (e.g., maintainability, evolvability), while other consequences
can also generate varying degrees of impact on systems. Practitioners should

90 2. Understanding Software Architecture Erosion: A Systematic Mapping Study

raise their awareness of the grave consequences of AEr and request actions at
the management level, in order to obtain a high priority to tackle AEr related
issues and reduce the risk of architecture sliding into erosion and failure.

7. The 19 approaches for detecting AEr are classified into four categories, in
which consistency-based approaches and evolution-based approaches are the
most frequently mentioned approaches. Besides, 35 tools used to detect AEr
were classified into four categories according to their distinctive purposes
(e.g., checking architecture conformance).

8. The identified approaches, tools, and measures for detecting and address-
ing AEr are applicable in specific contexts (e.g., constraints or preconditions).
Practitioners need to first understand the corresponding contexts of employ-
ing the measures, and then adapt the measures according to the specific situa-
tions.

9. The difficulties in detecting and tackling AEr mainly derive from the do-
main and language constraints, absence of dedicated tools, and establishing
mapping and alignment between the intended and implemented architecture.
These difficulties should receive more attention in future studies.

10. The experience and lessons learned collected from the primary studies about
AEr were classified into five categories, which can provide evidence for re-
searchers to future investigation on AEr and help practitioners avoid pitfalls
when addressing AEr.

We believe that the results of this SMS could benefit the researchers and practi-
tioners to better understand the nature of AEr, as well as its underlying reasons and
consequences, and the findings can provide clues for future research in this area
(as discussed in Section 2.5). We encourage more collaboration between researchers
and practitioners to close the gap between academia and industry and address the
existing challenges. Additionally, we plan to conduct studies on detecting and han-
dling AEr, including the detection of AEr symptoms and the approaches and tools
to support the detection at various granularity levels.

Based on:

Ruiyin Li, Peng Liang, Mohamed Soliman, Avgeriou Paris, (2021) “Understanding Architecture Erosion:
The Practitioners’ Perceptive,” in: Proceedings of the 29th IEEE/ACM International Conference on Program
Comprehension (ICPC), Madrid, Spain, 2021, pp. 311-322: IEEE. DOI:10.1109/icpc52881.2021.00037

Chapter 3

Understanding Architecture Erosion: The
Practitioners’ Perceptive

Abstract

As software systems evolve, their architecture is meant to adapt accordingly by
following the changes in requirements, the environment, and the implementa-
tion. However, in practice, the evolving system often deviates from the architec-
ture, causing severe consequences to system maintenance and evolution. This
phenomenon of architecture erosion has been studied extensively in research,
but not yet been examined from the point of view of developers. In this ex-
ploratory study, we look into how developers perceive the notion of architecture
erosion, its causes and consequences, as well as tools and practices to identify
and control architecture erosion. To this end, we searched through several pop-
ular online developer communities for collecting data of discussions related to
architecture erosion. Besides, we identified developers involved in these discus-
sions and conducted a survey with 10 participants and held interviews with 4
participants. Our findings show that: (1) developers either focus on the struc-
tural manifestation of architecture erosion or on its effect on run-time qualities,
maintenance and evolution; (2) alongside technical factors, architecture erosion
is caused to a large extent by non-technical factors; (3) despite the lack of ded-
icated tools for detecting architecture erosion, developers usually identify ero-
sion through a number of symptoms; and (4) there are effective measures that
can help to alleviate the impact of architecture erosion.

3.1 Introduction

Ideally, during the lifespan of a software system, its software architecture is con-
stantly modified to satisfy new requirements and accommodate changes in the en-
vironment; therefore, the evolution of the architecture is aligned with the evolution
of the software system (Bass et al., 2021). However, with the increasing complexity

92 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

and changing requirements, the brittleness of a software system may increase, and
the implementation may deviate from the architecture over time (Perry and Wolf,
1992). This divergence between the intended and the implemented architecture is
often called architecture erosion (De Silva and Balasubramaniam, 2012).

Architecture Erosion (AEr) is not a new concept. Perry and Wolf (Perry and
Wolf, 1992) explained around 30 years ago how a slowly eroding architecture makes
it harder for new developers to understand the original system design. The phe-
nomenon of AEr has been described using different terms in the literature, such as
architectural decay (Le et al., 2016, 2018), architecture degeneration (Li and Long,
2011), architecture degradation (Macia, Arcoverde, Garcia, Chavez and von Staa,
2012), and design erosion (van Gurp and Bosch, 2002). AEr can significantly affect
software development. Specifically, AEr can decrease software performance (Brosig
et al., 2014), substantially increase evolutionary costs (Breivold and Crnkovic, 2010),
and degrade software quality (Neto et al., 2018; De Silva and Balasubramaniam,
2012). Moreover, in an eroded architecture, code changes and refactorings could in-
troduce new bugs and aggravate the brittleness of the system (Perry and Wolf, 1992).
Given such negative consequences, it is critical to investigate how far practitioners
are aware of it and how they perceive it in their daily work.

Although AEr has been studied in the literature, there is little knowledge about
the current state of practice of AEr from the perspective of developers. Hence, we
attempted in this work an in-depth exploration of the viewpoints of developers on
the notion of AEr, the causes and consequences of AEr, the used practices and tools
for detecting AEr, and the measures to control and prevent AEr. To find developers
with knowledge and experience on AEr, we looked into online developer commu-
nities, similar to the recent studies (Tahir et al., 2018; Tian et al., 2019; Sinha et al.,
2013). These communities cover a wide spectrum of topics on software develop-
ment, where practitioners share their development experience, ask questions and
get responses. Specifically, we collected data about AEr from developer discussions
in six popular online developer communities. In addition, we also leveraged the
communities to reach out to developers who took part in the discussions, and thus
were aware of and experienced on AEr. We then collected their opinions by conduct-
ing a mini survey with 10 participants and holding interviews with 4 participants.
Finally, we analyzed the collected data from all the data sources (i.e., posts, ques-
tions and answers, surveys, interviews) using Constant Comparison (Adolph et al.,
2011).

The contributions of this work are threefold: (1) we explored how developers
describe the phenomenon of AEr and how they perceive its manifestation; (2) we
categorized and analyzed the diverse causes of AEr and the potential consequences
to development from the developers’ perspective; and (3) we investigated the effec-

3.2. Related Work 93

tive tools and practices for detecting AEr, and presented the measures suggested by
developers to control and prevent AEr.

This chapter is organized as follows: Section 3.2 introduces related work on AEr
and online developer communities. Section 3.3 elaborates on the study design. The
results of each research question are presented in Section 3.4, and their implications
are discussed in Section 3.5. Section 3.6 examines the threats to validity, while Sec-
tion 3.7 summarizes this work and outlines the directions for future research.

3.2 Related Work

3.2.1 Architecture Erosion

Several studies have explored the AEr phenomenon, which is described in various
terms, such as “architecture erosion” (De Silva and Balasubramaniam, 2012), “archi-
tecture decay” (Mo et al., 2013), “architecture degradation” (Macia, Arcoverde, Garcia,
Chavez and von Staa, 2012), “software deterioration” (Land, 2002), “architectural de-
generation” (Hochstein and Lindvall, 2005), and “software degradation” (Bianchi et al.,
2001).

Many studies focus on AEr with the purpose of identifying and repairing eroded
architectures. For example, Wang et al. (Wang et al., 2019) proposed a multilevel
method for detecting and repairing AEr based on architecture quality. Le et al. (Le
et al., 2018) identified AEr by analyzing architectural smells and their relationships
between reported issues. De Silva and Balasubramaniam (De Silva and Balasubra-
maniam, 2012) conducted a comprehensive survey on how to control AEr and the
techniques for restoring and repairing eroded architectures, and they found that aca-
demic methods had limited adoption in industry. While the aforementioned studies
proposed approaches for detecting and repairing AEr, to the best of our knowledge,
there are no studies that investigate AEr from the perspective of developers. There-
fore, our study differs from the existing studies in that it offers an examination of
the phenomenon from the developers’ perspective, including its concept, the causes
and consequences, as well as the tools and approaches used in practice to detect and
control AEr.

3.2.2 Online Developer Communities

There are millions of software practitioners who are active in online developer com-
munities. They exchange knowledge, share experience, and provide an abundance
of valuable discussions about software development. Such communities have been
extensively utilized to conduct studies in the field of software engineering. For ex-

94 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

ample, Stack Overflow, which is the largest and most visited Q&A website, has
been used as a source to efficiently identify architecturally relevant knowledge (Soli-
man et al., 2018), investigate the relationships between architecture patterns and
quality attributes (Bi, Liang and Tang, 2018), examine users’ behaviors and topic
trends (Pal et al., 2012; Wang et al., 2013), study architecture smells (Tian et al.,
2019), and explore anti-patterns and code smells (Tahir et al., 2018). In addition,
other popular online developer communities are also used for research in software
engineering, for example, understanding social and technical factors of contribu-
tions in GitHub (Tsay et al., 2014).

Considering the advantages of online developer communities (such as the vast
amount of available information, fast responses to questions, and diverse solutions
to engineering problems), we decided to use them as our data source. In addition
to mining data from these communities, we went one step further and contacted
developers from these communities to collect more in-depth data. This allowed us
to target subjects that have experience in the topic of AEr, while also to use two
more sources (survey and interviews) for the sake of triangulation (Runeson and
Höst, 2009) (see Section 3.3).

3.3 Study Design

We formulated the goal of this study based on the Goal-Question-Metric ap-
proach (Basili et al., 1994) as follows: analyze the perception of architecture erosion
in practice for the purpose of understanding with respect to the notion, causes, conse-
quences, detection and control of architecture erosion from the point of view of develop-
ers in the context of industrial software development. In the following subsections, we
explain the Research Questions (RQs), motivation, and the corresponding research
steps and methods used to answer the RQs.

3.3.1 Research Questions

RQ1: How do developers describe architecture erosion in software devel-
opment?

RQ1.1: Which terms do developers use to indicate architecture erosion?
RQ1.2: How does architecture erosion manifest according to developers?

Rationale: Researchers define AEr differently, such as architectural decay (Le et al.,
2016, 2018), architecture degeneration (Li and Long, 2011), architecture degrada-
tion (Macia, Arcoverde, Garcia, Chavez and von Staa, 2012) (see Section 3.2.1).

3.3. Study Design 95

Through this RQ, we investigate what terms and aspects are used by developers
(practitioners) to discuss the phenomenon of AEr and how they describe its mani-
festation in practice. This can provide insights on how practitioners communicate
this phenomenon and how they describe it according to their own experience.

RQ2: What are the causes and consequences of architecture erosion from
the perspective of developers?

Rationale: There could be many factors leading to AEr, e.g., architecture smells (Le
et al., 2018) and violations of architecture decisions (Zhang et al., 2011). Further-
more, an eroded architecture comes with severe consequences to development, such
as slowing down development or hampering maintenance. Through this RQ, we in-
tend to identify the potential causes and consequences of AEr in practice. This can
help to confirm whether the causes and consequences that have been reported in the
literature hold in practice, and whether new ones come to light.

RQ3: What practices and tools are used to detect architecture erosion in
software development?

Rationale: Developers employ a number of practices and tools to identify potential
architecture erosion in a system, or assess the quality of an eroded architecture. A
list of such practices and tools used by practitioners can help other developers make
informed decisions when dealing with AEr, and can inspire researchers to develop
new approaches and tools.

RQ4: What measures are employed to control architecture erosion in soft-
ware development?

Rationale: After AEr is detected, it needs to be controlled to prevent it from hurting
the system. By answering this RQ, we want to identify the measures taken by devel-
opers for addressing AEr in practice and the effect of these measures. Being aware
of these measures has a direct benefit to practitioners, as the measures can help to
prolong the lifetime of systems, and save substantial maintenance effort (De Silva
and Balasubramaniam, 2012). Moreover, categorizing the measures against AEr can
provide insights to researchers for refining and extending existing approaches (e.g.,
Adersberger and Philippsen (2011)).

96 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

3.3.2 Research Process

To answer the RQs, we need to collect opinions, knowledge, and experiences about
AEr from practitioners. Considering that many practitioners may not be familiar
with the concept and terms of AEr, we need an efficient mechanism to find practi-
tioners who have knowledge about AEr.

Online developer communities are regarded as an important platform for prac-
titioners to communicate and share their knowledge and experience (Vassileva,
2008). For instance, Stack Overflow contains 20 million asked questions and 13 mil-
lion users as of 21 January 2021. Hence, we decided to first collect data from the
most popular developer communities and then contact the developers who were
involved in the discussions about AEr. In detail, we followed five steps for data
collection and analysis (see Figure 3.1), as elaborated in the following paragraphs.

Collect posts relevant to
architecture erosion

Filter posts relevant
to the RQs

Select developer
communi�es

2
Iden�fy most popular

developer communi�es

1
Iden�fy posts relevant
to architecture erosion

Extract and
analyze data

5

Step

Legend

Sequence Consist of

Survey prac��oners about
architecture erosion

4

3a 3b

3

Merge into

80 posts

10 prac��oners

4 interviewees

Figure 3.1: Overview of the research process

(1) Identify most popular developer communities

There is no dedicated communities/websites for discussing issues of software
architecture. Therefore, we planned to collect data from developer communities,
and we first identified the most popular developer communities. We conducted a
web search using Google in two steps:

1. Execute search queries: We searched in Google using the search terms: “popu-
lar/ranking/top/best online developer communities/forums”.

2. Identify websites: We counted the frequency of websites mentioned in the
search results, and ranked them to obtain the most frequently mentioned web-
sites (see Table 3.1). After the eighth most frequently mentioned websites, the
rest had much lower frequencies so we considered the top eight. The complete
list of websites and the corresponding frequencies are available online (Li,
Soliman, Liang and Avgeriou, 2021b).

(2) Select developer communities

We conducted a pilot search on each of the eight most popular developer com-
munities (see Step (1) and Table 3.1). For each developer community, we searched
using the terms: “architecture erosion”, “architecture degradation”, “architecture

3.3. Study Design 97

Table 3.1: Eight most popular online developer communities

Website URL Link S1 # R2 # A3

1 Stack Overflow https://stackoverflow.com/ Yes 3973 39

2 Reddit https://www.reddit.com/r/
programming/

Yes 38 4

3 Dzone https://dzone.com/ Yes 556 26
4 Hack News https://news.ycombinator.com/ Yes 625 8
5 GitHub https://github.com/ No - -
6 Stack Exchange https://www.stackexchange.com/ No - -
7 Code Project https://www.codeproject.com/ Yes 821 2

8 Sitepoint https://www.sitepoint.com/
community/

Yes 61 1

Total 6 6074 80
1-3 S = Selected communities, R = Number of retrieved posts, A = Number of analyzed posts

decay”. We then checked a sample from the top returned results, and determined
their relevance to the topic of “architectural erosion”. Based on this pilot search,
we selected six developer communities (see Table 3.1), and excluded two (GitHub
and Stack Exchange). The justification of excluding GitHub and Stack Exchange is
presented below, and we also discussed the threat of this process in Section 3.6.

• When conducting the pilot study on GitHub, there are a large number of
search results from Issues and Commits on GitHub, but a very low percent-
age of the results relate to AEr (less than 0.1%). Therefore, the data extraction
from GitHub would result in a very low return on investment.

• Stack Exchange is a Q&A website on topics in diverse fields, but not limited
to software development. Stack Overflow is the largest sub-website of Stack
Exchange and contains a number of discussion on software architecture (Soli-
man et al., 2016). Thus, to avoid duplicated search results, we excluded Stack
Exchange and retained Stack Overflow.

(3) Identify posts relevant to architecture erosion

In this step, we collected posts from the selected developer communities (see
Step (2) and Table 3.1), which discuss AEr and can provide answers to our RQs (see
Section 3.3.1). Specifically, we performed two sub-steps: collecting (3a) and filtering
posts (3b), as detailed below.

(3a) Collect posts relevant to architecture erosion

To identify the most suitable terms for capturing posts relevant to AEr, we exper-
imented with several terms within the developer communities. After a pilot search

https://stackoverflow.com/
https://www.reddit.com/r/programming/
https://www.reddit.com/r/programming/
https://dzone.com/
https://news.ycombinator.com/
https://github.com/
https://www.stackexchange.com/
https://www.codeproject.com/
https://www.sitepoint.com/community/
https://www.sitepoint.com/community/

98 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

with several combinations of search terms, we decided to use the search query be-
low: (additional details of the pilot search with other search terms are available
online (Li, Soliman, Liang and Avgeriou, 2021b)).

((architecture OR architectural OR structure OR structural) AND (decay OR erode OR
erosion OR degrade OR degradation OR deteriorate OR deterioration))

To execute the search query effectively, we used different search engines for each
developer community (see Table 3.1), depending on the effectiveness of internal
search engines offered by each developer community. For Stack Overflow, Sitepoint,
and Hack News, we used their internal search engines. In contrast, Dzone, Reddit,
and Code Project lack an effective search engine, and thus we used Google.

For each developer community, we executed the same search query, and re-
moved duplicated search results. We executed the search manually for all the de-
veloper communities except for Stack Overflow, for which we built a crawler to
automatically execute queries, collect and remove duplicated posts. We identified
duplicated Stack Overflow posts by comparing the title of each post with other
posts; using the title results in less duplicates, as posts may have different IDs but
contain the same information (e.g., Stack Overflow posts with IDs “36475408” and
“36475800”1).

(3b) Filter posts relevant to the RQs

We manually checked the collected posts to ensure their relevance to answering
the RQs (see Section 3.3.1). To achieve this, we specified the following inclusion and
exclusion criteria (Boolean AND is used to connect the inclusion criteria):

1) Inclusion criteria

• I1: The post (and its answers) discusses architecture erosion in software de-
velopment.

• I2: The post (and its answers) is relevant to answering the RQs.

2) Exclusion criteria

• E1: When the content of two or more posts contain similar information, we
exclude the one less relevant to the RQs.

Before the formal data filtering through manual inspection, to reach an agree-
ment about the criteria, we conducted a pilot filtering step with 50 posts randomly-
selected from the 3,973 retrieved posts on Stack Overflow, which were checked
by two researchers independently. We then calculated the Cohen’s Kappa coeffi-
cient (Cohen, 1960) of the pilot filtering results to measure the inter-rater agreement

1To access the post on Stack Overflow, add the ID number to the URL:
https://stackoverflow.com/questions/ID

3.3. Study Design 99

between the two researchers; this achieved an agreement of 0.728. Any disagree-
ments and uncertain judgments on the posts were discussed between the two re-
searchers until a consensus was reached. Then the author conducted the formal
filtering with all the retrieved posts (see Table 3.1), and discussed with another re-
searcher any uncertainties in order to get a consensus. Eventually, we collected in
total 80 posts related to our RQs (see Table 3.1). Note that, 3,973 posts were originally
retrieved from Stack Overflow, but we excluded a large number of irrelevant posts
(e.g., topics about image erosion, array decay/degradation, learning rate decay).

(4) Survey practitioners about architecture erosion

While the data from community posts are valuable, we wanted to enrich them
with other data sources; this helps also to achieve data source triangulation (Rune-
son and Höst, 2009). Thus we conducted a survey and interviews for collecting more
data from another two sources (i.e., questionnaires and interviews). The prerequisite
of conducting surveys and interviews is to find qualified participants, and collect-
ing posts that discuss AEr (as explained in Step (3)) gives us the chance to identify
the practitioners, who are potentially knowledgeable about AEr. These practition-
ers who were involved in the discussion of the collected posts can provide credible
answers to the RQs.

To identify practitioners, we manually inspected the profiles of users, who were
involved in the discussion of the 80 collected and filtered posts (from Step (3)). How-
ever, some users provided minimal information in their profile about their identity.
This prevented us from identifying all potential practitioners. After inspecting all
user profiles, we found 38 valid user profiles, from which we could discern their
identity and contact information. We further searched for these 38 practitioners on
LinkedIn, in order to validate their identity, and gather missing background and
contact information. We note that the anonymity of these developers is preserved in
both the manuscript and the accompanying dataset (Li, Soliman, Liang and Avge-
riou, 2021b).

We contacted the 38 practitioners, and sent each practitioner two invitations. The
first one was for answering the survey and the second invited them for participat-
ing in a one-to-one interview. 13 out of the 38 practitioners (34.2%) accepted our
invitations for either filling out the survey (10 practitioners) or conducting a one-to-
one interview (4 practitioners); note that one developer took part in both the survey
and the interview. We got a response rate of 34.2%, which is much higher than the
general response rate in empirical software engineering research around 5% (Singer
et al., 2008). Table 3.2 provides the background information about the 13 practition-
ers.

Based on the selected posts and our RQs, we used similar questions for both

100 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

Table 3.2: Background of the participants

S/I* EB1 YE2 YA3 YD4 Role Location
S PhD 44 28 - Director UK
S MSc 15 - 10.3 Senior Consultant Norway
S BSc 25 - 25 Senior Software Engineer UK
S PhD 20 6.9 6.2 Senior Lead Developer UK
S MSc 20 2 14.8 Architect Spain
S PhD 54 15.8 6.3 Architecture Consultant Denmark
S MSc 16 - 15.3 DevOps Coach Norway
I MSc 27 16 - CEO USA
I MSc 20 2.1 15 Lead Software Developer USA
B MSc 21 15 6 Software Intelligence Expert USA
S PhD 21 7.7 3.9 CEO USA
S PhD 16 - 16 Research Scientist USA
I MSc 8 2.8 5.2 Senior Software Engineer India

* S = Survey, I = Interview, B = Both
1-4 EB = educational background, YE = years of experience in software development, YA =

years of experience as architect, YD = years of experience as developer

the customized surveys and interviews (available online (Li, Soliman, Liang and
Avgeriou, 2021b)). The questions were designed and refined iteratively by four re-
searchers. We decided to use open-ended questions to allow practitioners to express
their own opinions; this is in line with our research goal to determine the practition-
ers’ point of view on AEr. Before sending the survey to practitioners and conducting
the interviews, we conducted a pilot survey with 2 developers who had the knowl-
edge about AEr and helped to improve the clarity of the questions. Note that the
pilot survey answers were not included in the data for analysis. The survey and
interviews are detailed below.

Survey: We sent the questionnaire to the 38 practitioners, and 10 of them ac-
cepted our invitation to fill in the questionnaire. To make the questionnaire more
relevant to the practitioners and improve the response rate, we sent each practi-
tioner a customized version of the questionnaire (Li, Soliman, Liang and Avgeriou,
2021b), which was aligned with the post that he/she was involved by using the
same term of AEr as the practitioner used to prevent misunderstanding. The survey
responses were collected by Google Forms and saved in a Word document for later
extraction and analysis (see Step (5)).

Interviews: We conducted semi-structured interviews by following the guide-
lines in software engineering (Hove and Anda, 2005) with 4 practitioners, who ac-
cepted our invitation. The interviews were conducted by another researcher (a post-
doctoral fellow), and transcribed and analysed by two researchers (see Step (5)). For

3.3. Study Design 101

Table 3.3: Mapping between the extracted data items and RQs

Data Item Description RQ
D1 Description of AEr Terms used to describe AEr and how it mani-

fests
RQ1

D2 Causes of AEr Potential factors leading to AEr RQ2
D3 Consequences of AEr Impacts and ramifications of AEr on develop-

ment
RQ2

D4 Practices and tools for
detecting AEr

Approaches used in practice to identify AEr RQ3

D5 Measures to control AEr Ways to address or manage the impact of AEr RQ4

the interviews, we used similar questions with the survey as a basis. As is usual
with semi-structured interviews, additional questions came up during the interview
depending on the answers to specific questions; in such cases, we allowed the prac-
titioners to freely express their opinions.

(5) Data extraction and analysis

We used the data items (see Table 3.3) to collect data from three sources, i.e.,
online developer communities (80 posts), the survey (10 answers), and interviews
(4 interviews). The author extracted the data and another researcher subsequently
reviewed it. To alleviate personal bias, any uncertainties and ambiguities in the
extraction results were discussed between two researchers to reach an agreement.

Regarding data analysis, we used descriptive statistics (for data item D1 and D4)
and Constant Comparison (Adolph et al., 2011) (for data items D1-D5) to analyze
and categorize the extracted qualitative data. Constant Comparison can be used
to generate concepts, categories, and theories through a systematic analysis of the
qualitative data. For the five data items, the author coded the data (around 400
annotations) using Constant Comparison and another researcher checked the cod-
ing results during the two coding activities (i.e., open coding and selective coding);
any divergence in the coding and categorization results were further discussed until
the two researchers reached an agreement. To effectively code and categorize data,
we employed the MAXQDA tool2 to help conduct manual data coding, which is a
commercial tool for qualitative data analysis. All the data of this study is available
online (Li, Soliman, Liang and Avgeriou, 2021b).

2MAXQDA, https://www.maxqda.com/

https://www.maxqda.com/

102 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

3.4 Results

3.4.1 RQ1 - Description of architecture erosion

To answer RQ1.1, we first used descriptive statistics to analyze the frequencies of the
used terms. We then categorized the terms used to describe AEr into five types (see
Table 3.4). We can see that most developers prefer to use erode/erosion to describe
AEr. The term degrade/degradation comes second, followed closely by decay. Another
popular term, though not as popular as the first three, is deteriorate/deterioration. In
addition, we found several terms not included in our search terms are used to rep-
resent the AEr phenomenon when we manually checked the extracted data, such as
software rot, software entropy, software aging, and fundamental design flaw. Note that,
some developers used ambiguous or high level terms to describe AEr, like system
degradation; but it is not clear whether a term like system degradation refers to per-
formance degradation or structure degradation of the system. For this reason, we
excluded such vague terms.

To answer RQ1.2, we analyzed the context of AEr mentioned by developers and
categorized the manifestation of this phenomenon in four perspectives with Con-
stant Comparison.

From the structure perspective: the structure of an eroded architecture deviates
from the intended architecture. As mentioned by interviewee #1, “Architecture (ero-
sion) is about the original architecture blueprint got lost when you can’t know architecture
structure and boundaries anymore”. A number of striking examples were reported.
Consider, for example, the violation of design rules about encapsulation that breaks
implemented abstract layers and can have long-lasting impact on maintenance (in
the interest of performance). A similar problem is the accumulation of cyclic de-
pendencies and increased coupling, both resulting in binding elements together that
were intentionally separated by architects. Finally, other mentioned structural mani-
festations include dead/overlapping code, and obsolete or incompatible third-party
libraries.

From the quality perspective: an eroded architecture may not meet the origi-
nal or current non-functional requirements; thus the system quality attributes are
degraded. As developer #1 stated “to make changes error prone, or to no longer meet
cross-functional requirements (performance, security, scalability, etc.)”. Our data indi-
cates a negative effect of AEr mostly on reliability (mainly due to increasing error-
proneness), performance, and user experience.

From the maintenance perspective: an eroded architecture could be harder to
understand, fix bugs, and refactor. As developer #2 stated “it is often very hard to un-
derstand the existing architecture, determine the extent of architectural decay, and identify

3.4. Results 103

Table 3.4: Terms that developers used to describe architecture erosion

Type Term Count

Erode
/erosion

Architecture/architectural erode/erosion 20

26
Structure/structural erosion 3
Software erosion 1
Project erosion 1
Component erosion 1

Degrade
/degradation

Architecture/architectural degrade/degradation 6

16

Structure/structural degrade/degradation 2
Project/product degrade/degradation 3
Code degrade 1
Design degrade 1
Module degrade 1

Decay

Architecture/architectural decay 8

15

Project decay 2
Software decay 2
Design decay 1
Package structure decay 1
Structural decay 1

Deteriorate
/deterioration

Architecture/architectural deteriorate/deterioration 4
8Structure deterioration 2

Code quality deterioration 2

Others

Software/design rot 5

9Software entropy 2
Software aging 1
Fundamental design flaw 1

architectural smells and metric violations”. Our data indicates that increasing com-
plexity and technical debt often become common in eroded architectures, making
bug-fixing and refactoring increasingly difficult.

From the evolution perspective: an eroded architecture makes it hard or even
impossible to plan the next evolution steps, e.g., which features to implement next or
which technologies to adopt. As developer #3 pointed out “the unfortunate side effect
of this [erosion] is that it becomes more and more difficult to add new visible features without
breaking something”. Developer #3 also commented that, when an architecture erodes
over time, “the stakeholders will notice instability, high maintenance cost and ridiculously
high cost for adding or changing features”.

3.4.2 RQ2 - Causes and consequences of architecture erosion

(1) Causes of architecture erosion

In Table 3.5, we list the potential causes leading to AEr, categorized into 12 types.

104 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

Inappropriate architecture changes are the most frequently mentioned reason in-
curring AEr, and often happen in the maintenance and evolution phases in a number
of ways: introducing new anomalies (e.g., cyclic dependencies), breaking architec-
tural rules, introducing new architectural principles that are incompatible with ex-
isting frequent modifications leading to the accumulation of cyclic dependencies. It
is hard to accurately anticipate the side effects of those architectural changes, as de-
velopers cannot fully understand which part of the functionality will be implicated.
The inappropriate changes to an architecture increase the risk of undermining the
architectural integrity (e.g., breaking the encapsulation rules), introducing new bugs
and causing architecture smells (e.g., increasing superfluous dependencies).

Unlike inappropriate architecture changes that happen during maintenance, ar-
chitecture design defects often occur in the design phase. It could be regarded as a
hidden danger to sustainability, as they often cannot be discovered via static anal-
ysis. These flaws in the system architecture, eventually lead to a gap between the
intended architecture and the implementation. For example, if the original system
has a “bad encapsulation”, the implementation is likely to gradually deviate from
the intended architecture as dependencies are created with the poorly encapsulated
functionality over time. Developer #16 commented that, AEr happens as “the inher-
ent flaws present in every initial design begin to surface”. Developer #22 mentioned that
“if your core system abstractions are not clean, then the system is destined to degrade”.

Lack of management skills is another common cause of AEr and examples in-
clude: assigning incompetent developers to do a job they do not fit, having un-
reasonable rewarding and punishment metrics in place (that could lead to a high
turnover of staff), lacking proper training and education for developers (resulting,
for example, in non-uniform coding standards), or lacking long-term strategies for
architecture evolution. As developer #15 stated “some worse or mediocre developers
who just are too uncomfortable with creative development and technical decision making are
”promoted” to the management. As a result, everyone suffers, ..., it often creates disaster”.

The accumulation of technical debt is also a major cause leading to AEr. Tech-
nical debt (Li et al., 2015) is a short-term solution that may expedite development,
but it might violate architectural principles, hampering refactoring and maintenance
in general, and eventually deviating from the target architecture. As developer #4
stated “the short term benefit of finishing your task now by taking short cuts versus the
long term risk of making the code less understandable”.

Disconnection between architects and developers manifests through three sce-
narios: (1) architects do not adequately monitor the implementation process; (2)
developers do not actively participate in the architecting process; or (3) there is com-
plete absence of architect roles. Architects need to guide and monitor the implemen-
tation of architecture design and developers also need to understand the rationale

3.4. Results 105

of architectural decisions. As mentioned by developer #5 “the software changes need
special attention (architectural assessment) from software architects. If this does not happen,
the architecture could erode or become overly complex”.

Knowledge vaporization is mostly due to developer turnover, and poorly docu-
mented architectural knowledge. It is a potential threat to project management. For
instance, knowledge is lost when developers leave the team, while new developers
may violate architecture design principles due to the lack of knowledge about the
current architecture.

Requirements changes challenge the architecture sustainability, e.g., when the
architecture is incompatible with the newly-added or changed requirements, devel-
opers need to remove some parts from the architecture and add extra “patches”; this
often impacts the maintainability and extensibility of the architecture. Note that, this
kind of requirements are usually unforeseen and/or unplanned requirements (e.g.,
increasing demands for storage), that are in conflict with existing design rules and
constraints.

Lack of communication has many obvious disadvantages to software develop-
ment and particularly maintenance. For example, as mentioned by developer #6 “if
some developers isolate themselves from others, this may reduce the communication com-
plexity at the cost of increasing the program complexity”; consequently this increased
complexity makes it harder to implement the intended architecture correctly. Inter-
viewee #2 stated “communication is key, for everyone on a team, including the architects
and builders”.

In many cases, due to quick iterations and releases, developers might ignore
long-term architectural strategies. Particularly, agile development is considered as
a cause of rapid AEr. This is a common and recurring issue faced by agile devel-
opment teams, as described by developer #7 “No architecture will stay intact in the
face of agile, evolving requirements”. Recent studies also show that agile process may
not make a project agile (Sturtevant, 2017) and architecture might become the bot-
tleneck of agile projects. Additionally, increasing complexity could slowly degrade
the architecture, make codebases less understandable, and gradually make it harder
and harder to maintain and evolve the system.

Lack of maintenance is regarded as another cause of AEr. If the architectural
components are outdated and maintainers do not constantly refactor and maintain
the codebase to keep it tidy and clean (e.g., replacing obsolete third party libraries),
the architecture is destined to erode. Finally, there are four less frequently men-
tioned causes of AEr, including environment change, business process change, busi-
ness pressure, and treating quality concerns as second-class citizens. For example,
when a business process changes, the architecture might become incompatible with
the new process (i.e., erosion).

106 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

Table 3.5: Causes of architecture erosion

No. Cause Type Count
1 Inappropriate architecture changes Technical 22
2 Architecture design defects Technical 15
3 Lack of management skills Non-technical 13
4 Technical debt Technical 11
5 Disconnection between architects and developers Non-technical 10
6 Knowledge vaporization Non-technical 9
7 Requirements change Both 9
8 Lack of communication Non-technical 8
9 Agile development Technical 8

10 Increasing complexity Technical 7
11 Lack of maintenance Both 6

12
Others (environment change, business process
change, business pressure, quality concerns as 2nd-
class)

Non-technical 9

Table 3.6: Consequences of architecture erosion

No. Consequence Count
1 Hard to understand and maintain 20
2 Run-time quality degradation 13
3 Enormous cost to refactor 11
4 Big ball of mud 9
5 Slowing down development 5
6 High turnover rate 3
7 Overall complexity 2

(2) Consequences of architecture erosion

The consequences of AEr are presented in Table 3.6. Hard to understand and
maintain is the most frequently mentioned consequence. For example, an eroded ar-
chitecture with implicit dependencies might be difficult to maintain without break-
ing some dependencies, and developers may not understand the ramification of
breaking these dependencies. Run-time quality degradation is another major con-
sequence of AEr. Users perceive a compromise in run-time qualities, such as perfor-
mance, reliability, and user experience.

Eroded architectures may incur an enormous cost to refactor. As developer #8
said “there is a risk that the refactoring cost is significant, possibly even too high to con-
template, resulting in a system is “stuck” in an undesirable form”. Furthermore, due to
the increasing complexity of systems (e.g., cyclic dependencies), slowing down de-
velopment can be common during the development and maintenance phase. For

3.4. Results 107

example, time-to-delivery is delayed, while implementing new features and debug-
ging can become extremely slow or even stagnant. In the worst case, an eroded ar-
chitecture may render the system a big ball of mud (Foote and Yoder, 1997), i.e., the
system lacks a perceivable architecture. As developer #9 stated “As with all big ball
of muds, the issue doesn’t usually make itself apparent until there’s some maintenance/en-
hancement needed”.

An eroded architecture can cause high turnover rate, as developers are forced to
work on a messy architecture. Developer #10 explained how this affects an organiza-
tion: “it’s not the software that rots but instead the users and/or organization that decays”.
Developer #11 discussed the similarity between the software and the organization:
“Conway’s Law would suggest that software architecture mirrors organization structure, so
it too would become more brittle”. The high turnover further aggravates AEr, due to
losing knowledge about system requirements and design decisions. Additionally,
the overall complexity of the architecture can increase drastically. Developer #12
stated “architectural erosion starts to happen as you add capabilities and slowly increase
software complexity”. The accumulation of complexity, if left uncontrolled, bears the
risk of bringing the entire project to a halt.

3.4.3 RQ3 - Identifying architecture erosion

(1) Tools

To answer RQ3, we collected the practices and tools employed to identify AEr.
Table 3.7 lists the 13 tools collected and ranked according to their frequency men-
tioned by developers. We note that these tools practically identify issues in the ar-
chitecture that can be considered as symptoms of AEr; in other words, none of the
tools claims to specifically identify AEr per se. For example, Lattix (Kumar, 2016)
is a commercial tool that allows users to create dependency models to identify ar-
chitecture issues; NDepend (Kumar, 2016) can help users to find out architectural
anomalies; Structure101 (Sangwan et al., 2008) offers views of code organization
and helps practitioners to better understand the code structure and dependencies
for checking architecture conformance. Some tools are language-specific, such as
JDepend (Gopal, 2016) and Archie (for Java), Designite (for C#), while other tools
support multiple programming languages.

(2) Practices

Apart from the tools mentioned by developers, we also found several general
practices applied to identify AEr, as elaborated in the following paragraphs.

Dependency Structure Matrix (DSM) (Sangal et al., 2005) can be used to visu-
ally represent a system in the form of a square matrix. Developer #13 mentioned

108 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

Table 3.7: Tools used to detect architecture erosion

No. Tool Link Count
1 Lattix https://www.lattix.com 10
2 NDepend https://www.ndepend.com 10

3 Sonargraph http://www.hello2morrow.com/
products/sonargraph

5

4 Structure101 https://structure101.com/
products/workspace

4

5 ArchitectureQualityEvolution
https://github.
com/tushartushar/
ArchitectureQualityEvolution

4

6 JDepend https://github.com/
clarkware/jdepend

3

7 Designite https://www.designite-tools.
com/

3

8 SonarQube https://www.sonarqube.org 2
9 SonarLint https://www.sonarlint.org/ 1

10 Archie
https://github.com/
ArchieProject/Archie-Smart-
IDE

1

11 Glasnostic https://glasnostic.com/ 1
12 CodeScene https://codescene.io/ 1

13 CAST https://www.castsoftware.
com/

1

“DSMs are also a powerful way of setting and visualizing design rules. They make it easy
to pinpoint violations to design rules”, which are typical symptoms of AEr. DSMs can
visualize dependency relationships between packages (e.g., Mo et al. (2013); Nord
et al. (2012)); understanding such dependencies helps detect AEr during the main-
tenance phase.

Software Composition Analysis (SCA) (Mokni et al., 2016, 2015) refers to the
process that provides visibility of open source components in a system. As stated by
developer #14, “Managing a product against software decay can be a nightmare, but again
a good SCA tool should be able to take care of that. It should be updated to the developers
when a new open-source library becomes available”. Open source components are used
in software products across all industries, and SCA can especially help to determine
latent obsolete components that can typically cause AEr. There are also some SCA
tools available, such as WhiteSource, Snyk, and Sonatype.

Architecture Conformance Checking (ACC) refers to the type of conformance
between the implemented architecture and the intended architecture. The detection
happens by identifying architectural violations in the implementation. As developer

https://www.lattix.com
https://www.ndepend.com
http://www.hello2morrow.com/products/sonargraph
http://www.hello2morrow.com/products/sonargraph
https://structure101.com/products/workspace
https://structure101.com/products/workspace
https://github.com/tushartushar/ArchitectureQualityEvolution
https://github.com/tushartushar/ArchitectureQualityEvolution
https://github.com/tushartushar/ArchitectureQualityEvolution
https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend
https://www.designite-tools.com/
https://www.designite-tools.com/
https://www.sonarqube.org
https://www.sonarlint.org/
https://github.com/ArchieProject/Archie-Smart-IDE
https://github.com/ArchieProject/Archie-Smart-IDE
https://github.com/ArchieProject/Archie-Smart-IDE
https://glasnostic.com/
https://codescene.io/
https://www.castsoftware.com/
https://www.castsoftware.com/

3.4. Results 109

#3 mentioned “It is easier to pass a system from a development team to a maintenance
team, especially when changes can automatically be checked for architectural conformance.
Also new team members need less time to become productive because the code is easier to
understand”.

Architecture monitoring refers to using tools to monitor the health of the ar-
chitecture by detecting architecture issues. This is achieved by various techniques
(e.g., Reflexion models (Murphy et al., 1995)) and metrics, such as coupling, size
of files, hotspots (D’Ambros et al., 2008)). As developer #13 mentioned “When de-
sign rules are monitored, tight scheduling does not erode the architecture and, if it does, the
consequences of time pressure can be tracked (architectural technical debt) and monitored”.

Code review is a continuous and systematic process conducted by developers
or architects to identify mistakes in code, such as violations of design patterns. As
developer #1 mentioned “when the team is small enough, using code reviews will be
effective enough to prevent architectural erosion”.

Checking the change of architectural smell density is a method employed
to detect AEr following the release timeline by statically comparing architectural
smells in various versions. As developer #17 stated “Comparing absolute values of de-
tected architecture smell instances across versions is not a good idea because the size of the
code is also changing. Therefore, we compute architectural smell density. It is a normalized
metric capturing number of smells per one thousand LOC”. By observing the change rate
of architectural smell density (Sharma et al., 2020), developers can find out from
which version, the architecture started to deteriorate.

Architecture visualization (Shahin et al., 2014b) aims at representing architec-
tural models and architectural design decisions using various visual notations. It
helps to better understand the architecture and its evolution by visualizing the struc-
ture, metrics, and dependencies between architecture elements (e.g, components) in
a project. Understanding architectural dependencies of a system through visualiza-
tion is significant to detect the proliferation of violations (Murphy et al., 1995) and
further erosion.

3.4.4 RQ4 - Addressing architecture erosion

To answer RQ4, we categorized the measures used to control AEr, as discussed in
the following paragraphs.

Architecture assessment refers to the assessment process throughout the life cy-
cle during architecture design (e.g., discovering and addressing the shortcomings
of design decisions), during architecture implementation (e.g., monitoring and re-
pairing possible violations of design rules), and during architecture evolution (e.g.,
choosing appropriate refactoring patterns to fix issues from new requirements or

110 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

evaluating the risk of architectural changes). We note that architecture assessment
is meant to be followed up with concrete actions; in other words, it is a measure
that connects detecting and addressing AEr, as developer #5 mentioned “Architec-
ture erosion can happen in any software project where the architectural assessments are not
part of the development process”.

Periodic maintenance refers to regular activities (e.g., code refactoring, bug-
fixing, testing) aimed at keeping a system “clean” and running smoothly. Devel-
oper #18 stated “you can test the architecture regularly every time you make changes to
the code. This eliminates the worry about architectural erosion in your software”. Another
developer #19 urged “don’t leave unrepaired ‘broken windows’. Fix each one as soon as it
is discovered” (examples of “broken windows” are bad designs, wrong decisions, or
poor code). If there is insufficient time to conduct maintenance work right away, de-
velopers can create a list of pending problems and technical debt, and find a suitable
time to pay off the debt and replace the temporary solutions.

Architecture simplification. When architectural complexity proliferates to-
wards being uncontrollable, simplifying the architecture, and deliberately control-
ling the system size and complexity could be an option worthy of consideration.
Developer #12 mentioned “There needs to be a continuous effort to simplify (refactor)
the code. If not, architectural erosion starts to happen as you add capabilities and slowly
increase software complexity”. Several developers mentioned migrating to a microser-
vices architecture, as one prominent way to achieve this. Decomposing the original
monolithic architecture into many small microservices can, to some extent, improve
architectural extensibility and increase its resilience to AEr.

Architecture restructuring is a drastic, yet effective means to control AEr. It is
a much more pervasive change that concerns a large part of the architecture, com-
pared to architecture simplification, that merely tries to reduce complexity. Developer
#19 stated “Sometimes, the best solution is simply to rewrite the application catering to the
new requirements. But this is normally the worst case scenario. The cumbersome solution is
to stop all new development, start by writing a set of tests and then redesign and rearchitect
the whole solution”. However, restructuring the original architecture to satisfy new
requirements and keeping the system running smoothly, may require enormous
time and effort, considering the famous example of Mozilla web browser (Godfrey
and Lee, 2000).

Organization optimization. Hiring more capable team members might also be
an good option to address AEr. As developer #20 stated “Consideration of people and
organizational aspects of the architecture as well as technical aspects. Investment in people:
training, study time, mentoring, etc”.

In addition, there are two less frequently mentioned measures: restarting a
project or rewriting the architecture from scratch, and avoiding the systems growing

3.5. Discussion 111

larger than intended by controlling the size and functional diversity deliberately.

3.5 Discussion

3.5.1 Interpretation of Results

RQ1: Terms and manifestation of architecture erosion. The results of RQ1.1 (see
Table 3.4) show that most of the developers prefer to use the term “erode/erosion” to
describe the AEr phenomenon, followed by “decay” and other less-frequently used
terms. Regarding the results of RQ1.2, we found that developers usually describe
the phenomenon of AEr from four perspectives: structure, quality, maintenance,
and evolution. All the four perspectives are worth investigating with further re-
search; while there are some literature linking each perspective with AEr (see e.g.,
Macia, Garcia, Popescu, Garcia, Medvidovic and von Staa (2012); Jaktman et al.
(1999) for structure, Wang et al. (2019) for quality, and Brunet et al. (2012) for main-
tenance and evolution), this investigation needs to be more systematic.

RQ2: Causes and consequences of architecture erosion. We identified 15 causes
of AEr (see Table 3.5). Inappropriate architecture changes is the most frequently
mentioned reason that leads to AEr; this aligns with recent studies (e.g., Le et al.
(2015)) on architectural changes. Table 3.5 reveals that, alongside technical factors,
non-technical factors are not trivial. In fact, the non-technical aspects seem to re-
inforce each other; for example, “lack of communication” might induce the “discon-
nection between architects and developers” and “knowledge vaporization”. The findings
corroborate the results in (De Silva and Balasubramaniam, 2012), that good culture
of communication and improving management skills are also important for archi-
tectural sustainability.

According to Table 3.6, the potential consequences from AEr mirror the four per-
spectives mentioned in RQ1, and extend them with further effects. Specifically, in
addition to the impact on maintenance and evolution, as well as run-time qualities
(that match the perspectives of quality, maintenance and evolution), we also found
the impact of AEr on development speed, cost of refactoring, and high staff turnover
of developers. The findings show the significance of preventing and controlling AEr,
and warn that massive cost might be invested in the degraded projects for tackling
AEr.

RQ3: Practices and tools for detecting architecture erosion. Developers often
employ practices and tools to indirectly detect AEr by indicators or symptoms (e.g.,
cyclic dependencies, architecture violations). Such practices and tools contribute
to the identification of architecture issues that are reported in the literature (e.g.,
Macia, Garcia, Popescu, Garcia, Medvidovic and von Staa (2012)) and have a well-

112 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

established connection to the phenomenon of AEr. Although they do not detect AEr
per se, the findings suggest that there is a clear need for the software architecture
community to devise dedicated tools on AEr detection.

Regarding the practices presented in Section 3.4.3, our findings suggest that a
trend analysis from the quality and evolution perspectives (e.g., architecture moni-
toring, checking the change of architectural smells) may help the development team
better understand the health status of systems. For example, Merkle (Merkle, 2010)
found that keeping track of an evolving architecture (especially the changes and
trends) can contribute to stopping AEr by using tools like Structure101.

RQ4: Measures taken for controlling architecture erosion. The results indicate
that the measures can potentially help to alleviate the impact of AEr and prevent
AEr during development. While there are few studies that validate such measures
(e.g., Gerdes et al. (2016); Stal (2014)), further evidence is required to attest to their
merit as well as potential pitfalls. This evidence is important for convincing man-
agement to allocate resources to control AEr, such as conducting architecture evalu-
ation and periodic maintenance, or architecture simplification. Otherwise, tackling
AEr may not get priority over the urgent implementation of features and bug fix-
ing. Consequently, developers cannot ignore and do nothing about the appearance
and accumulation of system anomalies, and regular inspection and maintenance are
indispensable for preventing and tackling AEr. In general, these measures can pro-
vide practitioners further guidance regarding architecture management on how to
deal with AEr during architecture maintenance.

3.5.2 Implications for Researchers and Practitioners

Terms of AEr: Regarding the terms used for describing the AEr phenomenon, al-
though it is difficult to establish a unified term to be used universally, we do recom-
mend that researchers should define the used terms when they refer to AEr, in order
to minimize the ambiguities and misunderstandings. Additionally, practitioners are
also encouraged to find common ground on understanding the AEr phenomenon
for diminishing the ambiguity of the AEr concept and terms.

Four perspectives of AEr: It indicates that AEr manifests through structural is-
sues, but mostly causes problems when it affects both run-time qualities (e.g., per-
formance or reliability) and design-time qualities (e.g., maintainability and evolv-
ability). Given AEr is a multifaceted phenomenon from the developers’ perspec-
tive, and researchers can conduct more empirical studies to further investigate the
characteristics of AEr. Additionally, the four perspectives of AEr should receive
more attention from practitioners in their daily development activities, and these
perspectives can be regarded as indicators for perceiving AEr.

3.6. Threats to Validity 113

Awareness of AEr: The findings can also raise awareness among practitioners
about potential causes of AEr that are not intuitive, such as the adoption of agile
development. We would thus urge practitioners to pay more attention to the grave
consequences of AEr in order to request action at the management level. It is more
likely that management will take measures or give a high priority to address AEr,
when the aforementioned risks become explicit.

Guidance for software development: Having a good culture of communication
and improving management skills (especially about the training and education of
developers) are quite significant to developers for understanding the system design
and structure. The findings can provide clues for practitioners to reduce the risk of
AEr in their design and maintenance activities. Specifically, practitioners need to
pay particular attention to the integrity of architecture when architecture changes
happen.

Approaches and tools with empirical evidence: There is a need for researchers
and practitioners to devise dedicated approaches and tools to detect and address
AEr. Moreover, researchers can use the practices and tools reported in this study,
to explore the scope, characteristics, and metrics of AEr, in order to provide a solid
foundation on those tools. Furthermore, we encourage researchers and practition-
ers to explore the benefits and limitations by applying the approaches, tools, and
measures for addressing AEr in practice.

3.6 Threats to Validity

The threats to the validity of this study are discussed by following the guidelines
proposed by Wohlin et al. (Wohlin et al., 2012). Internal validity is not considered,
since this study does not address any causal relationships between variables.

Construct validity concerns if the theoretical and conceptual constructs are cor-
rectly interpreted and measured. In this study, there are two key threats. The first
one concerns the search process related to data collection of AEr. To mitigate this
threat, we leveraged Google to collect recommended popular online developer com-
munities as many as possible, and excluded duplicate results and searched plat-
forms with qualifiers (e.g., popular “web/Android/PHP” communities, best devel-
oper communities “in India”). Besides, we reviewed papers of AEr and summarized
the most frequently-used terms about AEr in the literature (see Section 3.2.1); these
terms were used to derive our search string. The second threat lies in the process
of manually extracting and analyzing the collected data. To partially mitigate this
threat, we did a pilot execution of data filtering, extraction, and coding by the two
researchers, for reaching an agreement about all the terms used.

External validity concerns the extent to which we can generalize the research

114 3. Understanding Architecture Erosion: The Practitioners’ Perceptive

findings. A relevant threat concerns the representativeness of the selected online de-
veloper communities. To reduce this threat, we conducted a comprehensive analysis
and selected several top-recommended online developer communities (see Section
3.3.2), including the largest and most widely used Q&A community by developers
around the world (e.g., Stack Overflow) and other developer forums.

Reliability refers to the replicability of a study for generating the same or sim-
ilar results. To alleviate this threat, we specified the process of our study design
in a research protocol that can be used to replicate this work; Section 3.3 presents
the details of the study design, while the complete information and all instruments
and data are available on the replication package (Li, Soliman, Liang and Avgeriou,
2021b). Moreover, pilot studies of data collection, filtering, and survey were con-
ducted to mitigate misinterpretations and biases. Before the formal data analysis,
we did a pilot data filtering, extraction, and coding by two researchers. To eliminate
personal biases, any conflicts and disagreements were discussed until an agreement
was reached. Finally, we obtained a Cohen’s Kappa coefficient of 0.728 on the filter-
ing process, which partially reduces this threat.

3.7 Conclusions and Future Work

We conducted an empirical study to explore how developers perceive and discuss
the phenomenon of AEr by collecting relevant information on AEr from the per-
spective of practitioners using three data sources (i.e., communities, surveys, and
interviews). The findings can provide practitioners with concrete measures to de-
tect and control AEr, and provide researchers with the challenges of AEr.

We found that most developers described the phenomenon of AEr with terms
like “erode/erosion”, “decay”, and “degrade/degradation”. When thinking about AEr,
developers consider structural issues, but also the effect on run-time qualities, main-
tenance and evolution. Furthermore, besides the technical factors, non-technical
factors play a big role in causing AEr. Despite the lack of dedicated tools for de-
tecting AEr per se, developers employed associated practices and tools to detect the
symptoms of AEr. To some extent, the practices and tools can help practitioners
understand architectural structure and identify the eroding tendency of an archi-
tecture. Moreover, the identified measures can be employed during architecture
implementation for effectively addressing AEr.

In the next step, we plan to detect and prevent AEr (semi-)automatically by es-
tablishing a dataset about symptoms of AEr and quantifying the degree of AEr from
development artifacts (e.g., components).

Based on:

Ruiyin Li, Mohamed Soliman, Peng Liang, Paris Avgeriou, (2022) “Symptoms of architecture erosion in code
reviews: A study of two OpenStack projects,” in: Proceedings of the 19th IEEE International Conference on
Software Architecture (ICSA), Honolulu, Hawaii, USA, 2022, pp. 24-35: IEEE.
DOI:10.1109/ICSA53651.2022.00011

Chapter 4

Symptoms of architecture erosion in code
reviews: A study of two OpenStack projects

Abstract

The phenomenon of architecture erosion can negatively impact the maintenance
and evolution of software systems, and manifest in a variety of symptoms during
software development. While erosion is often considered rather late, its symp-
toms can act as early warnings to software developers, if detected in time. In
addition to static source code analysis, code reviews can be a source of detecting
erosion symptoms and subsequently taking action. In this study, we investigate
the erosion symptoms discussed in code reviews, as well as their trends, and
the actions taken by developers. Specifically, we conducted an empirical study
with the two most active Open Source Software (OSS) projects in the OpenStack
community (i.e., Nova and Neutron). We manually checked 21,274 code review
comments retrieved by keyword search and random selection, and identified
502 code review comments (from 472 discussion threads) that discuss erosion.
Our findings show that (1) the proportion of erosion symptoms is rather low, yet
notable in code reviews and the most frequently identified erosion symptoms
are architectural violation, duplicate functionality, and cyclic dependency; (2)
the declining trend of the identified erosion symptoms in the two OSS projects
indicates that the architecture tends to stabilize over time; and (3) most code re-
views that identify erosion symptoms have a positive impact on removing ero-
sion symptoms, but a few symptoms still remain and are ignored by developers.
The results suggest that (1) code review provides a practical way to reduce ero-
sion symptoms; and (2) analyzing the trend of erosion symptoms can help get
an insight about the erosion status of software systems, and subsequently avoid
the potential risk of architecture erosion.

1164. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

4.1 Introduction

Along evolution, software systems tend to exhibit a (growing) gap between the in-
tended and the implemented architecture. This phenomenon is commonly referred
to as architecture erosion (Perry and Wolf, 1992) and is often described using diverse
terms (e.g., architectural decay and degradation) (Li, Liang, Soliman and Avgeriou,
2021b). Architecture erosion has a negative impact on the maintenance and evo-
lution of a software system, by causing architectural inconsistencies (e.g., defec-
tive interfaces that hinder interaction with outside components) and degradation
of software quality (e.g., components that are highly resistant to change) (Li, Liang,
Soliman and Avgeriou, 2021b). However, architecture erosion is typically consid-
ered rather late in the process, and especially after it has severely impacted the sys-
tem (Garcia et al., 2022); this makes it hard or sometimes even impossible to handle
erosion. Therefore, it is wise to detect and repair architectural erosion as early as
possible. One way to achieve that is by looking for symptoms of erosion in the early
phases.

Researchers have identified a number of architecture erosion symptoms, which in-
dicate the presence of the aforementioned gap between intended and implemented
architecture (see Section 4.2.2). Such symptoms include common violations of de-
sign decisions and principles (e.g., violations of inter-module communication rules
in a layered architecture (De Silva and Balasubramaniam, 2012)) and structural is-
sues (e.g., architectural smells (Le et al., 2018; Fontana et al., 2016; Macia, Arcoverde,
Garcia, Chavez and von Staa, 2012), rigidity and brittleness of systems (Martin, 2000;
Ayyaz et al., 2015)). The occurrence of such symptoms can act as early warnings for
software engineers to tackle architecture erosion (e.g., by refactoring) (Li, Liang,
Soliman and Avgeriou, 2021b; Ali et al., 2018).

Previous studies have investigated approaches, mostly using static source code
analysis (Fontana et al., 2016; Le et al., 2018), for identifying erosion symptoms (Li,
Liang, Soliman and Avgeriou, 2021b; Fontana et al., 2016; Le et al., 2018; Macia,
Arcoverde, Garcia, Chavez and von Staa, 2012). However, existing code analysis
tools may not be sufficient to accurately identify the wide range of erosion symp-
toms (Lenhard et al., 2017; Azadi et al., 2019). For instance, existing tools (e.g., Sonar-
graph, Arcan) cannot identify certain types of architectural smells (e.g., ambiguous
interface, multipath dependency) (Azadi et al., 2019). Moreover, several architec-
tural smells manifest at levels that are out of scope of existing techniques and tools,
such as package-level and service-level (including microservices) smells (Mumtaz
et al., 2021).

While certain erosion symptoms are hard to detect using source code analysis
tools, there are other sources that could be tapped for this purpose, such as code

4.1. Introduction 117

reviews. Code review is a widely used practice to manually find defects in code
and improve code quality (Bacchelli and Bird, 2013). Besides, code reviews can
improve the quality attributes of the software (Morales et al., 2015) and also result
in improvements at the architecture level (Paixao et al., 2019). Identifying erosion
symptoms from code reviews can be complementary to using source code analysis
tools; this would enhance the accuracy of detecting erosion symptoms. To the best
of our knowledge, this data source for detecting erosion symptoms has not been
investigated before. In fact, little is known about whether erosion symptoms are
widely discussed (if at all) during code reviews and how developers deal with them.

In this study we aim at empirically investigating architecture erosion symptoms
that are discussed during the code review process, as well as their evolution trend,
and the actions taken by developers on dealing with the erosion symptoms. Identi-
fying erosion symptoms through code review could support detecting architecture
erosion early in software systems, that would otherwise not be captured by static
analysis of source code. Regarding the scope, we focus on violation and structural
symptoms of architecture erosion (see Section 4.2.2), as these two types are the most
frequently discussed in the literature according to our recent study (Li, Liang, Soli-
man and Avgeriou, 2022) (see Section 4.8.2).

To achieve our goal, we manually identified 502 code review comments (con-
tained in 472 discussion threads) related to the symptoms of architecture erosion.
The key contributions of this work are summarized as follows:

• We constructed a benchmark dataset containing violation and structural
symptoms of architecture erosion for further use by researchers (see the repli-
cation package (Li, Soliman, Liang and Avgeriou, 2021a)).

• We manually identified the most frequently discussed architecture erosion
symptoms from code reviews and provided a taxonomy of the erosion symp-
toms.

• We further analyzed the trends of the erosion symptoms and the actions taken
by developers in dealing with the symptoms.

The remainder of this chapter is organized as follows. Section 4.2 describes the
background of this work. Section 4.3 elaborates on the research questions and the
study design. Section 4.4 presents the results, which are subsequently discussed in
Section 4.5. Section 4.6 details the implications of the study results for researchers
and practitioners and Section 4.7 discusses the threats to the validity of the study.
Section 4.8 introduces related work and Section 4.9 concludes with future directions.

1184. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

4.2 Background

4.2.1 Code Review Process

Code review is the process of analyzing code submitted by developers to judge
whether it is suitable to be integrated into the code base. It is meant as a lightweight
practice of code inspection (Fagan, 1976) and is applied in both open source and in-
dustrial projects. Code review can be conducted in different ways; for example, OSS
communities use not only informal code review processes through online commu-
nication (e.g., mailing lists or issue trackers), but also employ formal code review
processes supported by tools (e.g., Gerrit1) (Beller et al., 2014).

Code review tools (e.g., Gerrit) are increasingly being adopted in both indus-
trial and OSS projects (Sadowski et al., 2018; Bosu et al., 2015; Morales et al., 2015).
Figure 4.1 shows an overview of the code review process that can be conducted it-
eratively. A developer creates code review requests and submits the code changes
(e.g., patches, bug fixes) to the code review tools where static source code analy-
sis can be automatically conducted for checking errors in code (e.g., compilation
errors). After passing the automated analysis, the review requests are assigned to
reviewers, which subsequently submit feedback to approve or reject the integration
of the code changes into the code base. If the reviewers find defects in the submitted
code, they will reject the code changes along with their feedback to the developers.
The review process iterates until either the reviewers approve (status “MERGED”)
or reject (status “ABANDONED”) the code changes.

4.2.2 Architecture Erosion Symptoms

Architecture erosion reflects the deviation of the implemented architecture from the
intended architecture over time (Perry and Wolf, 1992), and manifests in a variety of
symptoms during software development. A symptom is a partial sign or indicator
of the emergence of architecture erosion. Structural and violation symptoms are the
most widely discussed erosion symptom types in the literature (Li, Liang, Soliman
and Avgeriou, 2022) (see Section 4.8.2). In this work, we focus on these two types of
symptoms and collectively refer to them as architecture erosion symptoms.

Structural symptoms denote various structural problems in software architec-
ture. For instance, Le et al. (Le et al., 2016) found that architectural smells can be
regarded as structural symptoms affecting the sustainability of software systems.
Herold et al. (Herold et al., 2015) reported that certain structural anti-patterns are

1https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

4.3. Study Design 119

Create review

requests

Requests

assigned

Code review and

comments

Merged into

the code base

Ask for code changes

Reviewers

Code

repository

Code review tools

Changes

rejected

Changes

approved

Compile

failed

Figure 4.1: An overview of the code review process

symptoms of architecture erosion.
Violation symptoms refer to architectural violations during software develop-

ment, such as violations of prescribed design decisions (e.g., layered pattern), princi-
ples (e.g., encapsulation), or constraints (e.g., uniform interface). For example, prior
studies (Fontana et al., 2016; Macia, Arcoverde, Garcia, Chavez and von Staa, 2012;
Mair et al., 2014) revealed that architectural violations (e.g., violations of intended
design decisions), can be used to indicate the presence of architecture erosion.

4.3 Study Design

4.3.1 Research Questions

We aim at investigating the symptoms of architecture erosion that were identified
in code reviews, and analyze the distribution and trend of the erosion symptoms, as
well as how developers deal with those symptoms. To achieve this goal, we defined
three Research Questions (RQs):

RQ1: Which symptoms of architecture erosion are frequently identified in
code reviews?

Rationale: This RQ aims at identifying which types of erosion symptoms are fre-
quently discussed during the code review process. Answering this RQ can help to
understand erosion symptoms that occur in practice but might be ignored by code

1204. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

analysis tools. The results can also help researchers and practitioners to devise tools
and propose approaches for the automated identification of these frequently dis-
cussed symptoms.

RQ2: How do architecture erosion symptoms identified in code reviews
evolve along time?

Rationale: This RQ aims at investigating how the discussion of architecture ero-
sion symptoms changes along software evolution. That can help to understand to
what extent architecture erosion accelerates or slows down. Answering this RQ can
provide insights into the evolution of erosion symptoms throughout the code re-
view process, and consequently contribute to understanding the sustainability and
stability of architecture.

RQ3: Do the architecture erosion symptoms identified in code reviews get
fixed in subsequent code changes?

Rationale: This RQ aims at investigating what actions developers might take after
erosion symptoms are identified during the code review process, such as fixing the
identified issues or ignoring them. Answering this RQ can help to reveal whether
the identified erosion symptoms have an impact on code changes, and shed light
on to what degree code reviews can result in removing the identified symptoms of
architecture erosion and subsequently improving software quality.

4.3.2 Data Collection and Analysis

Figure 4.2 shows an overview of the data collection and analysis process. First, we
employed a keyword-based approach to mine relevant comments that could poten-
tially discuss erosion symptoms. Of course, the retrieved code review comments
that contain the keywords, may not actually discuss erosion symptoms. Thus, we
manually checked the retrieved code review comments to identify the discussions
that contain erosion symptoms. In addition, we conducted a random selection of
the review comments that do not contain any keywords as a supplement to the
keyword-based approach. The whole process contains four steps as explained be-
low. All the data and scripts are available at a replication package (Li, Soliman,
Liang and Avgeriou, 2021a).

Step 1: Data Collection

The first step is to select software projects and collect code review data from

4.3. Study Design 121

Search by building

a keyword set

Symptoms

related?

Searched code

comments

Yes

No

Removing

Data extrac�on

and analysis

Random search

without keywords

Manual

labeling

2.1

1

2.2

Data

collec�on
OpenStack

projects

3 4

3

Figure 4.2: An overview of the data collection and analysis process

publicly available OSS repositories. OpenStack2 is a widely-used open source cloud
software platform, with which many organizations (e.g., IBM) collaboratively de-
velop applications for cloud computing. The code review process in OpenStack
is managed by the review tool Gerrit, and the code review data can be accessed
through REST API3. We selected two of the projects of the OpenStack platform:
Nova (a controller for providing cloud virtual servers) and Neutron (providing net-
working as a service for interface devices). These are the largest projects within
OpenStack, and they have been actively developed over the last seven years with
rich code review data. Moreover, the two projects have been used for understand-
ing the detection of code-related quality issues (e.g., code smells (Han et al., 2021)).
Thus, they might also contain the discussions on architecture erosion symptoms.
We employed Python scripts to automatically mine code review data from the two
projects between Jan 2014 and Dec 2018 (see Table 4.1). We organized the data in a
structured way and stored them in MongoDB.

Table 4.1: An overview of the subject projects

Project Domain Language #Code Changes #Comments
Nova Virtual server management Python 22,762 156,882

Neutron Network connectivity Python 15,256 152,429

Step 2.1: Retrieve by Building a Keyword Set

While the selected projects in Table 4.1 have thousands of comments, a large
number of review comments might not be related to architectural issues (Paixao
et al., 2019) and it is inefficient to manually check each review comment. Therefore,
we decided to search for the discussions on erosion symptoms through associated
keywords. We first needed to determine relevant keywords that commonly occur
in the discussions on erosion symptoms. In a recent empirical study on architecture

2https://www.openstack.org/
3https://gerrit-review.googlesource.com/Documentation/rest-api.html

https://www.openstack.org/
https://gerrit-review.googlesource.com/Documentation/rest-api.html

1224. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

erosion (Li, Liang, Soliman and Avgeriou, 2021b), Li et al. found that developers
prefer to use certain common terms (e.g., erosion, decay, degradation) to describe
the architecture erosion phenomenon in Q&A websites. Therefore, we conducted a
trial search by using the terms identified in (Li, Liang, Soliman and Avgeriou, 2021b)
(e.g., decay, erode, erosion, degrade, degradation, deteriorate, deterioration). How-
ever, we found that these description terms of architecture erosion were rarely used
in code reviews. A possible explanation is that reviewers, during the code review
process: a) focus more on specific code changes rather than general architectural
concepts, and b) use terms related to specific architectural issues (e.g., a specific
constraint violation).

To effectively locate the specific types of erosion symptoms in code reviews, we
needed to establish a keyword set related to violation and structural symptoms of
architecture erosion (see Section 4.2.2). In Table 4.2, we selected common violation
and structural symptoms according to previous studies (Azadi et al., 2019; Le et al.,
2016; Oizumi et al., 2019; Ganesh et al., 2013), and formulated an initial keyword set.
For this set, we preferred to be inclusive rather than exclusive and thus included all
terms mentioned in the aforementioned studies.

Considering that the effectiveness of keyword-based text mining techniques
highly relies on the set of keywords, we worked towards refining this initial set
of keywords. Specifically, we followed the iterative approach proposed by Bosu et
al. (Bosu et al., 2014); similarly to our goal, Han et al. had established a set of key-
words in order to mine code smell discussions in code reviews (Han et al., 2021). In
this study, we mined code reviews and change logs of code changes (that contain
status information “MERGED” and “ABANDONED”) with the purpose of identify-
ing relevant discussions on architecture erosion symptoms. The approach includes
the following steps:

1. We prepared an initial set of keywords as mentioned above.

2. We searched using the initial keyword set in the collected review comments
and built a corpus by collecting the relevant comments that encompass at
least one keyword from the initial set of keywords (e.g., “violation”, “incon-
sistent”).

3. We processed the retrieved code review comments which contain at least one
keyword in our keyword set and removed English stopwords, punctuation,
and numbers. That results in a list of tokens.

4. We conducted a stemming process (using SnowballStemmer from the NLTK
toolkit (Bird et al., 2010)) to obtain the stem of each token (e.g., “architecture”
and “architectural” have the same token “architectur”).

4.3. Study Design 123

5. We built a document-term matrix (Tan et al., 2016) from the corpus, and found
the additional words that co-occur frequently with each of our initial key-
words (co-occurrence probability of 0.05 in the same document).

6. We manually checked the list of frequently co-occurring additional words to
determine whether the newly discovered words should be added into the key-
word set.

After performing the aforementioned steps, we found that no additional key-
words co-occurred with the initial keywords based on the co-occurrence probability
of 0.05 in the same document; this is similar to previous studies (Han et al., 2021)
and (Bosu et al., 2014). Thus, we believe that the initial keyword set is sufficient to
mine the violation and structural symptoms of architecture erosion from code re-
view comments. In total, 20,211 code review comments were retrieved from the two
projects.

Table 4.2: Symptoms of architecture erosion used in this study

Violation symptom Keywords
Architecture violation architecture, architectural, layer, design, violate, vio-

lation, deviate, deviation
Architecture inconsistency inconsistency, inconsistent, consistent, mismatch, di-

verge, divergence, divergent
Constraint violation rule, constraint, violate, violation
Structural symptom Keywords
General terms of architectural
smells

architecture, architectural, structure, structural, smell,
antipattern, anti pattern, anti-pattern, defect

Cyclic dependency cycle, cyclic, circular, dependence, dependency
Unnecessary dependency unnecessary, dependency
Obsolete functionality obsolete, unused
Ambiguous interface ambiguous, interface
Unused interface and unused
brick

unused, interface, brick

Sloppy delegation sloppy, delegation
Brick functionality overload brick, overload
Duplicate functionality duplicated, clone, copypasted, redundant, copied,

overload
Scattered functionality scattered

Step 2.2: Random Selection of Review Comments without Keywords

It is possible that reviewers do not use the keywords in Table 4.2 when they de-
scribed erosion symptoms during the code review process. Thus, we conducted a
supplementary search by randomly selecting review comments that do not contain

1244. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

any keywords in Table 4.2 from the rest of the review comments of the two Open-
Stack projects. We randomly selected 1,063 review comments out of the remaining
289,100 review comments (i.e., confidence level of 95% and margin of error of 3% (Is-
rael, 1992)). Then, we manually checked the code review comments and retrieved 7
review comments related to erosion symptoms.

Step 3: Data Filtering and Labeling

The search process retrieved a large number of code review comments through
keywords, but these still may largely contain irrelevant results. In other words, there
are review comments that are not related to discussions on erosion symptoms but
contain keywords, such as code snippets, links, and variable names with keywords
(e.g., “attr interface”). The irrelevant results were removed manually along
with preprocessing by scripts in the replication package (Li, Soliman, Liang and
Avgeriou, 2021a). To ensure we have the same understanding of the erosion symp-
toms when performing the manual removal, we conducted a pilot data filtering
and labeling; for that, we used 50 comments randomly-selected from the retrieved
comments, which were checked by two researchers, independently. To measure
the inter-rater agreement between the two researchers, we calculated the Cohen’s
Kappa coefficient (Cohen, 1960) of the pilot and got an agreement of 0.898. During
the formal data filtering and labeling process, the author conducted the data filter-
ing and labeling, and another researcher reviewed and checked the results. Any
disagreements on the comments were discussed between the two researchers until
a consensus was reached. In total, we collected 502 code review comments (from
472 discussion threads) that contain discussions on erosion symptoms from the two
OpenStack projects. Note that, a discussion thread can contain more than one code
review comments that pertain to the same symptom.

Step 4: Data Extraction and Analysis

The data items in Table 4.3 are used to extract relevant data from the two Open-
Stack projects for answering the RQs. The author extracted the data which was

Table 4.3: Mapping between the extracted data items and RQs

Data item Description RQ
D1 Comment The comments from reviewers on source code RQ1
D2 Code review URL The URL link of the code review comments and

changes
RQ1

D3 Change ID The unique id of each code change RQ1
D4 Comment timestamp The timestamp of the code review comments RQ2
D5 Code change status The status of each code change in the change logs RQ3

4.4. Results 125

subsequently reviewed by another researcher. To mitigate personal bias, any dis-
agreements were discussed between two researchers to reach a consensus. The
author then rechecked the extraction results of all the code reviews to ensure the
correctness of the extracted data. Regarding the data analysis, we used descriptive
statistics to analyze the extracted comments and refined the existing classifications
in the literature.

4.4 Results

4.4.1 Results of RQ1

In total, we identified 502 code review comments (contained in 472 discussion
threads) related to architecture erosion symptoms. As mentioned in Section 4.3.2,
each discussion thread reflects one symptom but may contain more than one com-
ment. Figure 4.3 shows the distribution of the identified erosion symptoms in
the code reviews from Nova and Neutron. Architectural violation is the most fre-
quently identified symptom with 75 (15.9%) discussion threads; this symptom en-
tails that the reviewers perceived the implemented architecture to be violating the
intended architecture during the development process. Duplicate functionality (Le
et al., 2016) is a common architectural smell that comes second with 71 (15.5%) dis-
cussion threads, followed by cyclic dependency with 56 (11.9%) discussion threads. In
addition, 39 (8.3%) discussion threads belong to obsolete functionality.

Considering the two categories of symptoms, i.e., violation symptoms and struc-
tural symptoms, the former amounts to 18.0% and comprises two categories: archi-
tectural violation (75 discussion threads) and architectural inconsistency (10 discussion
threads). Architectural violation entails the violation of architectural constraints (e.g.,
layered pattern) or design rules (e.g., encapsulation). For example, one reviewer
mentioned that “this feels like a layer violation to be re-using the privsep stuff from os-brick
here”4. Architectural inconsistencies reflect a mismatch between the implemented and
the intended architecture (e.g., inconsistent dependency). For example, one devel-
oper responded: “ok I will remove that, there is inconsistent between agent implementa-
tions”5.

Compared to violation symptoms, structural symptoms (82.0%) are much more
frequently discussed in code reviews. In the following, we refined the existing clas-
sification (e.g., Azadi et al. (2019); Le et al. (2016)) and provide a taxonomy of the
most frequently discussed structural symptoms. Due to space limitations, we list

4https://review.opendev.org/c/openstack/nova/+/312488
5https://review.opendev.org/c/openstack/neutron/+/195439

https://review.opendev.org/c/openstack/nova/+/312488
https://review.opendev.org/c/openstack/neutron/+/195439

1264. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

0

10

20

30

40

50

60

70

80

a
rc

h
it
e
c
tu

ra
l
v
io

la
ti
o
n

d
u
p

lic
a

te
 f

u
n
c
ti
o

n
a
lit

y

c
y
c
lic

 d
e

p
e

n
d
e

n
c
y

o
b
s
o
le

te
 f
u
n
c
ti
o
n
a
lit

y

a
n
ti
-p

a
tt

e
rn

d
e
s
ig

n
 d

e
fe

c
t

fu
n
c
ti
o

n
a
lit

y
 o

v
e

rl
o

a
d

u
n
w

a
n
te

d
 d

e
p
e
n

d
e
n

c
y

u
n
u

s
e
d

 i
n
te

rf
a
c
e

a
m

b
ig

u
o

u
s
 i
n

te
rf

a
c
e

in
c
o
n
s
is

te
n
t
in

te
rf

a
c
e

a
rc

h
it
e
c
tu

ra
l
in

c
o
n
s
is

te
n
c
y

u
n
s
ta

b
le

 i
n
te

rf
a
c
e

lo
g

ic
a

l
c
o

u
p

lin
g

a
m

b
ig

u
o

u
s
 n

a
m

e

u
n
u

ti
liz

e
d

 a
b

s
tr

a
c
ti
o

n

u
n
u

s
e
d

 p
a
c
k
a

g
e

u
n
s
ta

b
le

 d
e
p

e
n
d
e
n
c
y

m
is

s
in

g
 i
n
te

rf
a
c
e

s
e
c
u
ri

ty
 f

la
w

s

in
c
o

m
p

a
ti
b

le
 i
n
te

rf
a
c
e

im
p

lic
it
 d

e
p

e
n

d
e

n
c
y

fa
t
in

te
rf

a
c
e

s
e
p

a
ra

ti
o

n
 o

f
c
o

n
c
e

rn
s

u
n
n

e
c
e

s
s
a

ry
 h

ie
ra

rc
h

y

m
is

s
in

g
 a

b
s
tr

a
c
ti
o

n

lin
k
 o

v
e
rl

o
a
d

s
c
a
tt
e
re

d
 f
u
n

c
ti
o
n
a

lit
y

A
P

I
v
e

rs
io

n
in

g

m
is

s
in

g
 e

n
c
a

p
s
u

la
ti
o

n

in
c
o

m
p

le
te

 a
b

s
tr

a
c
ti
o

n

m
u

lt
ip

a
th

 h
ie

ra
rc

h
y

a
s
y
m

m
e
tr

ic
 s

tr
u
c
tu

re
 o

r
b

e
h
a
v
io

r

s
lo

p
p
y
 d

e
le

g
a

ti
o

n

N
u
m

b
e
r

o
f

th
e
 d

is
c
u
s
s
io

n
 t

h
re

a
d
s

Nova Neutron

Figure 4.3: Number of the discussion threads on architecture erosion symptoms in Nova and
Neutron

the major structural symptoms in each category, while the rest can be found in the
replication package (Li, Soliman, Liang and Avgeriou, 2021a).

1. Functionality-related smells: Four types of structural symptoms contained in
140 discussion threads are related to functionality, namely duplicate functional-
ity, obsolete functionality, functionality overload, and scattered functionality.

• Duplicate functionality (73 discussion threads) concerns the replication of
the same functionality among components. Ignoring the other compo-
nents when altering the functionality of one component might cause ar-
chitectural problems. For example, one reviewer commented: “this is du-
plicated in the other module - we could pull this into the common module as a
helper method”6.

6https://review.opendev.org/c/openstack/nova/+/229964

https://review.opendev.org/c/openstack/nova/+/229964

4.4. Results 127

• Obsolete functionality (39 discussion threads) refers to unused and invalid
functionality that can increase system complexity. For example, one re-
viewer stated “oh, this module is not necessary at all now because we have
already removed legacy v2 API code”7.

• Functionality overload (26 discussion threads) occurs when a component
undertakes an excessive amount of functionality. For example, as de-
scribed by one reviewer “since this module is overloaded by tons of code, it
makes sense for me to get it rid of all responsibilities that we can do”8.

2. Dependency-related smells: We identified five types of structural symptoms
contained in 91 discussion threads related to dependency issues, namely cyclic
dependency, unwanted dependency, unstable dependency, implicit dependency, link
overload, unnecessary hierarchy, and multipath hierarchy.

• Cyclic dependency (56 discussion threads) occurs when two or more com-
ponents directly or indirectly interact with each other to form a circular
chain. For example, as one reviewer pointed out “the removal here is a good
example how the restructuring resolves the cyclic dependency issue”9.

• Unwanted dependency (24 discussion threads) denotes the dependencies
that are obsolete, duplicate, or unnecessary between components. As one
reviewer stated “I think it’s a wrong dependency, [...]”10.

3. Interface-related smells: We identified nine types of structural symptoms
contained in 69 discussion threads related to interfaces, namely unused inter-
face, ambiguous interface, inconsistent interface, unstable interface, logical coupling,
missing interface, incompatible interface, fat interface, API versioning, and sloppy
delegation.

• Unused interface (17 discussion threads) occurs when an interface is not
utilized. For example, one reviewer suggested “this is a weird interface.
MonitorBase doesn’t seem to be used very much yet, is this a good opportunity
to remove this abstract method and replace it with get metrics?”11.

• Ambiguous interface (15 discussion threads) appears when an interface has
an unclear definition or provides a single or general entry-point (e.g., sin-
gle parameter) to other components or connectors. For example, one re-

7https://review.opendev.org/c/openstack/nova/+/292473
8https://review.opendev.org/c/openstack/nova/+/282580
9https://review.opendev.org/c/openstack/nova/+/250907

10https://review.opendev.org/c/openstack/neutron/+/87841
11https://review.opendev.org/c/openstack/nova/+/219153

https://review.opendev.org/c/openstack/nova/+/292473
https://review.opendev.org/c/openstack/nova/+/282580
https://review.opendev.org/c/openstack/nova/+/250907
https://review.opendev.org/c/openstack/neutron/+/87841
https://review.opendev.org/c/openstack/nova/+/219153

1284. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

viewer stated “I won’t hold up on it, but this is a bit of a confusing interface to
me, so I think documenting it thoroughly is important”12.

4. General symptoms refer to general descriptions of the structural symptoms,
including anti-patterns (36 discussion threads) and design defects (28 discussion
threads). For example, one reviewer stated “This is an antipattern in concurrent
programming and we should not do this.”13.

Finding 1: The proportion of architectural erosion symptoms is rather low
in code reviews. The most frequently identified symptoms of architectural
erosion are architectural violation, duplicate functionality, and cyclic dependency.

4.4.2 Results of RQ2

To answer RQ2 and gain a first insight into the architectural erosion trends of the two
OpenStack projects (i.e., Nova and Neutron), we plotted line charts of the discussion
threads on erosion symptoms in the two projects between 2014 and 2018.

As we can see from Figure 4.4, the numbers of discussion threads on erosion
symptoms show a decreasing trend for both Nova and Neutron, as the two projects
evolve. For Nova, we can see that the number of erosion symptoms shows a steady
downward trend from 2014 to 2018. As for Neutron, the number of erosion symp-
toms fluctuates and reaches a peak in 2015, and then it follows a decreasing trend
in the next three years. One possible reason for the drop in the numbers of erosion
symptoms in both projects could be a potential decrease in the numbers of review
comments. To check this, we looked at the percentage of erosion symptoms in re-
view comments (see Figure 4.5). Although the numbers of review comments fluctu-
ate over time, we found that the percentages of erosion symptoms have a declining
tendency through a linear regression analysis. Thus, it is reasonable to argue that
the architecture of the two OpenStack projects becomes stable over time, as they
exhibit fewer erosion symptoms.

To perform a more detailed analysis, we analyzed the distribution of the num-
bers of discussion threads on erosion symptoms in the two projects over a period
of 60 months between 2014 and 2018 (see Figure 4.6). We can see a fluctuating but
downward trend for both Nova and Neutron. During the manual check process,
we found several reviews that discussed issues concerning both Nova and Neutron,
such as connections through interfaces. For example, one reviewer mentioned: “I’m
still concerned that Nova is not interacting with Neutron through a well defined interface

12https://review.opendev.org/c/openstack/nova/+/427902
13https://review.opendev.org/c/openstack/nova/+/77995

https://review.opendev.org/c/openstack/nova/+/427902
https://review.opendev.org/c/openstack/nova/+/77995

4.4. Results 129

78

51

44

31

24

67

85

66

16
10

0

10

20

30

40

50

60

70

80

90

2014 2015 2016 2017 2018

N
u

m
b

e
r

o
f
th

e
 d

is
c
u

s
s
io

n
 t
h

re
a

d
s Nova Neutron

Figure 4.4: Trends of the discussion threads on architecture erosion symptoms in Nova and
Neutron

0

0.5

1

1.5

2

2.5

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2014 2015 2016 2017 2018

P
e

rc
e

n
ta

g
e

 o
f

th
e

 d
is

c
u

s
s
io

n
 t
h

re
a

d
s

N
u

m
b

e
r

o
f

c
o

d
e

 r
e

v
ie

w
 c

o
m

m
e

n
ts

Nova Neutron P1 (‰) P2 (‰) Linear (P1 (‰)) Linear (P2 (‰))

Figure 4.5: Percentages of the discussion threads on architecture erosion symptoms in Nova
(i.e., P1) and Neutron (i.e., P2)

1304. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

here”14. Interestingly, the two projects have largely similar fluctuating trends of the
number of erosion symptoms (see Figure 4.6) along time, since both projects belong
to the OpenStack platform, and their erosion symptoms to some extent follow a
similar trend.

0

2

4

6

8

10

12

14

16

J
a

n

F
e
b

M
a

r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

J
a

n

F
e

b

M
a

r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

J
a

n

F
e

b

M
a

r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

J
a

n

F
e

b

M
a
r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

J
a

n

F
e

b

M
a
r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

2014 2015 2016 2017 2018

N
u

m
b

e
r

o
f
th

e
 d

is
c
u

s
s
io

n
 t
h
re

a
d
s

Nova Neutron

Figure 4.6: Monthly distribution of the discussion threads on architecture erosion symptoms
per month in Nova and Neutron

To statistically verify this trend, we conducted a correlation analysis, using as
null hypothesis (H0) that there is no linear relationship between the number of architecture
erosion symptoms in Nova and Neutron. We chose a p-value 0.05 as a statistical signif-
icance threshold, which is commonly used in empirical studies (Shull et al., 2007).
We used Spearman’s rank correlation (Zar, 1972) to assess the correlation between
the monthly distribution of erosion symptoms in Nova and Neutron. The reason is
that Spearman’s rank correlation does not have any requirements on the normality
of data distribution (Pagano, 2012). We adopted the classification of correlation co-
efficient by Marcus and Poshyvanyk (Marcus and Poshyvanyk, 2005), where a value
belonging to [0.3-0.5] denotes a moderate correlation. We calculated a Spearman’s
rank correlation value of 0.412 (p-value is 0.0007), which indicates a statistically sig-
nificant positive correlation (p-value ≪ 0.01); the correlation of 0.412 is moderate
strong. Therefore, we rejected the null hypothesis (H0) and accepted the alternative
hypothesis (H1), namely, there is a linear relationship between the number of architecture
erosion symptoms in Nova and Neutron.

14https://review.opendev.org/c/openstack/nova/+/275073

https://review.opendev.org/c/openstack/nova/+/275073

4.4. Results 131

Finding 2: Both the numbers and percentages of the architecture erosion
symptoms in Nova and Neutron show declining tendencies, which suggests
that the architecture of the two projects tends to become stable over time.
To some extent, the architecture erosion symptoms in Nova and Neutron
projects are correlated to each other.

4.4.3 Results of RQ3

During code review, the review comments can provide suggestions on how to re-
move architecture erosion symptoms. For example, Figure 4.7 shows a code snippet
with a cyclic dependency before the review (left side) and after the dependency was
removed (right side). Although the final versions of the submitted code changes can
be detected by the status of code changes (status “MERGED” or “ABANDONED”),
whether the erosion symptoms get fixed through code changes is not clear. Thus,
to gain more insights from the code changes along with their discussions and sta-
tus, we further investigated and presented the status of code changes in Table 4.4,
including 361 “MERGED” and 111 “ABANDONED” code changes.

Figure 4.7: An example of cyclic dependency remove operation

Table 4.4: Status of the code changes

Status Count Sum
Merged (fixed) 309

361Merged (no response) 49
Merged (no response but fixed) 3
Abandoned (verification failed) 79

111Abandoned (verification passed but voted to reject) 30
Abandoned (verification passed but no vote) 2

“MERGED” status denotes that code changes pass the verification (i.e., auto-
mated testing) and receive the approval from the reviewers to be integrated into the
main repository. The results show that most of the “MERGED” code changes (85.6%,

1324. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

309 out of 361) reached an agreement (fixed) after discussions between the review-
ers and developers. For example, a reviewer mentioned “This is a layering violation.
This should be: old flavor = instance.get flavor(’old’)”, which was re-
sponded by a developer “Done”15. This example shows that a reviewer pointed out
a violation symptom (i.e., layering violation) that needed to be fixed. In addition,
we noted that 13.6% (49 out of 361) of the “MERGED” code changes did not get any
response from the developers or reviewers. In other words, while the identified ero-
sion symptoms can be regarded as potential problems, they still remain in the code
and are ignored by both developers and reviewers.

Regarding the code changes marked as “ABANDONED”, they either failed their
verification, or were voted to be rejected by the reviewers, or both. The results show
that most of the “ABANDONED” code changes (71.2%, 79 out of 111) failed their
verification, while 27.0% of the code changes were rejected by the reviewers after
passing the automated testing. Such rejections are mostly due to code changes hav-
ing bad quality or logical errors; for instance, one reviewer mentioned an issue “no,
it is not cleaner, it is a design mistake [...]”, and the developer agreed to resubmit a
code change “ok, I agree. I will make an update”16. Another common reason for reject-
ing code changes that passed their verification, is a difference of opinion between
developers and reviewers, which leads to reaching an agreement (upon discussion)
to re-submit a code change. Moreover, we found that nearly half (45.0%, 50 out
of 111) of the “ABANDONED” code changes did not receive any response from the
developers and no actions were taken to cope with the identified erosion symptoms.

In summary, the results show that code reviews can have a significant and pos-
itive impact on removing erosion symptoms: they were either fixed and merged or
abandoned (thus also removing the erosion symptoms). Most (89.6%, 423 out of 472)
of the erosion symptoms were addressed and only 10.4% (49 out of 472) of the dis-
cussion threads that contain erosion symptoms were ignored by the developers and
reviewers.

Finding 3: Most code reviews that identify erosion symptoms have a posi-
tive impact on removing the architecture erosion symptoms, but a few ero-
sion symptoms remain and are ignored by the developers and reviewers (i.e.,
they persisted in the “MERGED” code changes). The main reason behind
“ABANDONED” code changes is failed verification (i.e., failed automated
test).

15https://review.opendev.org/c/121409
16https://review.opendev.org/c/openstack/nova/+/120309

https://review.opendev.org/c/121409
https://review.opendev.org/c/openstack/nova/+/120309

4.5. Discussion 133

4.5 Discussion

4.5.1 RQ1: Frequently Identified Erosion Symptoms

Our results indicate that the proportion of the review discussions on architecture
erosion symptoms is rather low in code reviews (i.e., 2.4%, 502 out of 21,274 review
comments). But they do exist and can be very useful to mine, as they provide an in-
dication of the system’s architectural erosion overall. Compared to previous studies,
particularly (Azadi et al., 2019; Le et al., 2016) that only focus on architectural smells
and their classification, we also focused on another type of erosion symptoms, that
is, architectural violations. Besides, we refined the classification and provided a tax-
onomy that is comparatively more comprehensive and covers two common types
of erosion symptoms (see Section 4.4.1). According to the results of RQ1, architec-
tural violation, duplicate functionality, and cyclic dependency are the most frequently
identified erosion symptoms. Regarding the structural symptoms of architecture
erosion, functionality-related smells (e.g., duplicate functionality) attract more at-
tention from code reviewers, followed by dependency-related and interface-related
smells.

We observed that a large number of code review comments concern code-level
problems instead of architecture-level problems. In other words, compared to the
discussions on code-level issues (e.g., code smells (Han et al., 2021)), the percentage
of the discussions on architecture erosion symptoms is lower. One obvious reason is
that code reviewers usually focus on the submitted code snippets and seldom dis-
cuss architectural problems, since they may not really be familiar with the system
architecture or they may lack architectural awareness (Paixao et al., 2019). Interest-
ingly, many of the discussion threads that contain erosion symptoms are described
as bug fixing during the code review process; this may be because code reviewers
are not aware that the “bugs” may undermine the system architecture and make the
architectural deviate from the intended architecture. This conjecture corroborates
recent findings by Paixao et al. (Paixao et al., 2019) that the majority of “fixed bugs”
affecting the system’s behaviour is more than simple bugs throwing an exception.
In other words, the code reviews related to architectural changes may be described
as code-related changes (e.g., bugs) due to the lack of architectural awareness.

4.5.2 RQ2: Trend of Identified Erosion Symptoms

The number of architecture erosion symptoms in the two OpenStack projects (i.e.,
Nova and Neutron) shows a declining tendency. This indicates that fewer erosion

1344. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

symptoms were discussed during the code review process; as the two projects get
mature and stable over time, so does their architecture. This is similar to the findings
of Bi et al. (Bi et al., 2021), who established that architectural discussions and changes
decrease after several stable releases. One possible reason is that the architecture of
the two projects tends to become stable after several major versions were released.
As mentioned in Lehman’s Law of software evolution, “the quality of a system will
appear to be declining during its evolution, unless proactive measures are taken” (Lehman
and Ramil, 2002). The declining trend of the erosion symptoms in the two projects
implies that positive architectural evolution might take place to improve the struc-
tural quality (Uchôa et al., 2020) and make the architecture more stable over time.

We also observed that the number of the review comments on erosion symptoms
in the two OpenStack projects shows a similar changing trend and are correlated to
each other. The two projects (i.e., Nova and Neutron) are important components
of the OpenStack cloud computing platform; this entails that there may be many
interactions (e.g., couplings of structure and data) between the projects in the same
community (e.g., OpenStack in this study), as reflected in the (almost) common evo-
lution of their erosion symptoms. Moreover, the finding indicates that when devel-
opers change certain components, they should be aware of the potential couplings
among the projects in the same platform.

4.5.3 RQ3: Impact of Identified Erosion Symptoms

The results of RQ3 show that most of the identified erosion symptoms (89.6%) were
addressed through either being fixed and merged or abandoned after review votes. This
indicates that code reviewers can effectively find the possible architectural issues
in code and provide feasible refactoring recommendations to help developers to
repair or remove the code snippets with erosion symptoms. It also indicates that
the code review process has a positive impact on architectural improvements and
sustainability by removing erosion symptoms in the two OpenStack projects.

However, a few of the identified erosion symptoms (10.4%) still remained and
were ignored by developers and reviewers. One potential reason is that either the
identified erosion symptoms did not attract the attention from the developers or dif-
ferent opinions existed between the developers and reviewers about the severity of
the symptoms. The remaining erosion symptoms may increase the risk of architec-
ture erosion, ultimately hindering the maintenance and evolution activities in the
future.

4.6. Implications 135

4.6 Implications

4.6.1 Implications for Researchers

Establishing classification models to automatically identify architecture erosion
symptoms. Whether architecture erosion symptoms are accurately identified plays
a significant role in preventing architecture erosion and further extending the
longevity of systems and their architecture. In this work, the identification process
was manual. Researchers can focus on how to precisely and automatically identify
erosion symptoms from various software artifacts. Furthermore, researchers can
attempt to construct prediction models for recommending to remove erosion symp-
toms (Garcia et al., 2022). Erosion symptoms can be an early warning of architecture
erosion, and the recommended repair activities (e.g., refactorings) can help to re-
duce the risk of architecture erosion. In this sense, establishing shared and labeled
datasets of erosion symptoms based on diverse artifacts (e.g., source code, design
documents) is the prerequisite for building models (e.g., classifiers based on deep
learning techniques), which can be applied to form a more reliable basis for the
identification of erosion symptoms.

Exploring the evolution of erosion symptoms. The aforementioned findings
suggest that researchers can explore the evolution of architecture erosion symptoms
for the purpose of preventing architecture erosion. For instance, researchers can
measure the density of erosion symptoms in different modules over time and inter-
vene if certain thresholds are reached (e.g., by refactoring). In addition, researchers
can investigate the erosion symptoms that are not addressed in order to analyze
whether and how the ignored erosion symptoms can have a negative impact on the
system over time, as well as the root reasons why developers and reviewers ignored
the symptoms.

4.6.2 Implications for Practitioners

Providing support for managing erosion symptoms. The findings of this work
can provide guidance for developers in conducting refactoring and maintenance ac-
tivities to deal with architecture erosion. For example, practitioners can pay more
attention to those erosion symptoms that have the highest frequency (e.g., duplicate
functionality). Moreover, to remove existing erosion symptoms and avoid intro-
ducing new erosion symptoms, practitioners can use the information on identified
erosion symptoms in different textual artifacts (e.g., code reviews, commits, issues);
raising their erosion awareness can help them be more cautious when performing

1364. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

code changes (e.g., adding new features).
Keeping an eye on the remaining and ignored erosion symptoms. At present,

the reasons for developers to accept a solution that will damage the architec-
ture (e.g., sub-optimal design decisions leading to erosion symptoms) or refuse
to address architecture erosion symptoms are still a research area under investiga-
tion (Paixao et al., 2019). To avoid the proliferation of erosion symptoms and mit-
igate the risk of architecture erosion, we encourage practitioners to systematically
assess the severity of the ignored erosion symptoms, and continuously measure the
impact of the remaining erosion symptoms (e.g., measure architecture smell size
and density (Sharma et al., 2020)).

4.7 Threats to Validity

We discuss the threats to the validity by following the guidelines proposed by
Wohlin et al. (Wohlin et al., 2012). Internal validity is not discussed, since we did
not study causality.

Construct Validity pertains to the connection between the research questions
and the objects of our study. One potential threat concerns the selection of the key-
word set, namely, whether the keyword set was incomplete. To reduce the risk of
missing keywords, we summarized the frequently-used keywords reported in pre-
vious studies, and identified the keywords by following the approach proposed by
Bosu et al. (Bosu et al., 2014). Additionally, to further mitigate this threat, we con-
ducted a random selection of review comments that did not contain any keywords.

External validity concerns the generalizability of the study findings. Our study
used two OSS projects (i.e., Nova and Neutron) from the same community (i.e.,
OpenStack) and we have limited the code review data obtained from Gerrit be-
tween 2014 and 2018. These factors might restrict the generalizability of our findings
in other settings, such as industrial systems, other OSS systems and different time
periods. However, considering the popularity and size of the selected projects, we
believe that our findings can provide researchers and practitioners an understand-
ing of the common types and trends of architecture erosion symptoms identified in
code reviews of large OSS systems, as well as the actions against the erosion symp-
toms.

Reliability refers to whether the study would yield the same results when other
researchers conducted it. To reduce this threat, we ran a pilot data filtering and
labeling to eliminate the misinterpretation of the results. The formal data filtering
and labeling was conducted by the author, and reviewed and checked by another
researcher; we obtained a Cohen’s Kappa value (Cohen, 1960) of 0.898. During data

4.8. Related Work 137

extraction and analysis, the data was extracted by the author and reviewed by an-
other researcher. Any disagreements were discussed and addressed during the la-
beling and manual analysis of code review data. Besides, we specified the process
of our study in Section 4.3 and provided a replication package online (Li, Soliman,
Liang and Avgeriou, 2021a), which partially mitigate threats to the reliability of the
study.

4.8 Related Work

4.8.1 Code Review

Code review is performed in a variety of ways for different purposes, for exam-
ple, lightweight tool-based reviews (Bacchelli and Bird, 2013), checklist-based re-
views (Gonçalves et al., 2020), and search-based reviews (Ouni et al., 2016a; Bosu
et al., 2014; Han et al., 2021). Bacchelli and Bird (Bacchelli and Bird, 2013) investi-
gated the tool-based code review process across different teams at Microsoft. They
found that code review can facilitate knowledge transfer among team members and
increase the team awareness, while available tools for code review do not always
meet developers’ expectations. Han et al. (Han et al., 2021) conducted an empirical
study of code smell detection via code review, using a keyword-based approach to
mine code review discussions of two OpenStack projects. They investigated the fre-
quently identified code smells and the corresponding actions taken by developers.
Ouni et al. (Ouni et al., 2016a) proposed the RevRec approach that formulates the
peer code reviewers recommendation problem as a combinatorial search-based op-
timization problem, which provides decision-making support for code change sub-
mitters and reviewers to identify the most appropriate reviewers for code changes.
Considering the benefits of code review on software development, we chose code
review comments as our data source to empirically investigate the discussions on
architecture erosion symptoms among developers during the code review process.

4.8.2 Identification of Architecture Erosion Symptoms

Macia et al. (Macia, Arcoverde, Garcia, Chavez and von Staa, 2012) explored the im-
pact of code anomalies on architecture erosion, and their results revealed that cer-
tain kinds of early architectural smells (e.g., ambiguous interface, module concern
overload) can be regarded as key architecture erosion symptoms and accelerate the
erosion of architecture. Uchôa et al. (Uchôa et al., 2020) analyzed the impact of code
review on design degradation evolution. They analyzed various erosion symptoms

1384. Symptoms of architecture erosion in code reviews: A study of two OpenStack projects

to investigate the relationships between the density and diversity of symptoms and
design degradation. Oizumi et al. (Oizumi et al., 2019) conducted an exploratory
study to investigate whether symptoms of structural degradation (e.g., broken mod-
ularization, cyclic hierarchy, unutilized abstraction) with higher density and diver-
sity in classes can be used as indicators of the need for root canal refactorings (a
refactoring tactic). Their results indicated that certain symptoms might be indeed
strong indicators of structural degradation, despite not being removed by refactor-
ing. Mair et al. (Mair et al., 2014) considered architecture violations as a type of
symptom of architecture erosion and investigated how software engineers repaired
eroded software systems. Le et al. (Le et al., 2018, 2016) mentioned that architectural
smells can be regarded as symptoms of architecture erosion and they proposed al-
gorithms and metrics to detect instances of architecture erosion by analyzing the
detected smells. Compared to the aforementioned studies that focus on the erosion
symptoms by source code analysis (e.g., density of code smells (Uchôa et al., 2020),
architectural smells (Le et al., 2018, 2016)), our work investigated the discussions on
architecture erosion symptoms in code reviews, including the frequently discussed
erosion symptoms and their trends, as well as the actions (i.e., code changes) taken by
developers.

4.9 Conclusions and Future Work

To some extent, the trend of architecture erosion symptoms can reflect the trend of
system sustainability and stability during evolution (Le et al., 2016). In this work, to
study architecture erosion symptoms in code reviews, we performed an empirical
study using the discussions of architecture erosion symptoms in code reviews by
collecting and analyzing review comments from the two largest OpenStack projects
(i.e., Nova and Neutron). Our findings show that architectural violation, duplicate
functionality, and cyclic dependency are the most frequently identified erosion symp-
toms. The numbers and percentages of review comments on identified erosion
symptoms manifest a declining trend in the two OpenStack projects, which indi-
cates that their architecture becomes stable over time. Most of the identified erosion
symptoms (89.6%) were addressed through either being fixed and merged or aban-
doned after review votes. This implies that, to some extent, code reviews might have
a positive impact on removing erosion symptoms and extending the longevity of
systems and their architecture.

Our findings suggest that researchers should establish classification models to
support the identification of erosion symptoms and pay more attention to the evo-
lution of erosion symptoms. Practitioners should manage the ignored erosion

4.9. Conclusions and Future Work 139

symptoms with their evolution and continuously measure the impact of the ero-
sion symptoms during the development life cycle. Besides, practitioners should be
vigilant about the potential risk of architecture erosion to avoid erosion symptoms
transferring to technical debt in a long run. To summarize, code review as a code
inspection activity can help to find out and remove potential architecture erosion
symptoms and to some extent prevent architecture erosion.

As a next step, we plan to empirically evaluate tools that can identify architecture
erosion from source code and compare the results with associated artifacts (e.g.,
commits, issues) containing architecture erosion symptoms, as well as to investigate
which symptoms cannot be identified by the existing tools.

Based on:

Ruiyin Li, Peng Liang, Paris Avgeriou, (2023) “Warnings: Violation Symptoms Indicating Architecture
Erosion,” Information and Software Technology, vol 164, p. 107319. DOI:10.1016/j.infsof.2023.107319

Chapter 5

Warnings: Violation Symptoms Indicating
Architecture Erosion

Abstract

Context: As a software system evolves, its architecture tends to degrade, and
gradually impedes software maintenance and evolution activities and negatively
impacts the quality attributes of the system. The main root cause behind ar-
chitecture erosion phenomenon derives from violation symptoms (i.e., various
architecturally-relevant violations, such as violations of architecture pattern).
Previous studies focus on detecting violations in software systems using archi-
tecture conformance checking approaches. However, code review comments are
also rich sources that may contain extensive discussions regarding architecture
violations, while there is a limited understanding of violation symptoms from
the viewpoint of developers.
Objective: In this work, we investigated the characteristics of architecture viola-
tion symptoms in code review comments from the developers’ perspective.
Method: We employed a set of keywords related to violation symptoms to col-
lect 606 (out of 21,583) code review comments from four popular OSS projects
in the OpenStack and Qt communities. We manually analyzed the collected 606
review comments to provide the categories and linguistic patterns of violation
symptoms, as well as the reactions how developers addressed them.
Results: Our findings show that: (1) three main categories of violation symp-
toms are discussed by developers during the code review process; (2) The
frequently-used terms of expressing violation symptoms are “inconsistent” and
“violate”, and the most common linguistic pattern is Problem Discovery; (3) Refac-
toring and removing code are the major measures (90%) to tackle violation symp-
toms, while a few violation symptoms were ignored by developers.
Conclusions: Our findings suggest that the investigation of violation symptoms
can help researchers better understand the characteristics of architecture ero-
sion and facilitate the development and maintenance activities, and developers
should explicitly manage violation symptoms, not only for addressing the exist-
ing architecture violations but also preventing future violations.

142 5. Warnings: Violation Symptoms Indicating Architecture Erosion

5.1 Introduction

During software evolution, the implemented architecture tends to increasingly di-
verge from the intended architecture. The resulting gap between the intended and
implemented architectures is defined as architecture erosion (Li, Liang, Soliman and
Avgeriou, 2022; Perry and Wolf, 1992), and has been described using different terms
in the literature and practice, such as architectural decay, degradation, and deteri-
oration (Li, Liang, Soliman and Avgeriou, 2021b, 2022). Architecture erosion can
negatively affect quality attributes of software systems, such as maintainability, per-
formance, and modularity (Li, Liang, Soliman and Avgeriou, 2021b; Mendoza et al.,
2021).

Architecture erosion can manifest in a variety of symptoms during the software
life cycle; such symptoms indicate that the implemented architecture is moving
away from the intended one. In our recent systematic mapping study (Li, Liang,
Soliman and Avgeriou, 2022), four categories of architecture erosion symptoms were
reported: structural symptoms (e.g., cyclic dependencies), violation symptoms (e.g.,
violation of the layered pattern), quality symptoms (e.g., high defect rate), and evo-
lution symptoms (e.g., rigidity and brittleness of the software system). From these
four types of symptoms, violation symptoms are deemed as the most critical symp-
toms that practitioners should address because the accumulation of violation symp-
toms can render the architecture completely untenable (De Silva and Balasubrama-
niam, 2012). Violation symptoms of architecture erosion include various types of
architecturally-relevant violations in software systems, such as violations of design
principles, architecture patterns, decisions, requirements, modularity, etc. (Li, Liang,
Soliman and Avgeriou, 2022). For the sake of brevity, we refer to violation symptoms
of architecture erosion as violation symptoms in the rest of this chapter.

While a handful of temporary violation symptoms might be innocuous regard-
ing the software system, the accumulation of architecture violations can lead to ar-
chitecture erosion (Perry and Wolf, 1992; De Silva and Balasubramaniam, 2012; Men-
doza et al., 2021), severely impacting run-time and design-time qualities. Therefore,
identifying and monitoring violation symptoms is crucial to reveal inconsistencies
between the implementation and the intended architecture; eventually this can help
to, at least partially, repair architecture erosion (Li, Liang, Soliman and Avgeriou,
2022; De Silva and Balasubramaniam, 2012).

Prior studies focusing on erosion symptoms through inspecting source code
might ignore implicit semantic information, while our work dives into violation
symptoms by analyzing textual artifacts such as code review comments from the de-
velopers’ perspective. In contrast to violation symptoms identification from source
code using predefined abstract models (Miranda et al., 2016; Pruijt and Brinkkem-

5.1. Introduction 143

per, 2014) and rules (Terra and Valente, 2009; Rocha et al., 2017; Caracciolo et al.,
2015; Juarez Filho et al., 2017), violation symptoms can also be detected by analyz-
ing textual artifacts that contain information related to the system architecture and
its design. Violation symptoms can occur at different stages of development and be
self-admitted or pointed out by developers (Li, Soliman, Liang and Avgeriou, 2022).
In our previous study (Li, Soliman, Liang and Avgeriou, 2022), we investigated two
types of symptoms of architecture erosion in code reviews (i.e., structural and vi-
olations symptoms), and found that violation symptoms are the most frequently-
discussed symptoms in architecturally-relevant issues during code review. There-
fore, in this work, we focus on violation symptoms and attempt to categorize them
and understand how developers express and address them.

Code review comments include rich textual information about the architecture
changes that developers identified and discussed during development (Paixao et al.,
2019). Code reviews are usually used to inspect defects in source code and help im-
prove the code quality (Bacchelli and Bird, 2013). Compared to pull requests that
might not provide specific advice for development practice (Li, Qi, Yu, Liang, Mo
and Yang, 2021), code review comments provide a finer granularity of information
for investigating architecture changes and violations from the developers’ perspec-
tive.

Although valuable information on architecture violations is discussed during
code review, there are no studies regarding the categories of violation symptoms
that are discussed and admitted by developers, how developers express violation
symptoms, and whether and how these symptoms are addressed during the devel-
opment. To this end, we aim at understanding how developers discuss violation
symptoms and providing an in-depth investigation to the categories of violation
symptoms, as well as practical measures used to address them. We identified 606
(out of 21,583) code review comments related to architecture violations from four
OSS projects in the OpenStack and Qt communities. The main contributions of this
work are the following:

• We created a dataset containing violation symptoms of architecture erosion
from code review comments, which can be used by the research community
for the study of architecture erosion.

• We identified the 606 violation symptoms and classified them into three cate-
gories with ten subcategories, as well as the ways that developers addressed
these categories.

• This is the first study that investigated violation symptoms in textual artifacts
(specifically, code review comments) from the perspective of practitioners.

144 5. Warnings: Violation Symptoms Indicating Architecture Erosion

• We identified the linguistic patterns of expressing architecture violation symp-
toms from code review comments.

This chapter is organized as follows: Section 5.2 introduces the background of
this study. Section 5.3 elaborates on the study design. The results of the research
questions are presented in Section 5.4, while their implications are further discussed
in Section 5.5. Section 5.6 elaborates on the threats to validity. Section 5.7 reviews the
research work of this study. Finally, Section 5.8 summarizes this work and outlines
the directions for future research.

5.2 Background

In this section, we overview the background of our study regarding code review
and architecture erosion with the corresponding erosion symptoms.

5.2.1 Code Review

Code review is the process of analyzing assigned code for inspecting code and iden-
tifying defects. A methodical code review process can continuously improve the
quality of software systems, share development knowledge, and prevent from re-
leasing products with unstable and defective code. Currently, code review practices
have become a crucial development activity that has been broadly adopted and con-
verged to code review supported by tools. Moreover, tool-based code review has
been widely used in both industry and open source communities. In recent years,
many code review tools have been provided, such as Meta’s Phabricator1, VMware’s
Review-Board2, and Gerrit3.

Gerrit is a popular code review platform designed for code review workflows
and is used in our selected projects (see Section 5.3.2). Once a developer submits
new code changes (e.g., patches) and their description to Gerrit, the tool will create
a page to record all the changes, and meanwhile the developer should write a mes-
sage to describe the code changes, namely, a “commit message”. Gerrit conducts a
sanity check to verify the patch is compliant and to make sure that the code has no
obvious compilation errors. After the submitted patch passes the sanity check, code
reviewers will manually examine the patch and provide their feedback to correct
any potential errors, and then give a voting score. Note that, code reviewers can-
not only comment on source code but also on code commits. The review and vote

1https://www.phacility.com/
2https://www.reviewboard.org/
3https://www.gerritcodereview.com/

https://www.phacility.com/
https://www.reviewboard.org/
https://www.gerritcodereview.com/

5.2. Background 145

process will iterate with the purpose of improving the patch. Finally, the submitted
patch will be merged into the code repository after passing the integration tests (i.e.,
without any issues and conflicts).

5.2.2 Architecture Erosion

The sustainability of architecture depends on architectural design to ensure the
long-term use, efficient maintenance, and appropriate evolution of architecture in
a dynamically changing environment (Venters et al., 2018). However, architecture
erosion and drift are two essential phenomena threatening architecture sustainabil-
ity. Architecture erosion happens due to the direct violations of the intended ar-
chitecture, whereas architecture drift occurs due to extensive modifications that are
not direct violations but introduce design decisions not included in the intended
architecture (Perry and Wolf, 1992; Venters et al., 2018).

The architecture erosion phenomenon has been extensively discussed in the past
decades and has been described by various terms (Li, Liang, Soliman and Avge-
riou, 2022, 2021b), such as architecture decay (Hassaine et al., 2012; Le et al., 2018),
degradation (Lenhard et al., 2019), and degeneration (Hochstein and Lindvall, 2005).
Architecture erosion manifests in a variety of symptoms during development and
maintenance. A symptom is a (partial) sign or indicator of the emergence of ar-
chitecture erosion. According to our recent systematic mapping study (Li, Liang,
Soliman and Avgeriou, 2022), the erosion symptoms can be classified into four cate-
gories: structural symptoms (e.g., cyclic dependencies), violation symptoms (e.g., layer-
ing violation), quality symptoms (e.g., high defect rate), and evolution symptoms (e.g.,
rigidity and brittleness of systems). Previous studies have investigated different
symptoms of architecture erosion. Mair et al. (Mair et al., 2014) proposed a for-
malization method regarding the process of repairing eroded architecture through
detecting violation symptoms and recommending optimal repair sequences. Le et
al. (Le et al., 2018, 2016) regarded architectural smells as structural symptoms and
provided metrics to detect instances of architecture erosion by analyzing the de-
tected smells. Bhattacharya et al. (Bhattacharya and Perry, 2007) developed a model
for tracking software evolution by measuring the loss of functionality (as evolution
symptoms). Regarding the scope of our work, we focus on the nature of architec-
ture erosion (i.e., violation symptoms) through code review comments in this work,
which paves the way towards shedding light on architecture violations from the
developers’ perspective.

146 5. Warnings: Violation Symptoms Indicating Architecture Erosion

5.3 Methodology

The goal of this study is formulated by following the Goal-Question-Metric ap-
proach (Basili et al., 1994): analyze code review comments for the purpose of identifi-
cation and analysis with respect to violation symptoms of architecture erosion from the
point of view of software developers in the context of open source software development.

5.3.1 Research Questions

To achieve our goal, we define three Research Questions (RQs):

RQ1: What categories of violation symptoms do developers discuss?

Rationale: This RQ aims at investigating the categories of violation symptoms that
frequently occur during the development process; an example of such a category
is violations of architecture patterns. The proposed categories of violation symp-
toms in textual artifacts from code review comments can be used by practitioners as
guidelines to avoid such violations in practice. For example, certain categories of vi-
olation symptoms may be associated with high erosion risks (Li, Liang, Soliman and
Avgeriou, 2022) and be regarded as important to provide warnings to developers.

RQ2: How do developers express violation symptoms?

Rationale: Violation symptoms in code review comments are described in natural
language, but there is a lack of evidence regarding how developers describe these
violation symptoms. Specifically, we are interested in the terms and linguistic pat-
terns4 that developers use to denote violation symptoms. Establishing a list of the
terms and linguistic patterns used by practitioners can subsequently provide a ba-
sis for the automatic identification of violation symptoms through natural language
processing techniques.

RQ3: What practices are used by developers to deal with violation symp-
toms?

Rationale: We aim at exploring what developers do when they encounter violation
symptoms during the development process; this includes whether developers ad-
dress the violation symptoms and how they do that. The answers to this RQ can

4Grammatical rules that allow their users to speak properly in a common language (Da Silva, 2017)

5.3. Methodology 147

help uncover best practices to cope with violation symptoms, and facilitate the de-
velopment of methods and tools that promote such practices.

5.3.2 Project Selection

To understand violation symptoms that developers face in practice, we selected four
OSS projects from two communities, namely OpenStack and Qt; these projects have
been commonly used in previous studies (e.g., Kashiwa et al. (2022a)) due to their
long development history and rich textual artifacts. OpenStack5 is a widely-used
open source cloud software platform, on which many organizations (e.g., IBM and
Cisco) collaboratively develop applications for cloud computing. Qt6 is a toolkit
and a cross-platform framework for developing GUIs, and is used by around one
million developers to develop world-class products for desktop, embedded, and
mobile operating systems.

Both OpenStack and Qt contain a large number of sub-projects, thus we selected
two sub-projects from each community: Neutron and Nova from the OpenStack
community, and Qt Base and Qt Creator from the Qt community (see Table 5.1).
Neutron (providing networking as a service for interface devices) and Nova (a con-
troller for providing cloud virtual servers) are mainly written in Python; Qt Base (of-
fering the core UI functionality) and Qt Creator (the Qt IDE) are mainly developed
in C++. The selected four projects are the most active projects in the OpenStack and
Qt communities, respectively, and they are widely known for a plethora of code re-
view data recorded in the Gerrit code review system (Thongtanunam et al., 2017;
Hirao et al., 2022).

5.3.3 Data Collection

An overview of our data collection, labelling, and analysis is shown in Figure 5.1.
Starting with the process of data collection (the top part of Figure 5.1), we first em-
ployed Python scripts to mine code review comments (concerning source code and
commits) of the four projects through the REST API7 supported by the Gerrit tool.
Then, we organized and stored the collected data in MongoDB. Our goal, as stated in
the beginning of this section, is to analyze the violation symptoms that exist in code
review comments from developers. Therefore, we removed the review comments
that were generated by bots in the Qt community; we noticed that there were no
code review comments generated by bots in the OpenStack community. However,

5https://www.openstack.org/
6https://www.qt.io/
7https://gerrit-review.googlesource.com/Documentation/rest-api.html

https://www.openstack.org/
https://www.qt.io/
https://gerrit-review.googlesource.com/Documentation/rest-api.html

148 5. Warnings: Violation Symptoms Indicating Architecture Erosion

Select 50 code reviews

Manual check 21,583

code reviews

Code reviews
(MongoDB)

Label data respec�vely
(4 researchers)

Discuss for reaching an
agreement

Data labeling

Phase 2

Label data respec�vely
(4 researchers)

Discuss for resolving
disagreements

Keywords searching
Query seman�cally

similar words
Co-occurrence matrix-

based querying

Data collec�on

Phase 1

Ini�al coding Focused coding Theore�cal coding

Data analysis

Legend

Four
Repositories

Task

Sequence

Database

Project

Figure 5.1: An overview of the data collection and analysis process

manually analyzing the entire history of code review comments of the four projects
is prohibitive in terms of both effort and time. Thus, we decided to collect the code
reviews of the four projects in seven years between Jan 2014 and Dec 2020 to guaran-
tee sufficient revisions for long-lived software systems. Finally, we obtained 518,743
code review comments concerning code and 48,113 review comments concerning
commit messages from the four projects in the past seven years. Each item in our
dataset contains review ID and patch information, including change id, patch,
file url, line, and message; the message variable includes code review com-
ments concerning source code and commits. All the scripts and the dataset of this
work have been made available in the replication package (Li, Liang and Avgeriou,
2022).

The collected review comments contain a large number of entries, such as “Done”
and “Ditto”, which are not related to the discussion on violation symptoms. To ef-
fectively collect and locate the associated code review comments on violation symp-
toms of architecture erosion, we decided to employ a keyword-based search ap-
proach. We employed the keywords presented in our previous work (Li, Soliman,
Liang and Avgeriou, 2022) (see the coarse-grained keywords in Table 5.2) and im-
proved the keyword set (see the fine-grained keywords in Table 5.2) as described
below. Specifically, to derive possible and associated synonyms of the keywords in
software engineering practices, we adopted the pre-trained word2vec model pro-

5.3. Methodology 149

Table 5.1: An overview of the selected projects

Project Domain Repository Language # 1 # 2
Nova Virtual server

management
https://opendev.
org/openstack/nova

Python 152,107 15,164

Neutron Network con-
nectivity

https://opendev.
org/openstack/
neutron

Python 181,839 16,719

Qt Base Providing UI
functionality

https://code.qt.
io/cgit/qt/qtbase.
git/

C++ 123,546 13,369

Qt Creator A cross-
platform IDE

https://code.
qt.io/cgit/
qt-creator/qt-
creator.git

C++ 61,251 2,861

Total 518,743 48,113
1 Review comments of code
2 Review comments of commits

posed by Efstathiou et al. (Efstathiou et al., 2018a) for querying semantically similar
terms. The authors of (Efstathiou et al., 2018a) trained this model with over 15GB of
textual data from Stack Overflow posts, which contain a plethora of textual expres-
sions and words in the software engineering domain. We utilized this pre-trained
word embedding model to query similar terms of the coarse-grained keyword set.
For example, we got “discrepancy” and “deviation” which are similar terms to “diver-
gence”, and then two researchers discussed together to manually check and remove
unrelated and duplicate words, such as “oo” which is related to programming lan-
guages rather than architecture violations. The keywords set used to search code
review comments includes both the coarse-grained keywords and the fine-grained
keywords listed in Table 5.2.

In addition, given that the effectiveness of the keyword-based approach highly
depends on the set of keywords, we chose the iterative approach proposed by Bosu
et al. (Bosu et al., 2014) to further improve the keyword set by adding possible key-
words that are related to the keywords in Table 5.2. This approach has already been
employed in previous studies (e.g., Li, Soliman, Liang and Avgeriou (2022); Han
et al. (2021)) that used keyword-based search in code review data. We implemented
this approach in the following steps:

1. Search in the collected review comments using the keyword set in Table 5.2,
and then establish a corpus by collecting the relevant comments that encom-
pass at least one keyword from the keyword set (e.g., “violation”).

https://opendev.org/openstack/nova
https://opendev.org/openstack/nova
https://opendev.org/openstack/neutron
https://opendev.org/openstack/neutron
https://opendev.org/openstack/neutron
https://code.qt.io/cgit/qt/qtbase.git/
https://code.qt.io/cgit/qt/qtbase.git/
https://code.qt.io/cgit/qt/qtbase.git/
https://code.qt.io/cgit/qt-creator/qt-creator.git
https://code.qt.io/cgit/qt-creator/qt-creator.git
https://code.qt.io/cgit/qt-creator/qt-creator.git
https://code.qt.io/cgit/qt-creator/qt-creator.git

150 5. Warnings: Violation Symptoms Indicating Architecture Erosion

2. Process the retrieved code review comments that contain at least one keyword
in our keyword set and remove English stopwords, punctuation, code snip-
pets, and numbers. That results in a list of tokens.

3. Conduct a stemming process (using SnowballStemmer from the NLTK
toolkit (Bird et al., 2010)) to obtain the stem of each token (e.g., “architecture”
and “architectural” have the same token “architectur”).

4. Build a document-term matrix from the corpus, and find additional words that
co-occur frequently with each of our keywords (co-occurrence probability of
0.05 in the same document).

5. Manually check and discuss the list of frequently co-occurring additional
words to determine whether the newly discovered words should be added
to the keyword set.

After executing this approach, we have not found any keywords that co-occur
with the keywords based on a co-occurrence probability of 0.05 in the same doc-
ument. Therefore, we believe that we have minimized the possibility of missing
potentially co-occurred and associated words, and the keyword set could be rela-
tively adequate and comprehensive for the search in this study. The keywords used
in this work are presented in Table 5.2. In total, we collected 21,583 code review
comments from the four OSS projects that contain at least one keyword.

Table 5.2: Keywords related to violation symptoms of architecture erosion

Coarse-grained keywords
architecture, architectural, structure, structural, layer, design, violate, violation, deviate,
deviation, inconsistency, inconsistent, consistent, mismatch, diverge, divergence, diver-
gent, deviate, deviation
Fine-grained keywords
layering, layered, designed, violates, violating, violated, diverges, designing, diverged,
diverging, deviates, deviated, deviating, inconsistencies, non-consistent, discrepancy, de-
viations, modular, module, modularity, encapsulation, encapsulate, encapsulating, encap-
sulated, intend, intends, intended, intent, intents, implemented, implement, implemen-
tation, as-planned, as-implemented, blueprint, blueprints, mis-match, mismatched, mis-
matches, mismatching

5.3.4 Data Labeling and Analysis

We filtered out a large number of irrelevant code review comments in Section 5.3.3.
Still, the retrieved code review comments that contain at least one keyword might

5.3. Methodology 151

be unrelated to violation symptoms. Thus, we needed to manually check and fur-
ther remove these semantically unrelated review comments. We conducted data
labeling in two phases, as illustrated in Figure 5.1.

Phase 1. We decided to conduct a pilot data labeling to reach a consensus and
to ensure that we have the same understanding of violation symptoms. Four re-
searchers (the author and three master students) had an online meeting to discuss
the characteristics of violation symptoms. We randomly selected 50 review com-
ments from the collected data. The four researchers independently labeled the vi-
olation symptoms from the review comments via MS Excel sheets, and provided
reasons for their labeling results. Then the four researchers had another meeting to
check the similarities and differences between their labeling results for reaching an
agreement, and any disagreements were discussed with another researcher to reach
a consensus. Note that, during the data labeling process, the researchers not only
read the text content of the code review comments per se, but also read their corre-
sponding code snippets, documentation, and commit messages. This helped us fur-
ther mitigate the threat of wrong labels, such as simple violations at the code level
(e.g., pep8 coding style violation8). In the end, to measure the inter-rater agreement
between the researchers, we calculated the Cohen’s Kappa coefficient value (Cohen,
1960) of the pilot data labeling and got an agreement value of 0.857, which demon-
strates a substantial agreement between them.

Phase 2. After the pilot data labeling, the four researchers started the formal data
labeling by dividing the retrieved 21,583 code review comments into four parts; each
researcher manually labeled one fourth of this dataset (almost 5,400 review com-
ments). The author created the MS Excel sheets and shared them with the other three
researchers. The four researchers were asked to label the textual information asso-
ciated with violation symptoms. After the formal data labeling, the author checked
the data labeling results from the other three researchers to make sure that there
were no false positive labeling results. To mitigate potential bias, we discussed all
the conflicts in the labeling results until we reached an agreement. In other words,
the data labeling results were checked by at least two researchers. The researchers
followed the same process as in Phase 1 to conduct data labeling.

Finally, for data analysis, we employed Constant Comparison (Charmaz, 2014;
Stol et al., 2016) to analyze and categorize the identified textual information. Con-
stant Comparison (Charmaz, 2014; Stol et al., 2016) can be used to yield concepts,
categories, and theories through a systematic analysis of qualitative data. The Con-
stant Comparison process according to Charmaz et al. (Charmaz, 2014) includes
three steps. The first step is initial coding executed by the four researchers, who
examined the review comments by identifying violation symptoms from the re-

8https://peps.python.org/pep-0008/

https://peps.python.org/pep-0008/

152 5. Warnings: Violation Symptoms Indicating Architecture Erosion

trieved textual information. Second, we applied focused coding executed by the au-
thor and reviewed by another researcher, by selecting categories from the most fre-
quent codes and using them to categorize the data. For example, “feels like this DB
work violates the level of abstraction we are expecting here” was initially coded as viola-
tion of abstraction, and we merged this code into violation of design principles, since we
considered that the violation of “the expected level of abstraction” belongs to violation
of design principles. Third, we applied theoretical coding to specify the relationship
between codes. We checked the disagreements on the coding results by the four re-
searchers to reduce the personal bias, and discussed the disagreements with another
researcher to get a consensus. The whole manual labeling and analysis process took
the researchers around one and a half months.

During the data analysis process, if the violation symptoms were specifically
stated, we assigned them to specific groups. Conversely, when the symptoms were
defined more broadly or lacked specificity, we classified them into general cate-
gories. We relied solely on the explicit textual content of the comments themselves
during data analysis, without subjective interpretation. Besides, we note that we did
not find multiple violation symptoms were discussed in a single review comment.
In other words, each identified review comment has one single label. In addition,
unlike our previous study (Li, Soliman, Liang and Avgeriou, 2022) which focused
on both structural and violation symptoms, we conducted the data collection and
labeling processes in this study from scratch by following the aforementioned steps;
consequently we have established a more comprehensive and larger dataset on vio-
lation symptoms (Li, Liang and Avgeriou, 2022).

5.4 Results

5.4.1 Overview

Before delving into the findings of the three RQs, we briefly report an overview of
the descriptive statistics about the identified violation symptoms from the selected
four projects.

Figure 5.2 shows the retrieved review comments containing the violation symp-
tom keywords in Table 5.2 and the identified review comments related to violation
symptoms from the four projects. We observed that (1) the proportion of retrieved
review comments across the four projects aligns closely with the results presented
in Table 5.1. Specifically, the percentages are as follows: Nova at 2.94%, Neutron at
2.42%, Qt Base at 2.22%, and Qt Creator at 1.15%; (2) the identified review comments
account for a similar percentage of the retrieved review comments across the four

5.4. Results 153

4925

4812

3037

740

235

158

155

58

0 1000 2000 3000 4000 5000

Nova

Neutron

Qt Base

Qt Creator

Retrieved Identified

Figure 5.2: Overview of the retrieved review comments containing the violation symptom
keywords and the identified review comments related to violation symptoms in the four
projects

projects; the respective percentages are: Nova at 4.77%, Neutron at 3.28%, Qt Base
at 5.10%, and Qt Creator at 7.84%.

In terms of the identified code review comments related to violation symptoms
in our dataset, only a small portion of these comments (59 out of 606, 9.7%) pertained
to the content in commit messages. In contrast, the vast majority of the identified
review comments related to violation symptoms (547 out of 606, 90.3%) were associ-
ated with source code. Considering that the number of review comments on source
code is 10 times higher than the number of review comments on commit messages
as shown in Table 5.1, the proportion (10:1) is similar to the proportion of the identi-
fied review comments related to violation symptoms from the two sources (547:59).

5.4.2 RQ1 - Categories of Violations Symptoms

To answer RQ1, we identified 606 (out of 21,583) code review comments from the
four projects that contain a discussion of violation symptoms of architecture erosion.
As shown in Table 5.3, the collected code review comments can be classified into
three categories of violation symptoms, with ten subcategories as follows.

• Design-related violation: six types of violation symptoms pertained to design
are identified, including: structural inconsistencies, violation of design deci-
sions, violation of design principles, violation of rules, violation of architecture
patterns, and violation of database design.

154 5. Warnings: Violation Symptoms Indicating Architecture Erosion

• Specification-related violation: two types of violation symptoms related to
specifications are identified, including: violation of documentation and vio-
lation of API specification.

• Requirement-related violation: two types of violation symptoms relevant to
requirements are identified, including: violation of architecture requirements
and violation of constraints.

In the following subsections, we present the detailed descriptions of the ten sub-
categories, accompanied by a range of real-world examples. The ten subcategories
of violation symptoms are presented according to their frequencies in Table 5.3
within the dataset.

(1) Structural inconsistencies

Structural inconsistencies occur due to various reasons, for example, it might
be associated with a change of software specifications, and related components
that implement the specifications cannot be automatically updated to keep consis-
tency (Grundy et al., 1998). Structural inconsistencies can delay system develop-
ment, increase the cost of development process, and further jeopardise the proper-
ties of system quality (e.g., reliability and compatibility). For example, one devel-
oper mentioned how inconsistency leads to an increased number of collaborating
modules (i.e., module dependencies), and consequently the complexity of the sys-
tem:
7“Consistency is a nice thing, especially as in this case by not having consistency we are
increasing the number of collaborating modules this module has.”

Another example is related to inconsistent implementation between extension
classes:
7“I think it could, but that would make it inconsistent with every other extension class’s
implementation of this method (I gripped). I think its best to keep them consistent. Feel free
to file a low-hanging-fruit bug to fix this across all extensions.”

In addition, architectural mismatch is another typical inconsistency issue in this
category, which denotes the inability to successfully integrate component-based sys-
tems (Garlan et al., 1995). Architectural mismatch happens when there are conflict-
ing assumptions among architecture elements (e.g., connectors and components)
during development (Garlan et al., 1995, 2009). One reviewer mentioned an archi-
tectural mismatch between the server and agent side due to port design issues:
7“The port security extension adds functionality to disable port security, which is on by
default. I don’t think we should be changing the default behavior when port security is not
present. User can explicitly disable port security if needed with port security extension.
Enabling it here also makes a mismatch between server and agent side code.”

5.4. Results 155

Ta
bl

e
5.

3:
C

at
eg

or
ie

s
of

vi
ol

at
io

n
sy

m
pt

om
s

in
co

de
re

vi
ew

co
m

m
en

ts

C
at

eg
or

y
Su

bc
at

eg
or

y
D

es
cr

ip
ti

on
C

ou
nt

D
es

ig
n-

re
la

te
d

vi
ol

at
io

n
St

ru
ct

ur
al

in
co

ns
is

te
nc

ie
s

V
io

la
ti

on
s

of
co

ns
is

te
nc

ie
s

of
st

ru
ct

ur
al

de
si

gn
in

ar
ch

i-
te

ct
ur

e
(e

.g
.,

ar
ch

it
ec

tu
ra

lm
is

m
at

ch
)t

ha
te

xi
st

in
va

ri
ou

s
ar

ch
it

ec
tu

ra
le

le
m

en
ts

(e
.g

.,
co

m
po

ne
nt

s,
po

rt
s,

m
od

ul
es

,
an

d
in

te
rf

ac
es

).

20
5

V
io

la
ti

on
of

de
si

gn
de

ci
si

on
s

V
io

la
ti

on
s

of
se

le
ct

ed
de

si
gn

de
ci

si
on

s,
in

cl
ud

in
g

de
si

gn
ra

ti
on

al
e,

in
te

nt
s,

or
go

al
s

th
at

m
ay

ca
us

e
im

pl
em

en
ta

ti
on

er
ro

rs
an

d
gi

ve
ri

se
to

ev
er

-i
nc

re
as

in
g

m
ai

nt
en

an
ce

co
st

s.

92

V
io

la
ti

on
of

de
si

gn
pr

in
ci

pl
es

V
io

la
ti

on
s

of
th

e
co

m
m

on
de

si
gn

pr
in

ci
pl

es
(e

.g
.,

th
e

SO
LI

D
pr

in
ci

pl
es

)
or

di
ve

rg
en

ce
s

fr
om

ob
je

ct
-o

ri
en

te
d

de
ve

lo
pm

en
tg

ui
de

lin
es

.

91

V
io

la
ti

on
of

ru
le

s
V

io
la

ti
on

s
of

th
e

pr
ed

efi
ne

d
ar

ch
it

ec
tu

re
ru

le
s

or
po

lic
ie

s
w

he
n

th
e

im
pl

em
en

ta
ti

on
do

es
no

t
ac

tu
al

ly
fo

llo
w

th
e

ru
le

s.

46

V
io

la
ti

on
of

ar
ch

it
ec

tu
re

pa
t-

te
rn

s
V

io
la

ti
on

s
of

ar
ch

it
ec

tu
re

pa
tt

er
ns

(e
.g

.,
vi

ol
at

io
ns

of
la

y-
er

ed
pa

tt
er

n)
w

he
n

th
e

ar
ch

it
ec

tu
re

pa
tt

er
n

im
pl

em
en

ta
-

ti
on

s
do

no
tc

on
fo

rm
to

th
ei

r
de

fin
it

io
ns

.

33

V
io

la
ti

on
of

da
ta

ba
se

de
si

gn
V

io
la

ti
on

s
of

th
e

pr
in

ci
pl

es
or

co
ns

tr
ai

nt
s

in
de

si
gn

in
g

th
e

da
ta

ba
se

of
sy

st
em

s.
25

Sp
ec

ifi
ca

ti
on

-
re

la
te

d
vi

ol
at

io
n

V
io

la
ti

on
of

do
cu

m
en

ta
ti

on
V

io
la

ti
on

s
of

th
e

sp
ec

ifi
ca

ti
on

in
de

ve
lo

pm
en

td
oc

um
en

ts
th

at
hi

nd
er

ar
ch

it
ec

tu
re

im
pr

ov
em

en
ts

an
d

m
od

ifi
ca

ti
on

s.
56

V
io

la
ti

on
of

A
PI

sp
ec

ifi
ca

ti
on

V
io

la
ti

on
s

or
in

co
ns

is
te

nc
ie

s
of

th
e

A
PI

cl
ai

m
s

or
sp

ec
ifi

-
ca

ti
on

.
36

R
eq

ui
re

m
en

t-
re

la
te

d
vi

ol
at

io
n

V
io

la
ti

on
of

ar
ch

it
ec

tu
re

re
qu

ir
e-

m
en

ts
V

io
la

ti
on

s
of

th
e

in
te

nd
ed

re
qu

ir
em

en
ts

(e
.g

.,
us

er
re

-
qu

ir
em

en
ts

)
du

ri
ng

th
e

de
ve

lo
pm

en
t

an
d

m
ai

nt
en

an
ce

pr
oc

es
s.

11

V
io

la
ti

on
of

co
ns

tr
ai

nt
s

V
io

la
ti

on
s

of
sp

ec
ifi

c
co

ns
tr

ai
nt

s
im

po
se

d
by

th
e

in
te

nd
ed

ar
ch

it
ec

tu
re

m
ay

ha
ve

an
im

pa
ct

on
ar

ch
it

ec
tu

re
de

si
gn

.
11

156 5. Warnings: Violation Symptoms Indicating Architecture Erosion

(2) Violation of design decisions

This category contains violations of design decisions that have been made, espe-
cially the violation of design rationale. Such violations may lead to implementation
errors and consequently aggravate maintenance costs. For example, one developer
stated:
7“I chose olso because the intent is for this file to eventually not use anything in nova, so
adding a nova import seemed like a step in the wrong direction.”

In addition, another reviewer pointed out a violation of design intent:
7“But if get provider traits is being updated in this otherwise aggregate-specific change,
it seems like we’re splitting in two different directions which defeats the purpose of trying to
be consistent.”

Such violations imperil the actual implementation and lead to high error-
proneness, and make software systems harder to implement, comprehend, main-
tain, and evolve. Here is an implementation error due to violating certain design
decision as one developer mentioned:
7“Originally, QMT CHECK was Q ASSERT (before I added this code to QtCreator). It
is a serious implementation error ... If you are not happy with a crash you can add a check
against 0. This will avoid the crash here but I am pretty sure that it will crash sooner or later
on a different location.”

(3) Violation of design principles

The identified violation symptoms in this category denote violations of common
design principles in object-oriented design and development, such as encapsulation,
abstraction, and hierarchy (Martin and Martin, 2006). Common examples of object-
oriented design principles include the SOLID principles proposed by Martin (Mar-
tin, 2003), i.e., Single Responsibility Principle, Open Closed Principle, Liscov Substitution
Principle, Interface Segregation Principle, and Dependency Inversion Principle. As an ex-
ample, one reviewer pointed out a violation of the Interface Segregation Principle:
7“But here don’t we have to make a upcall from compute to api db, which will violate api/cell
isolation rules. Is there any workaround in this case?”

Another two examples are violations of abstraction and encapsulation:
7“Having said all of that: I get that I’m violating an abstraction layer in LinkLocalAddres-
sPair and that this is surprising (and therefore bad).”
7“It would seem to violate encapsulation to have to know to set the default value for an
attribute outside of the object.”

(4) Violation of documentation

5.4. Results 157

The identified violation symptoms in this category encompass violations of in-
structions in documentation, e.g., not following the instructions on how to imple-
ment an interface. Such violations of documentation can hinder the subsequent ar-
chitecture improvements and modifications (Macia, Arcoverde, Garcia, Chavez and
von Staa, 2012). Two examples regarding violations of documentation are presented
below:
7“The case of physical or service VM routers managed by L3 plugins doesn’t appear to be
supported here when the gateway IP is not or cannot be set to the router LLA. By supporting
those cases in this way though, we’re breaking the reference implementation as documented.”
7“The reimplementation in QStandardItemModel does *not* match the documentation as
it replaces the entire set of roles with the new ones. It also violates the documentation with
the silly EditRole->DisplayRole thing (touching the value for a role not passed in input;
although one could say that QSIM ‘aliases’ EditRole with the DisplayRole in all cases).”

(5) Violation of rules

The violations of architecture rules occur when the implementation does not ac-
tually follow the predefined rules by architects. Different systems have their own
defined architecture rules or policies. During the development, rules provide the
way to specify the allowed and specific relationships between architecture elements
(e.g., components and modules). As mentioned by a developer:
7“... this implies that that caller is able to put constraints on the driver which may violate
the rules built into the driver.”

Another violation of predefined rules pointed out by a reviewer is:
7“We would now be limiting new spawns to only be allowed to the host that was the cause
of the violation, thus causing the violation to be made worse. But maybe this is okay, since
there isn’t much we can do if the policy has been violated prior to this.”

(6) Violation of API specification

All API-related violations and inconsistencies belong to this category. API doc-
umentation describes the explicit specification of interfaces and dependencies. Due
to the changing business requirements and continuous demands to upgrade func-
tionalities, API evolution is inevitable. Violations of API specification encompass
improper API usages and inconsistent API calls. Improper applications of APIs can
give rise to unexpected system behaviors and eventually cause architectural incon-
sistencies. For example, developers do not adhere to the contract or specification to
use the required APIs. As one reviewer stated:
7“the point is that with neither a category backend nor completely disabled output, the
macro should be unusable (even if it would print something, the category would be missing,

158 5. Warnings: Violation Symptoms Indicating Architecture Erosion

i.e., the implementation would violate the api).”
Besides, inconsistent API calls can also cause inconsistencies, such as getting

different responses from different versions of APIs (e.g., distinct parameters and
returns). As one developer mentioned:
7“On v2 API, there is a lot of API inconsistencies and we need to fix them on v3 API. So
we can change API parameters on v3 API.”

(7) Violation of architecture patterns

Architecture patterns provide general and reusable solutions for particular prob-
lems, such as the layered pattern and client-server pattern. Violating architectural
patterns undermines the sustainability and reliability of software systems and in-
creases the risk of architecture erosion. For example, we found that violations of the
layered pattern are one of the most common types of this category. Modern software
systems often contain millions of lines of code across many modules. Therefore,
employing hierarchical layers is a common practice to organize the relationships
between modules. Violations of layered systems can negatively impact the qual-
ity attributes (e.g., reusability, maintainability, and portability), eventually leading
to architecture erosion. For instance, a developer commented on a violation of the
layered pattern:
7“That all said, I’m definitely -2 (even if not core ;-)) on that patch, because I think it’s a
layer isolation violation to just make the call here. It should be fixed at the Compute API
level rather IMHO.”

Another example regarding the layered pattern violation is:
7“We could get some race conditions when starting the scheduler where it would not know
the allocation ratios and would have to call the computes, which is a layer isolation violation
to me.”

(8) Violation of database design

Databases are one of the key architectural elements (Bass et al., 2021), and can
negatively impact the system quality attributes when their design is violated. This
category includes the problems caused by code changes that violate the constraints
of database design, such as primary and foreign key constraints. For example, as
mentioned by one reviewer, the network port will no longer exist when a foreign
key violation is generated:
7“If subnet was fetched in reference IPAM driver, port got deleted and foreign key violation
was generated on ipallocation insert (because port no longer exists).”

Another example is about unique key violation:
7“In the bug report, the randomly generated index happens to be 2, which violates the

5.4. Results 159

already existing (router, 1) unique key constraints.”

(9) Violation of constraints

Constraints are pre-determined special design decisions with zero degrees of
freedom (Bass et al., 2012), which can be regarded as special requirements that can-
not be negotiable and impact certain aspects of architecture implementation. Such
violations often denote the concrete statements, expressions, and declarations in
source code that do not comply with the constraints imposed by the intended ar-
chitecture (Terra et al., 2015), such as inter-module communication constraints. For
example, one reviewer mentioned a constraint violation in the system:
7“If a specific subnet is passed in, then the IPAM system would try to give that subnet, but
if it’s already use or it violates the constraints in the IPAM system, it would refuse.”

Another example concerning constraint violation is:
7“This should probably be HTTPBadRequest: the provided allocation has a form that vio-
lates Inventory constraints, so if the allocation (the request body) changes, it could work.”

(10) Violation of architecture requirements

Requirements and especially quality attribute requirements are closely related
to the architecture of a system. Architecturally significant requirements drive the
architecture (Bass et al., 2021), but are, unfortunately, commonly violated (Li, Liang,
Soliman and Avgeriou, 2022). Moreover, architecturally significant requirements
specify the major features and functionalities that a particular product should in-
clude, and convey the expectations of the stakeholders for the software product. As
an example, a developer mentioned that the existing code had violated the require-
ments:
7“We don’t have this in our requirements ... I guess this was already violated by existing
code so I don’t really want to block on it, we can handle it separately.”

Another example of violation of requirements is:
7“This is global/module level data so it will get loaded once and stay loaded for the life time
of the wsgi process even if the application is restrated in the interpreter. we are the ortinial
code violated the requirement in pont3 of ...”

5.4.3 RQ2 - Expression of Violation Symptoms

For answering RQ2, we inspected the content of the identified violation symptoms
in code review comments to identify the frequently-used terms and associated lin-
guistic patterns. Figure 5.3 presents the distribution of the most frequently-used
terms related to the discussion of violation symptoms in review comments. We use

160 5. Warnings: Violation Symptoms Indicating Architecture Erosion

typical terms to represent the words which have the same meaning. For example,
“inconsistent” contains all the terms that have the same meaning, such as not consis-
tent, inconsistent, inconsistency, and inconsistencies. The most frequently-used term
is “inconsistent” (37%, 225 out of 606) and is related to the notion of “consistency”.
“Violate” comes second with 140 (23%, out of 606) comments, followed by “design”
(9%, 52 out of 606) and “layer” (6%, 35 out of 606). We put the less-frequently used
terms into “other terms”, such as “module” and “architecture”.

inconsistent
37%

violate
23%

design
9%

layer
6%

implement
5%

mismatch
4%

blueprint
3%

other terms
13%

Figure 5.3: Distribution of the frequently used terms related to description of violation symp-
toms

In addition, to further analyze the characteristics of the comments related to vi-
olation symptoms, we summarized and categorized the linguistic patterns of ex-
pressing violation symptoms. We discovered the linguistic patterns by reviewing
words or phrases that either frequently appear or are relatively unique to a par-
ticular category. Subsequently, we manually checked and categorized the com-
ments into six categories based on the linguistic patterns proposed by Di Sorbo et
al. (Di Sorbo, Panichella, Visaggio, Di Penta, Canfora and Gall, 2016), namely, Fea-
ture Request, Opinion Asking, Problem Discovery, Solution Proposal, Information Seeking,
and Information Giving, which have been employed to identify the linguistic patterns
used in various textual artifacts (e.g., app reviews (Di Sorbo, Panichella, Alexandru,
Shimagaki, Visaggio, Canfora and Gall, 2016; Di Sorbo et al., 2017) and issue re-

5.4. Results 161

Table 5.4: Categories and percentages of linguistic patterns used to express violation symp-
toms in code review comments

Linguistic
Patterns

Description Example Percentage

Problem
Discovery

Linguistic pat-
terns related to
unexpected or un-
intended behaviors

“Well, so this patch actually makes the
API worse: It is as unclear as be-
fore when a temporary file is created
in the temporary directory and when
not, *and* it deviates from the behav-
ior of QTemporaryFile as well, so any-
one knowing that behavior will get un-
expected results here.”

90.4%

Solution
Proposal

Linguistic patterns
related to describe
possible solutions
for founded prob-
lems

“I’m not convinced that it is wise
to deviate from that with this one,
other than to use QPlainTestLog-
ger::outputMessage(), which has
side-effects on WinCE, Windows
and Android. ... Please consider
inheriting QAbstractTestLogger
instead and calling QAbstractTest-
Logger::outputString() instead of
QPlainTestLogger::outputMessage().”

10.4%

Opinion
Asking

Linguistic patterns
used for inquiring
someone about
his/her viewpoints
and thoughts

“Why diverge from the pattern estab-
lished for toFoo helper below?”

6.8%

Information
Giving

Linguistic pat-
terns for informing
someone about
something

“I didn’t want to optimize in this way,
because the code is wrong: The parent
implementation should only be called
if the sub-class does not handle the
line itself. Several implementations got
this wrong, and it is indeed not self-
explanatory. I will fix all of those as
part of moving away from the chaining
approach.”

4.8%

Feature Re-
quest

Linguistic patterns
for providing sug-
gestions/recom-
mendations/ideas

“Recently there were some changes in
API, virtual getters were replaced with
protected setter. Please be consistent
with it and provide protected setter and
public getter, both non-virtual. ... I saw
those changes came from them. And I
strongly agree with it.”

2.0%

Information
Seeking

Linguistic patterns
related to ask help
or information from
others

“I’m a bit confused as to how this vio-
lates the open/closed principle. ... I’m a
bit unclear as to what your are sugges-
tion as an alternative. Are you suggest-
ing having a separate config option for
each traffic type as an alternative?”

1.8%

162 5. Warnings: Violation Symptoms Indicating Architecture Erosion

ports (Huang et al., 2018)). Table 5.4 presents the statistical results of the review
comments related to violation symptoms, including the categories, descriptions, ex-
amples, and percentages. A few code review comments contain more than one lin-
guistic pattern, and overall they add up to more than 100%. Our results show that
most (90.4%) of the comments related to violation symptoms are about Problem Dis-
covery, followed by Solution Proposal (10.4%) and Opinion Asking (6.8%). Moreover,
we list the linguistic patterns (frequency ≥ 3) used to express violation symptoms
in Table 5.5.

5.4.4 RQ3 - Dealing with Violation Symptoms

To answer RQ3 and gain a better understanding of how developers deal with viola-
tion symptoms, we plot a tree map (see Figure 5.4) of the distribution of the status
(i.e., “Merged”, “Abandoned”, and “Deferred”) of the patches containing viola-
tion symptoms. We further analyzed the developers’ reactions (including refactored,
removed, and ignored) in response to violation symptoms from code review com-
ments.

We found that most (76.1%, 461 out of 606) of the violation symptoms are in
“Merged” status, which means that developers agreed to merge the submitted code
into the code repository. 23.1% (140 out of 606) of the patches are in “Abandoned”
status, which means that the submitted code was rejected to be integrated into the
code repository. Only a few patches (0.8%, 5 out of 606) stayed in “Deferred”
status, which denotes a pending status and only exists in the code review of Qt
(the reviewers and developers consider that the raised issues are not of very high
priority and can be fixed in the following releases).

For the patches that contain violation symptoms, 77.7% (358 out of 461) of the
merged patches and 82.9% (116 out of 140) of the abandoned patches, were ad-
dressed by refactoring. Moreover, 12.8% (59 out of 461) and 9.5% (44 out of 461)
of violation symptoms were removed (i.e., deleted the code) and ignored (i.e., no
changes), respectively, in the merged patches. Similar percentage of violation symp-
toms were removed (7.1%) and ignored (10.0%) in the abandoned patches. In the
five deferred patches, developers refactored four submitted code snippets to cope
with the violation symptoms and ignored one of them, while the remaining issues
would be addressed in future releases.

5.4. Results 163

Table 5.5: Linguistic patterns (frequency ≥ 3) used to express violation symptoms in code
review comments

Problem Discovery
1 This is breaking [something]
2 This seems to violate [something]
3 It seems like a (layer) violation of [something]
4 It seems inconsistent/not consistent with [something]
5 [someone] probably have [an issue]
6 This violates/breaks [something]
7 [someone] is/are violating the rules
8 This is a violation of [something]
9 This is not consistent with [something]

10 [something] is/are inconsistent with [something]
11 There will be inconsistencies in [something]
12 There are inconsistencies [between something]/[of/in something]
13 [something] leads to inconsistency
14 [something] is a (poor/awful/terrible) design mistake/flaw/choice
15 [something] diverges/deviates from [something]
Solution Proposal
1 I think [someone] should/need to [verb + subject]
2 [someone] should modify/preserve/revise [something]
3 We should remove [something]
4 I think [do something] would better if [something]
5 [someone] should/need to stay/keep consistent with [something]
6 To fix it, we need to [do something]
7 I think what we should do is [something]
8 Did you consider the approach of [something]
Opinion Asking
1 Why are you diverging from [something]?
2 Would it be possible to [do something]?
3 Maybe we should [do something], what do you think about it?
4 Should/would we [do something]?
Feature Request
1 We should/need to keep consistent with [something]
2 It is better to [do something]
3 I wonder if we can [do something]
Information Giving
1 I will modify/fix [something] to address/keep consistent with [something]
2 That is why I [doing something]
Information Seeking
1 Is there a different [something]?
2 Are you suggesting [something]?
3 Are we planning to [do something]?

164 5. Warnings: Violation Symptoms Indicating Architecture Erosion

Figure 5.4: Distribution of the developers’ reactions in response to violation symptoms in
code review comments

5.5 Discussion

In this section, we first interpret the study results, and we then discuss the implica-
tions of the results for practitioners and researchers.

5.5.1 Interpretation of Results

The percentage of the identified violation symptoms from code review comments
is rather low (2.8%, 606 out of 21,583) in the selected four OSS projects (i.e., Nova,
Neutron, Qt Base, and Qt Creator). Prior studies (Li, Soliman, Liang and Avge-
riou, 2022; Paixao et al., 2019) show that the percentage of architecturally-relevant
information is comparatively lower than code-level issues (e.g., code smells) in code
reviews, and our results comply with the findings from previous studies. Although
the low percentage of architecturally-relevant code review comments, the identi-
fied architectural issues (especially architecture violation symptoms) can have a se-
riously negative impact on software maintenance and evolution.

RQ1: Categories of violation symptoms. We classified the collected violation
symptoms into three categories of violation symptoms with ten subcategories that
developers often discuss during development. Design-related violations are the

5.5. Discussion 165

main category of violation symptoms. Specifically, we observed that structural in-
consistency is the most common subcategory of violation symptoms. Structural in-
consistency might be triggered by classes with many methods that make systems
tend to be complex, overloaded, and contain architectural smells, and such classes
have a greater possibility of being reused and becoming the source of architectural
inconsistencies (Lenhard et al., 2019). Moreover, structural inconsistencies might be
hard to detect with tools. For instance, architecture mismatch is a kind of structural
inconsistency that is relatively difficult to detect by off-the-shelf tools due to various
reasons (e.g., standard architectural description languages are used to document ar-
chitecture, but they generally do not support tool-assisted detection of architecture
mismatches) (Garlan et al., 2009).

Additionally, our results show that certain design-related factors are also com-
mon sources of violation symptoms that we cannot ignore. For instance, violations
of layered pattern (i.e., violation of architecture patterns in Section 5.4.2) undermine
the sustainability and reliability of systems and may gradually lead to architecture
erosion due to their accumulation. In many cases, such violations usually require
considerable effort to repair, to the extent that such a repair may not be financially
feasible (Li, Liang, Soliman and Avgeriou, 2022; Sarkar et al., 2009). Besides, our
results show that certain design-related violations (e.g., violations of design decisions,
design principles, and rules) are common during development, and one possible rea-
son is that the missing architectural knowledge leading to these violations might
exist in certain small groups such as architects or team leaders. Therefore, our re-
sults suggest that disseminating and sharing the architectural knowledge related to
violation symptoms across the development team is necessary.

RQ2: Linguistic patterns expressing violation symptoms. The results of RQ2
show that most (60%) of violation symptoms contain the terms about “inconsistent”
(e.g., not consistent and inconsistency) and “violate” (e.g., violation and violating)
(see Figure 5.3). One possible explanation is that such terms are more in line with the
idiomatic expressions used by developers and reviewers, and they are commonly
used to discuss issues related to violation symptoms in system design.

Regarding the linguistic patterns, the results show that the linguistic patterns
of expressing violation symptoms from code review comments can be mapped to
the categories of linguistic patterns identified in development emails (Di Sorbo,
Panichella, Visaggio, Di Penta, Canfora and Gall, 2016). The six linguistic pat-
terns can also be used to analyze textual artifacts in other sources (e.g., app re-
views (Di Sorbo, Panichella, Alexandru, Shimagaki, Visaggio, Canfora and Gall,
2016; Di Sorbo et al., 2017) and issue reports (Huang et al., 2018)), and our findings
indicate that code review discussions also encompass these categories of linguis-
tic patterns. Besides, the major type of linguistic patterns of expressing violation

166 5. Warnings: Violation Symptoms Indicating Architecture Erosion

symptoms is Problem Discovery (see Table 5.4). We conjecture that developers incline
to use the linguistic patterns regarding Problem Discovery (see Table 5.5) to specify
violation symptoms, as one of the aims of code review is to identify issues during
development.

RQ3: Reactions to violation symptoms from developers. We found that most
of the identified violation symptoms were merged into the code repositories after
refactoring or removing the smelly code. This observation indicates that code re-
view is necessary, and to a large extent these review comments can help to mitigate
the risk of architecture erosion caused by violation symptoms. In addition, develop-
ers’ reactions (i.e., 77.7% patches are merged into the code base) also indicate that the
review comments raising violation symptoms are crucial, especially for large-scale
and long-term projects (Bosu et al., 2016a), as these review comments help reduce
violation symptoms and improve the quality of software systems.

In some sense, remove the code that contains violation symptoms can also be
considered as code improvement, for example, removing duplicated code or redun-
dant dependencies decreases code complexity and increases system maintainability.
Therefore, the percentage of improvement (refactored + removed) regarding addressing
violation symptoms accounts for around 90% no matter whether it is merged into
the code repositories or not. Only a small percentage (9.6%) of the identified viola-
tion symptoms were ignored and remained in the systems, and one possible reason
is that developers have different opinions about how to address the remaining vi-
olation symptoms without reaching an agreement. Another possible reason is that
the submitted code containing violation symptoms is not quite urgent to be fixed
and has a lower priority, as the priority of issues depends on the severity and de-
gree of the impact on different quality attributes (Li, Liang, Soliman and Avgeriou,
2022). In general, the study results show that developers incline to repair the issues
related to violation symptoms when they are pointed out or discussed during code
review.

5.5.2 Implications

(1) Implications for researchers

We identified three categories of violation symptoms from code review com-
ments. Researchers are encouraged to investigate violation symptoms from other
artifacts (such as pull requests, issues, and developer mailing lists) to provide more
comprehensive empirical evidence, in order to further validate and consolidate the
observations in this study. For example, the categories of violation symptoms can be
further explored because only four OSS projects (written in Python and C++) from

5.5. Discussion 167

two communities (OpenStack and Qt) were used in our study. It would be worth
exploring violation symptoms in both industrial and OSS projects written in other
programming languages (e.g., Java) and communities (e.g., Apache). Besides, re-
searchers can further conduct a comparison between the identified violation symp-
toms by utilizing certain off-the-shelf architecture conformance checking techniques
(e.g., reflexion models (Murphy et al., 1995)) and our dataset (i.e., manually col-
lected violation symptoms). More specifically, they can try to perform quantitative
comparisons regarding the identified violation symptoms between code and textual
artifacts (e.g., code review comments and commit messages) with the purpose of
evaluating the performance of the techniques. In addition, researchers can also try
to map the violation symptoms from textual artifacts to code in order to improve
and complement the existing architecture conformance checking techniques.

Moreover, we have created a dataset (Li, Liang and Avgeriou, 2022) contain-
ing violation symptoms of architecture erosion from code review comments. This
dataset can act as a foundation for future study on architecture erosion (Li, Liang,
Soliman and Avgeriou, 2022), especially architecture violation symptoms. For ex-
ample, researchers can further explore the possibility of automatic identification of
violation symptoms from textual artifacts through employing natural language pro-
cessing techniques based on machine learning and deep learning algorithms. Au-
tomatically identifying violation symptoms would be of great value to developers,
as manual identification can be extremely tedious, effort-intensive, and error-prone.
Specifically, based on the models trained by machine learning and deep learning al-
gorithms, researchers can devise auxiliary plugins to existing code review tools for
providing warnings of violation symptoms to developers during development and
maintenance.

(2) Implications for practitioners

The results in Section 5.4 and their explanations in Section 5.5.1 can be used
by practitioners to guide their refactoring and maintenance activities. For exam-
ple, having the categories of violation symptoms might help the practitioners to be
aware of the possible violations in system architecture and then consider avoiding
or repairing such issues in their daily development work. Moreover, the frequently-
used terms and linguistic patterns related to descriptions of violation symptoms
from the viewpoint of developers, can help developers pay more attention to vio-
lation symptoms during maintenance and evolution. For example, such terms and
linguistic patterns could be a clear signal that developers should be wary of archi-
tecture erosion risks and avoid the appearance of violation symptoms.

Furthermore, we encourage practitioners to manage violation symptoms with

168 5. Warnings: Violation Symptoms Indicating Architecture Erosion

the purpose of facilitating refactoring and repairing architecture violations. As re-
ported by Schultis et al. in Siemens, architecture violations must be explicitly man-
aged, which includes addressing the existing architecture violations and prevent-
ing future violations (Schultis et al., 2016). Therefore, architecture teams (especially
architects) should take the responsibility for collecting and monitoring violation
symptoms, and then equip developers with the knowledge to repair or minimize
architecture violations during development. Thus, practitioners can work with re-
searchers and put effort to developing dedicated tools for managing violation symp-
toms and improving the productivity of maintenance activity.

5.6 Threats to Validity

The threats to the validity of this study are discussed by following the guidelines
proposed by Wohlin et al. (Wohlin et al., 2012). Internal validity is not considered,
since this study does not address any causal relationships between variables.

Construct validity pertains to whether the theoretical and conceptual constructs
are correctly interpreted and measured. In this work, one potential threat is about
the construction of the keyword set. To mitigate this threat, we first built the key-
word set based on previous studies, and then we employed a pre-trained word
embedding model to query and select similar keywords in the software domain.
Besides, we constructed and used the co-occurrence matrix approach proposed by
Bosu et al. (Bosu et al., 2014) to check the possible missing co-occurring words. In
this way, the potential threat can be, at least partly, mitigated.

External validity concerns the extent to which we can generalize the findings
to other studies. First, a potential threat to external validity is whether the selected
projects are representative enough. Our work chose the two largest and most pop-
ular OSS projects (i.e., Nova and Neutron) from the OpenStack community, both
written in Python language; we further selected another two major OSS projects
(i.e., Qt Base and Qt creator) from the Qt community, which are written in C++. Sec-
ond, another threat is that only Python and C++ OSS projects were selected, which
may reduce the generalizability of the study results. Our findings may not general-
ize or represent all open source and closed source projects. It would be interesting to
select more projects from different sources and programming languages to increase
the external validity of the study results. Besides, it is worth exploring the generaliz-
ability of the findings regarding the frequent terms and linguistic patterns related to
the identified violation symptoms in this work, for example, to investigate whether
these findings are also applicable with other artifacts (e.g., pull requests and issues).

Reliability refers to the replicability of a study regarding yielding the same or

5.7. Related Work 169

similar results when other researchers reproduce this study. The potential threat is
mainly from the activities of data collection and data analysis. For data collection,
we presented the detailed data collection steps in Section 5.3.3 and provided a repli-
cation package (Li, Liang and Avgeriou, 2022) for reproducing the data collection
and filtering process, which can help to enhance the reliability of the results. Re-
garding data labeling, our observations show that developers generally discussed
individual violation symptoms within one single review comment, as such, the
threat of multiple symptoms discussed in one review comment with multiple la-
bels is not present in this work. As for the data analysis, to mitigate personal bias,
we conducted a pilot labeling and classification (see Phase I in Section 5.3.4) before
the formal data labeling and classification process, and we got a Cohen’s Kappa
value of 0.857, which indicates a substantial inter-rater agreement. Likewise, we
executed a similar process (see Phase II in Section 5.3.4) when we conducted the
formal data labeling and analysis. Any disagreements were discussed between the
four researchers to reach an agreement and at least two researchers participated in
the data labeling and classification process.

5.7 Related Work

In this section, we discuss the work related to our study, which involves architecture
violations and their detection approaches (i.e., architecture conformance checking),
as well as the data sources (i.e., code review comments) used in this study.

5.7.1 Architecture Violations

Over the past decades, there have been extensive investigation on architecture vi-
olations. Brunet et al. (Brunet et al., 2012) performed a longitudinal study to ex-
plore the evolution of architecture violations in 19 bi-weekly versions of four open
source systems. They investigated the life cycle and location of architecture viola-
tions over time by comparing the intended and recovered architectures of a system.
They found that architecture violations tend to intensify as software evolves and a
few design entities are responsible for the majority of violations. More interestingly,
some violations seem to be recurring after being eliminated. Mendoza et al. (Men-
doza et al., 2021) proposed a tool ArchVID based on model-driven engineering tech-
niques for identifying architecture violations, and the tool supports recovering and
visualizing the implemented architecture.

Moreover, Terra et al. (Terra et al., 2015) reported their experience in fixing ar-
chitecture violations. They proposed a recommendation system that provides refac-

170 5. Warnings: Violation Symptoms Indicating Architecture Erosion

toring guidelines for developers and maintainers to repair architecture violations
in the module architecture view of object-oriented systems. The results show that
their approach can trigger correct recommendations for 79% architecture violations,
which were accepted by architects. Maffort et al. (Maffort et al., 2016) proposed
an approach to check architecture conformance for detecting architecture violations
based on defined heuristics. They claimed that their approach relies on the defined
heuristic rules and can rapidly raise architectural violation warnings. Different from
the abovementioned studies focusing on detecting architecture violations in source
code, our work investigates the architectural violation symptoms in code review
comments from the perspective of developers, including the categories and linguis-
tic patterns of expressing violation symptoms, as well as the reactions developers
take to deal with violation symptoms.

5.7.2 Architecture Conformance Checking

Architecture conformance checking techniques are the most commonly-used ap-
proaches to detect architecture violations (Li, Liang, Soliman and Avgeriou, 2022).
They can be checked statically or dynamically, and they are usually performed
to compare the structure of the intended architecture (provided by the architects)
with the extracted architecture information from source code that implements the
architecture. For example, Pruijt et al. (Pruijt and Brinkkemper, 2014) proposed a
metamodel for extensive support of semantically rich modular architectures in the
context of architecture conformance checking. Miranda et al. (Miranda et al., 2016)
presented an architectural conformance and visualization approach based on static
code analysis techniques and a lightweight type propagation heuristic. They eval-
uated their approach in three real-world systems and 28 OSS systems to identify
architecture violations.

Besides, rule-based conformance checking approaches are also employed to
identify architecture violations. For example, previous studies detected architec-
ture violations by checking the explicitly defined architectural rules (Mendoza et al.,
2021; Schröder and Riebisch, 2017; Terra and Valente, 2009). Moreover, it is viable to
check architecture conformance and identify architecture violations by defining and
describing the systems through Architecture Description Languages (ADLs) (Terra
and Valente, 2009; Rocha et al., 2017), or Domain-Specific Languages (DSLs) (Carac-
ciolo et al., 2015; Juarez Filho et al., 2017). However, the aforementioned approaches
have obvious limitations; for example, much effort is required to address the chal-
lenges of understanding the architecture design (e.g., concepts and relations), defin-
ing architectural rules (or description languages) in advance, and establishing a
mapping between architectural elements and source code. Moreover, other limi-

5.8. Conclusions 171

tations, such as lack of generalizability, visualization of architecture views, and in-
sufficient tooling support, hinder the above approaches from being widely used in
practice. Additionally, to the best of our knowledge, prior studies regarding ar-
chitecture violations focus on checking architecture conformance with source code
using predefined abstract models and rules, and there is no evidence-based knowl-
edge on identifying architecture violations from textual artifacts, such as code re-
view comments.

5.7.3 Code Review Comments

Code review comments contain massive knowledge related to software develop-
ment, and a variety of studies analyzed software defects and evolution through min-
ing review comments and commit records. Zhou and Sharma (Zhou and Sharma,
2017) designed an automated vulnerability identification system based on a large
number of commits and bug reports (containing rich contextual information for se-
curity research), and their approach can identify a wide range of vulnerabilities and
significantly reduce false positives by more than 90% compared to manual effort.

Besides, Uchôa et al. (Uchôa et al., 2020) investigated the impact of code review
on the evolution of design degradation through mining and analyzing a plethora of
code reviews from seven OSS projects. They found that there is a wide fluctuation of
design degradation during the revisions of certain code reviews. Paixão et al. (Paixão
et al., 2020) explored how developers perform refactorings in code review, and they
found that refactoring operations are most often used in code reviews that imple-
ment new features. Besides, they observed that the refactoring operations were
rarely refined or undone along the code review, and such refactorings often con-
tribute to new code smells and bugs. Given that previous studies discussed above
investigated various aspects of code review regarding development and mainte-
nance (e.g., decisions and design degradation), there are no studies that investigate
architecture violations through code review comments; we decided to explore the
violation-related issues (i.e., violation symptoms) from code review comments.

5.8 Conclusions

As software systems evolve, the changes in the systems could lead to cascading vi-
olations, and consequently the architecture will exhibit an eroding tendency. In this
work, we conducted an empirical study to investigate the discussions on violation
symptoms of architecture erosion from code review comments. We collected a large
number of code review comments from four popular OSS projects in the OpenStack

172 5. Warnings: Violation Symptoms Indicating Architecture Erosion

(i.e., Nova and Neutron) and Qt (i.e., Qt Base and Qt Creator) communities. Our
results show that ten subcategories of violation symptoms in three main categories
are discussed by developers during the code review process. Besides, we found that
the most frequently-used terms related to the description of violation symptoms
concern structural inconsistencies, design-related violations, and implementation-related
violations, such as violation of design decisions, design principles, and architecture pat-
terns; the most common linguistic pattern (90.4%) used to express violation symp-
toms is Problem Discovery. Refactoring is the major measure that developers used to
address violation symptoms, no matter whether the smelly code is integrated (i.e.,
77.7% refactorings happened in the merged patches) or not (i.e., 82.9% refactorings
happened in the abandoned patches). The finding indicates that code review can
help reduce violation symptoms and increase system quality.

Our findings encourage researchers to investigate violation symptoms from var-
ious artifacts (e.g., pull requests, issues, and developer mailing lists) in order to pro-
vide more comprehensive evidence for validating and consolidating the findings.
The most frequently-used terms and linguistic patterns used to express violation
symptoms can help researchers and practitioners better understand and be aware
of the natural language on describing violation symptoms of architecture erosion
commonly used by developers. Besides, explicitly managing violation symptoms
can to some extent help reduce the occurrence of architecture violations and pre-
vent future violations during development and maintenance.

Developers usually discuss and address design-related issues in artifacts such
as commits, issues, and pull requests (Brunet et al., 2014). In this context, we plan
to construct classification models based on textual artifacts with machine learning
and deep learning techniques for the purpose of automatically notifying develop-
ers about the potential violation symptoms of architecture erosion during develop-
ment; for example, as a plugin to the Gerrit tool during the code review process.
We also plan to invite practitioners to evaluate the effectiveness and efficiency of
the proposed classification models and the tool on assisting developers in detecting
violation symptoms.

Based on:

Ruiyin Li, Peng Liang, Paris Avgeriou, “Towards Automatic Identification of Violation Symptoms of
Architecture Erosion,” (under review) in a scientific journal.

Chapter 6

Towards Automatic Identification of Violation
Symptoms of Architecture Erosion

Abstract

Architecture erosion has a detrimental effect on maintenance and evolution, as
the implementation drifts away from the intended architecture. To prevent this,
development teams need to understand early enough the symptoms of erosion,
and particularly violations of the intended architecture. One way to achieve this,
is through the automatic identification of architecture violations from textual ar-
tifacts, and particularly code reviews. In this chapter, we developed 15 machine
learning-based and 4 deep learning-based classifiers with three pre-trained word
embeddings to identify violation symptoms of architecture erosion from devel-
oper discussions in code reviews. Specifically, we looked at code review com-
ments from four large open-source projects from the OpenStack (Nova and Neu-
tron) and Qt (Qt Base and Qt Creator) communities. We then conducted a survey
to acquire feedback from the involved participants who discussed architecture
violations in code reviews, to validate the usefulness of our trained classifiers.
The results show that the SVM classifier based on word2vec pre-trained word
embedding performs the best with an F1-score of 0.779. In most cases, classifiers
with the fastText pre-trained word embedding model can achieve relatively good
performance. Furthermore, 200-dimensional pre-trained word embedding mod-
els outperform classifiers that use 100 and 300-dimensional models. In addition,
an ensemble classifier based on the majority voting strategy can further enhance
the classifier and outperforms the individual classifiers. Finally, an online survey
of the involved developers reveals that the violation symptoms identified by our
approaches have practical value and can provide early warnings for impending
architecture erosion.

174 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

6.1 Introduction

Software architecture is regarded as critical in developing large and complex sys-
tems, as it reflects the system structure and behavior and acts as a bridge between
business goals and the implemented system (Bass et al., 2021). However, the phe-
nomenon of architecture erosion has become one of the major challenges of architect-
ing, impeding software maintenance and undermining software sustainability (Li,
Liang, Soliman and Avgeriou, 2022; Le et al., 2016; Venters et al., 2018). Architec-
ture erosion refers to the increasing and accumulating divergences between imple-
mented and intended architecture (Li, Liang, Soliman and Avgeriou, 2022; Perry
and Wolf, 1992). It is often described by various terms in the literature (Li, Liang,
Soliman and Avgeriou, 2022) and practice (Li, Liang, Soliman and Avgeriou, 2021b),
such as architectural decay, degradation, and deterioration.

As evidenced in previous studies (Li, Soliman, Liang and Avgeriou, 2022; Li,
Liang, Soliman and Avgeriou, 2022; Herold et al., 2015; Macia, Garcia, Popescu, Gar-
cia, Medvidovic and von Staa, 2012; Fontana et al., 2016), various symptoms or signs
can be observed when architecture erosion occurs during a software system’s life cy-
cle. Our recent systematic mapping study (Li, Liang, Soliman and Avgeriou, 2022)
reported four categories of such architecture erosion symptoms: structural symptoms
(e.g., cyclic dependencies), violation symptoms (e.g., layering violation), quality symp-
toms (e.g., high defect rate), and evolution symptoms (e.g., extensive ripple effects of
changes).

In this study, we specifically concentrate on violation symptoms, as those are
the most immediate symptoms of architecture erosion and they require the most at-
tention from practitioners (Li, Soliman, Liang and Avgeriou, 2022; Li et al., 2023d).
This symptom type stems from the definition of architecture erosion (Li, Liang, Soli-
man and Avgeriou, 2022), as a violation causes the implemented architecture to di-
verge from the intended one. Architecturally-relevant violations in software sys-
tems include violations of design principles, architecture patterns, decisions, and
requirements (Li, Liang, Soliman and Avgeriou, 2022). The accumulation of vio-
lation symptoms can render the architecture completely untenable (De Silva and
Balasubramaniam, 2012). For brevity, we refer to violation symptoms of architecture
erosion as violation symptoms throughout the remainder of this chapter.

While a few temporary violation symptoms might be innocuous and might not
result in software errors, the accumulation of architecture violations can affect archi-
tecture erosion (Perry and Wolf, 1992; De Silva and Balasubramaniam, 2012; Men-
doza et al., 2021); consequently, erosion negatively affects quality attributes, includ-
ing maintainability and performance (Li, Liang, Soliman and Avgeriou, 2021b; Men-
doza et al., 2021). Thus, it is essential to identify and monitor violation symptoms

6.1. Introduction 175

to facilitate the maintenance of the system architecture and further reveal inconsis-
tencies between the implemented and the intended architecture. This is the first
step towards, eventually, repairing or mitigating architecture erosion (De Silva and
Balasubramaniam, 2012; Li, Liang, Soliman and Avgeriou, 2022).

Violation symptoms can be identified through source code analysis, but that has
certain limitations. As pointed out in previous studies (Sharma and Spinellis, 2018;
Li, Liang, Soliman and Avgeriou, 2022; Li et al., 2023d), various factors (e.g., limited
types of architecture violations detected and supported programming languages)
hinder the effective utilization of static code analysis tools in precisely identifying
violation symptoms through source code. Alternatively, violations symptoms can be
manually identified by analyzing textual artifacts that contain information related
to system architecture and design, such as code comments, code reviews, and issue
trackers (Li, Soliman, Liang and Avgeriou, 2022). In this context, recent work (Li,
Soliman, Liang and Avgeriou, 2022; Li et al., 2023d) has introduced a taxonomy on
violation symptoms, that can be used as a checklist to detect such symptoms during
code review. However, it could be tedious, time-consuming, and potentially error-
prone to manually identify potential architecture violations (Li et al., 2023d). Auto-
mated techniques could address this problem, but to the best of our knowledge, no
prior study has investigated the automatic identification of violation symptoms in
textual artifacts, such as code review comments.

To address this gap, we conduct an exploratory study to assess the feasibility
of automatically identifying violation symptoms of architecture erosion from code
review comments. The automated identification of violation symptoms could act in
a complementary way to modern code review: the latter addresses code changes in
general through knowledge sharing (Badampudi et al., 2023), while the former can
offer an extra layer of scrutiny. For example, such an automated approach can issue
warnings for potential or ignored violation symptoms, preventing the integration of
code changes with architectural violations into the code base, and ensuring a more
robust and reliable development process. Moreover, automatically identifying vi-
olation symptoms from code review comments could offer valuable insights at the
architecture level and facilitate the corresponding knowledge sharing between de-
velopers and reviewers. The ultimate purpose of our approach is to complement
the modern code review process, through warning of and guarding against archi-
tectural violation issues, eventually maintaining architectural integrity.

In this work, we developed 15 classifiers based on Machine Learning (ML) and 4
classifiers based on Deep Learning (DL), to identify violation symptoms from devel-
oper discussions in code reviews of four large open-source software projects from
the OpenStack and Qt communities. Our results show that the SVM classifier based
on word2vec performed the best with a Precision of 0.789, a Recall of 0.828, an F1-

176 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

score of 0.808, and an Accuracy of 0.803. We also found out that the fastText pre-
trained word embedding can achieve relatively good results and help to improve
the classifiers’ performance. Furthermore, 200-dimensional pre-trained word em-
bedding models outperform classifiers that use 100 and 300-dimensional models.
Finally, an ensemble classifier based on the majority voting strategy can further en-
hance the classifier and outperform the individual classifiers.

We then conducted an online survey to validate the effectiveness of automatic
identification of violation symptoms in practice. We received responses from 21
participants who were involved in the discussion of the collected review comments
concerning architecture violations. The survey results show that the practitioners’
perception of the classifiers’ results confirms the promising applications of auto-
matic identification of violation symptoms in practice. Especially, such classifiers
can enable and inspire the participants to find, prioritize, and handle architecturally-
related violation issues.

The main difference from previous studies that focused on utilizing tools to iden-
tify architectural issues by source code analysis, is that our work focuses on explor-
ing the identification of violation symptoms through textual artifacts. The main
contributions of this work are the following:

• This is the first work to explore the application of ML and DL-based classifiers
regarding the automatic identification of violation symptoms in code review
comments.

• We compared the performance of several trained classifiers using popular ML
and DL-based algorithms, as well as the impact of three pre-trained word em-
beddings on classification performance.

• We gained insights from participants regarding the usefulness of ML and DL-
based classifiers in identifying architecture violations during code review.

The remainder of this chapter is organized as follows. Section 6.2 introduces
background information. Section 6.3 describes the research questions, study design,
and experimental setup. The answers to the research questions are presented in
Section 6.4. We discuss the implications of the study results in Section 6.5 and the
threats to validity in Section 6.6. Section 6.7 reviews related work, and Section 6.8
concludes this work with future directions.

6.2 Background

In this section, we introduce a) the background of architecture erosion and its symp-
toms; b) the modern code review process in Gerrit, as this is used in our dataset.

6.2. Background 177

6.2.1 Architecture Erosion and Related Symptoms

In the past decades, a wide variety of studies are concerned with the architecture
erosion phenomenon, which has been extensively discussed and described with var-
ious terms (Li, Liang, Soliman and Avgeriou, 2021b, 2022), such as architecture de-
cay (Hassaine et al., 2012; Le et al., 2018), degradation (Lenhard et al., 2019; Herold,
2020), degeneration (Hochstein and Lindvall, 2005).

Architecture erosion manifests in various symptoms during development and
maintenance. A symptom is a partial sign or indicator of the emergence of archi-
tecture erosion (Le et al., 2016; Li, Liang, Soliman and Avgeriou, 2022; Li, Soliman,
Liang and Avgeriou, 2022). According to a recent mapping study (Li, Liang, Soli-
man and Avgeriou, 2022), erosion symptoms can be classified into four categories
(i.e., structural symptoms, violation symptoms, quality symptoms, and evolution
symptoms).

Previous studies investigated different symptoms of architecture erosion. Mair et
al. (Mair and Herold, 2013) proposed a formalization method regarding the process
of repairing eroded architecture by finding violation symptoms and recommend-
ing optimal repair sequences. Le et al. (Le et al., 2016, 2018) regarded architectural
smells as structural symptoms and they provided metrics to detect instances of ar-
chitecture erosion by analyzing the detected smells. Martin (Martin, 2000) deemed
that the evolution symptoms of architecture erosion include rigidity (a tendency
to resist changes), fragility (a tendency to break frequently when modifications oc-
cur), immobility (inability to be reused), and viscosity (reduced effectiveness and
efficiency due to design or environment issues).

As mentioned in the Introduction section, we focus on the most direct erosion
symptoms of architecture erosion (i.e., violation symptoms). Table 6.1 presents sev-
eral examples of violation symptoms of architecture erosion from the used dataset
(see Section 6.3); a detailed comparison of this work and related work is given in
Section 6.7.

6.2.2 Code Review in Gerrit

Code review is a crucial software development activity that involves the systematic
examination of assigned code to identify defects and improve software quality (Bac-
chelli and Bird, 2013). A methodical code review process not only enhances the
quality of software systems, but also facilitates the sharing of development knowl-
edge and prevents the release of unstable and defective products. Over time, code
review practices have become increasingly important, have been widely adopted in
modern software development, and have received extensive tool support. In fact,

178 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

Table 6.1: Examples from our dataset that includes data from Nova, Neutron, Qt Base, and
Qt Creator

Project Example of violation symptoms of architecture erosion

Nova

“But here don’t we have to make a upcall from compute to api db, which will violate
api/cell isolation rules. Is there any workaround in this case?”

“We could get some race conditions when starting the scheduler where it would not
know the allocation ratios and would have to call the computes, which is a layer isola-
tion violation to me.”

Neutron

“Having said all of that: I get that I’m violating an abstraction layer in LinkLocalAd-
dressPair and that this is surprising (and therefore bad).”

“As you pointed out, since this patch is about the router availability zone it seems like
a layer violation doing it in the mech driver.”

Qt Base

“This one seems to be a layering violation: why does QNetworkRequest understand
QHttpNetworkConnection?”

This breaks the abstraction layer of publicQtConfig and is annoyingly verbose. instead,
publicQtConfig should have an optional parameter ’name’ to override the built-in ‘fea-
ture’ member.

Qt Creator

“The unit tests are designed to not depend on any qt creator library to make the depen-
dency breaking easier. Sometimes it works but it is not designed that way.”

“This looks like we break the design. Why do we can not hold a pointer to the plugin?”

tool-based code review has become the norm in both industry and open-source com-
munities, with a variety of available code review tools, such as Me’s Phabricator1,
VMware’s Review-Board2, and Gerrit3.

The two communities (i.e., OpenStack and Qt), from which the four open-source
software (OSS) projects were selected in this work, use Gerrit as the code review
tool. Figure 6.1 illustrates the modern code review process in Gerrit, which is a
well-known code review tool and widely used in modern code review (Davila and
Nunes, 2021). Gerrit allows for efficient collaboration on code changes before they
are merged into the main code base. Once a developer commits new code changes
(e.g., software patches) and their descriptions to Gerrit, the system creates a page
to record all changes and relevant descriptions (e.g., commit messages). Then, the

1https://www.phacility.com/
2https://www.reviewboard.org/
3https://www.gerritcodereview.com/

https://www.phacility.com/
https://www.reviewboard.org/
https://www.gerritcodereview.com/

6.3. Study Design 179

system conducts a sanity check to verify whether the patch is compliant and to en-
sure that the code does not contain obvious compilation errors. After the submitted
patch passes the sanity check, code reviewers manually examine the patch and pro-
vide comments to correct any potential errors, followed by giving a voting score.
The comments are subsequently used by the developers to improve the patch and
submit it for another review. Finally, the submitted patch is merged into the code
repository after passing integration tests, which confirms that there are no issues or
conflicts. Alternatively, the patch can be abandoned if the voting is negative.

The above process is used, among others, in revisions that enable the analysis of
potentially significant architectural changes. Code review comments provide soft-
ware developers a finer granularity for investigating architectural changes and vio-
lations in their daily development routines (Li, Qi, Yu, Liang, Mo and Yang, 2021).
Meanwhile, developers provide reasoning and rationale for the changes they make
in code review comments, which enables code review data to be a valuable source
of knowledge for explaining changes (Paixao et al., 2019), offering insights into de-
velopers’ concerns, suggestions, and potential violations.

merged

reviewersdevelopers

abandoned

commits sanity check

repository

vote

comments

Figure 6.1: Code review process in Gerrit

6.3 Study Design

This section describes the research questions that motivated this research, followed
by a detailed explanation of the data collection and the ML and DL models to auto-

180 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

matically identify architecture violations from textual artifacts. Finally, we provide
details of the validation survey conducted to assess the effectiveness of automatic
identification of violation symptoms in practice.

Phase 1
Classifica�on

(Training ML/DL Classifiers)
Code Review
Comments Preprocessing Word Embedding Performance Evalua�onModel Training

Search

Keywords Searching

Query Seman�cally
Similar Words

Co-occurrence Matrix-

based Querying

Ini�al Coding

Focused Coding

Theore�cal Coding

Code reviews
(MongoDB)

Database

Select 50 Code
Reviews

Label Data
Respec�vely

(4 Researchers)

Discuss for Reaching
an Agreement

Manual Check 21,583

Code Reviews

Label Data
Respec�vely

(4 Researchers)

Discuss for Resolving
Disagreements

Nova & Neutron

Formal Survey
[21 Responses]

Data AnalysisSurvey Form Survey Refinement

Phase 2
Valida�on Survey

(Prac��oners' Feedback)

Pilot Survey
[6 Responses]

Design Survey
Collect Par�cipant

Responses
Report Survey

Results

Data Collec�on Data Storage Pilot Data Labeling Formal Data Labeling Data AnalysisDataset Crea�on

Qt Base & Qt Creator

Figure 6.2: An overview of the research process

Figure 6.2 provides an overview of the whole process. As illustrated in this figure
(see the top box, Dataset Creation), we collected data and established a dataset
on architecture violations in our previous work (Li et al., 2023d). During Phase 1,
we explored the possibility of using this dataset to train ML/DL-based classifiers
to automatically identify violation symptoms in code review comments. During
Phase 2, we sent the survey questionnaire to 200 involved participants and received
21 responses that were used to validate the usefulness of automatic identification of
violation symptoms in practice.

6.3.1 Research Questions

In this work, we aim to explore the feasibility of automatically identifying violation
symptoms of architecture erosion from code review comments. Specifically, we for-
mulated the goal of this study by following the Goal-Question-Metric method (Basili
et al., 1994): analyze code review comments for the purpose of exploring the feasibility

6.3. Study Design 181

of automatically identifying violation symptoms of architecture erosion with respect to the
performance on architecture erosion identification from the point of view of developers
in the context of open source software development. To achieve our goal, we formulate
three Research Questions (RQs):

RQ1: What is the performance of the classifiers in identifying violation
symptoms from code review comments?

• RQ1.1: Which classifier performs best in identifying the violation
symptoms?

• RQ1.2: Which word embedding models can help to improve the per-
formance of classifiers?

• RQ1.3: To what extent, does the dimensionality of word embedding
models impact the performance of classifiers?

Rationale: This RQ focuses on training feasible classifiers to automatically identify
violation symptoms from textual artifacts. As mentioned in Section 6.1, the per-
centage of violation symptoms (belonging to architecture-level issues) is relatively
lower than code-level issues. We thus expect that the description of violation symp-
toms is scattered in textual artifacts during development. RQ1.1 focuses on finding
out the classifier with the best performance to distinguish violation symptoms from
natural language by comparing several popular ML and DL algorithms. RQ1.2 aims
at employing several well-known word embedding models to generate word vec-
tors as features of labeled data, in order to choose the word embedding models that
can help to improve the accuracy of classifiers. The word embedding models are a
common ground for both ML and DL-based classifiers in our study. Finally, with
RQ1.3, we seek to compare the differences in dimension size among different word
embedding models, as it is one of the most important hyperparameters affecting the
model performance (Hutter et al., 2019). Specifically, RQ1.3 endeavors to shed light
on the extent to which the selection of dimensionality impacts the performance of
the classifiers in automatically identifying violation symptoms.

RQ2: To what extent, a voting strategy can help to improve the perfor-
mance of identifying violation symptoms from code review comments?

Rationale: After training individual classifiers based on ML and DL algorithms,
we want to know whether, and to what extent, an ensemble classifier composed
of trained classifiers can help to improve the performance of identifying violation

182 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

symptoms from code review comments. To answer this RQ, we compared the per-
formance of individual classifiers with that of a combined classifier. More specifi-
cally, we employed a voting strategy to integrate the prediction values of each clas-
sifier and generated results after voting among individual classifiers. Answering
this RQ can help to explore the possibility of further improving the performance of
automatic identification of violation symptoms.

RQ3: Do practitioners find automatic identification of violation symptoms
useful in practice?

Rationale: If the results generated by the classifiers based on ML and DL algo-
rithms are acceptable regarding the effectiveness of identified violation symptoms,
automatically identifying violation symptoms from textual artifacts would be help-
ful in practice. Such automated techniques could facilitate tasks such as locating
architecture violations and inspiring further investigation and remediation of simi-
lar architectural issues. Through this RQ, we aim to conduct a survey to investigate
how practitioners (both developers and reviewers) assess the effectiveness and prac-
ticability of the trained classifiers.

6.3.2 Data Collection

We relied on the dataset that we mined and manually identified in our previous
study (Li et al., 2023d). As shown in Figure 6.2 (see Dataset Creation), we fol-
lowed five steps to establish a specific dataset on architecture violations mined from
code review comments. More specifically, we mined code review comments of four
OSS projects in the OpenStack (i.e., Nova and Neutron) and Qt (i.e., Qt Base and
Qt Creator) communities between 2014 and 2020. We mined the data through the
REST API4 supported by Gerrit. Then, through a series of tasks, including key-
word search, manual identification, and pilot and formal data labeling of review
comments related to architecture violations, we manually identified and labeled 606
code review comments related to architecture violations; code review comments
were created for patches, and comments were made by code reviewers and devel-
opers. In terms of the data labeling process, four researchers first conducted a pi-
lot data labeling by randomly selecting 50 review comments, to reach a consensus
(the inter-rater agreement between the researchers measured in the Cohen’s Kappa
coefficient value (Cohen, 1960) was 0.857) and ensure that we have the same under-
standing of violation symptoms. Any disagreements were discussed between the

4https://gerrit-review.googlesource.com/Documentation/rest-api.html

https://gerrit-review.googlesource.com/Documentation/rest-api.html

6.3. Study Design 183

four researchers to reach a consensus. After that, the four researchers started the
formal data labeling by dividing the retrieved 21,583 code review comments into
four parts (each researcher manually labeled around 5,400 comments). After the
formal data labeling, the author checked the data labeling results from the other
three researchers to make sure that there were no false positives. To mitigate poten-
tial bias, the four researchers discussed all the conflicts in the labeling results until
we reached an agreement. To summarize, all data labeling results were checked by
at least two researchers and conflicts were discussed among four researchers. Sub-
sequently, all the collected code review comments regarding architecture violations
from the four projects were combined into an integrated dataset used in this work.
The dataset has been made available in a replication package (Li et al., 2023c).

6.3.3 Phase 1 - Automatic Classification of Violation Symptoms

In this section, we describe the experimental setup that we followed to evaluate the
performance of the trained classifiers (see Figure 6.3). The steps in this setup cor-
respond to the steps of Phase 1 in Figure 6.2. First, we pre-processed the collected
code review comments to generate structured word sets, and then utilized word
embedding techniques to encode the words and generate vectors for presenting the
words in review comments. Subsequently, the generated vectors acted as the in-
put to train the classifiers based on ML/DL models, in order to learn to classify
review comments as violations and non-violations. The experimental environment
is a computer equipped with Intel(R) Core(TM) i7-10510U CPU and 16GB RAM,
running Windows 11 (64-bit). The next subsections elaborate on these steps for both
the ML and DL models. More details of the experiments (such as hyperparameters
and experimental environment) can be found in the replication package (Li et al.,
2023c).

6.3.3.1 Machine Learning Models

Before training ML models, we need to pre-process our collected data, which in-
volves transforming raw data into a structural format for model training. The pre-
processing includes five steps listed as follows:

Step 1. Tokenization: The process of tokenization is to break a stream of text into
words, punctuation, and other meaningful elements called tokens. In this work, we
tokenized the review comments by splitting the text into its constituent set of words.

Step 2. Noise Removal: Developers usually use plain text when they discuss vi-
olation symptoms during code review, which contain various noise data such as
punctuation, numbers, and special characters (e.g., “\”, “*”). Noise data usually

184 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

Code Review
Comments

DL Model TrainingWord Embedding

Word Embedding

word2vec

fastText

GloVe

Performance Evalua�on

Individual Classifier

Ensemble Classifier

Vo�ng

Non-Viola�onsViola�ons

word2vec

fastText

GloVe

Vocabulary Set

Non-Viola�onsViola�ons

Tokeniza�on

Pre-processing

Noise Removal

Stop Words Removal

Capitaliza�on
Conversion

Stemming

Support Vector Machine (SVM)

Logis�c Regression (LR)

Decision Tree (DT)

Bernoulli Naive Bayes (NB)

k-Nearest Neighbor (kNN)

ML Model Training

TextCNN

Figure 6.3: The framework of the experimental setup for classifying violation symptoms of
architecture erosion from code review comments

does not contain valuable semantic information, and we therefore removed it.
Step 3. Stop words Removal: Stop words are frequently observed in text, for the

purpose of distinguishing between texts, such as “the”, “are”, and “is”, but they are
typically devoid of valuable semantic content. Thus, we removed stop words in our
dataset by using the Natural Language Toolkit (NLTK) (Bird et al., 2010).

Step 4. Capitalization Conversion: In order to ensure the consistency of word form
and to avoid redundant counts of words, all textual data was converted to lower-
case.

Step 5. Stemming: Stemming can be used to convert the words to their base forms.
For instance, “architecture” and “architectural” have the same stem (i.e., token) “ar-
chitectu”. We conducted a stemming process (using Snowball Stemmer from the
NLTK toolkit (Bird et al., 2010)) to obtain the stem of each token, since it is a more
comprehensive and aggressive version of the Porter Stemmer5.

Word Embedding. Feature extraction techniques are widely utilized to trans-
form unstructured text sequences into structured feature spaces (e.g., matrices, vec-
tors, or encodings). In this work, we employ word embedding techniques to extract
textual features for generating interpretable input for machine learning algorithms.

5https://www.geeksforgeeks.org/snowball-stemmer-nlp/

https://www.geeksforgeeks.org/snowball-stemmer-nlp/

6.3. Study Design 185

Word embedding is a prominent method employed in natural language process-
ing to represent words through dense vectors. In this work, we utilized the three
prevalent and popular techniques (i.e., word2vec, fastText, and GloVe) to generate
word embeddings. These techniques have gained widespread use in machine learn-
ing and deep learning-based tasks, owing to their efficacy in capturing the semantic
and syntactic relationships among words.

• word2vec: word2vec was developed in 2013 (Mikolov et al., 2013) and it takes
words as input and provides a word embedding matrix that contains high-
dimensional unique vectors to represent each distinct word in given training
corpora. word2vec can generate word embeddings through skip-gram and
Continuous Bag-of-Words (CBOW) models. In this study, we adopted the pre-
trained word2vec model proposed by Efstathiou et al. (Efstathiou et al., 2018a).
This model was trained based on the corpus comprising over 15 GB of textual
data collected from Stack Overflow posts, which contains a plethora of textual
information in the software engineering domain.

• fastText: fastText is an open-source and lightweight library proposed by Meta
AI Research lab in 2017 (Bojanowski et al., 2017) and it is capable of learning
text representations and training text classifiers. Based on the fastText model,
Meta published pre-trained word vectors with 300 dimensions for 157 lan-
guages constructed on Common Crawl and Wikipedia6. In this study, we em-
ployed the pre-trained fastText model, which can be transformed into 100 and
200-dimensional models, in order to control variables and avoid the impact of
dimensionality on classifiers’ performance.

• GloVe: Global Vectors for Word Representation (GloVe) is another common
word embedding technique (Pennington et al., 2014). GolVe model is inspired
by aggregated word co-occurrence statistics that may encode global informa-
tion for words. Compared with word2vec, GloVe avoids the weakness regard-
ing using local word co-occurrence information. In this study, we adopted the
GloVe pre-trained word vectors on Twitter data (two billion tweets) with 200
dimensions.

Model Training. Given the binary classification task in this study, we selected
five common ML algorithms that are widely used in classification tasks (Han, Pei
and Tong, 2022), including Support Vector Machine (SVM), Logistic Regression (LR),
Decision Tree (DT), Bernoulli Naive Bayes (NB), and k-Nearest Neighbor (kNN).
These classification algorithms are also commonly applied in many areas of software
engineering studies (Yang et al., 2022).

6https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html

186 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

For the ML classifiers, we performed a grid search to tune the hyperparameters of
each model and picked the best-performing ML models with specific hyperparam-
eters on the validation set. Grid search, an exhaustive search technique, explores
every possible combination within a predefined search space to identify the opti-
mal configuration. More specifically, this method is widely employed in the realms
of machine learning and optimization and it involves a systematic evaluation that
examines all of the combinations of a set of candidate settings to find the best hy-
perparameter combination (Hutter et al., 2019).

6.3.3.2 Deep Learning Models

Similarly to the ML models, for the DL models we pre-processed the collected data
before training DL classifiers, using the same pre-processing steps described in Sec-
tion 6.3.3.1. For the pre-processing of DL classifiers, we needed to ensure the equal
size of each paragraph length; therefore, we utilized the zero-padding strategy be-
fore dimension transformation to equalize all input text (i.e., the maximum length
is set to 2000 words).

Model Training. In recent years, DL-based models are increasingly used in
various text classification tasks and Convolutional Neural Network (CNN) has be-
come one of the most popular model architectures for text classification (Minaee
et al., 2021). We selected the TextCNN model to train the DL-based classifiers, since
TextCNN, as an adapted CNN-based model, is reported to improve the state of the
art on text classification (Minaee et al., 2021). TextCNN is a CNN-based architecture
designed for processing textual data, and was introduced by Yoon Kim in 2014 (Kim,
2014). It can be used for a variety of Natural Language Processing (NLP) tasks, such
as text classification and sentiment analysis. Compared with traditional ML mod-
els regarding text processing, the key advantage of TextCNN is its ability to auto-
matically learn features from raw textual data, without relying on manual feature
engineering.

We built the TextCNN for identifying violations and non-violations in code re-
view comments through several processing layers, including an input layer, a con-
volutional layer, a pooling layer, a fully connected layer, and an output layer. Specif-
ically, the TextCNN model applies one layer of convolutions over n-dimensional
word embeddings to capture n-gram features at different scales. The convolutional
layer learns to detect local patterns in the input text. The resulting feature maps
are then fed through one max-pooling layer, which extracts the most salient features
from each map and concatenates them to produce a fixed-length vector representa-
tion of the input text. This vector is then passed through one or more fully connected
layers to produce the final output, i.e., the predicted labels for the input review com-

6.3. Study Design 187

ments.
TextCNN is a convolutional neural network model that is commonly used for

text classification tasks. This model takes a sentence as input and applies multiple
convolutional filters to extract important features from the text. A TextCNN clas-
sifier based on the vocabulary set of a dataset uses a one-hot encoding scheme to
represent words and generate the word embedding, while a TextCNN classifier can
also utilize pre-trained word embedding models to capture semantic information of
words. Additionally, the TextCNN model requires a proper setting to construct neu-
ral network models, such as hyperparameters and word embedding parameters. In
this work, we set the embedding dimension to 200, the learning rate to 0.001, and the
dropout to 0.25 to handle the overfitting, while the filter region size is (3, 4, 5). Each
DL model’s batch size is set to 16, and the network is trained for 100 epochs with
the early stopping strategy with the purpose of avoiding overfitting. We configured
the patience parameter to 8, indicating that the training process would terminate
after 8 consecutive epochs with no observed improvement in model performance.
These approaches are common practices in machine learning, aimed at preventing
overfitting and optimizing the model’s convergence (Watson et al., 2022).

6.3.3.3 Performance Evaluation

For the performance evaluation of ML/DL classifiers, we adopted four commonly
used metrics, namely, Precision, Recall, F1-score (i.e., the harmonic mean of Preci-
sion and Recall), and Accuracy.

Precision presents the proportion of correctly classified violation symptom com-
ments to all comments classified as violation symptoms. Recall represents the pro-
portion of all violation symptom comments that are correctly identified. F1-score
is the harmonic mean between precision and recall, assessing if an increase in one
compensates for a decrease in the other. Accuracy is the percentage of correct classi-
fications by a trained learning model. The above metrics are defined and calculated
by the following equations.

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

F1 − score = 2 × Precision × Recall
Presion + Recall

(6.3)

188 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

Accuracy =
TP + TN

TP + TN + FP + FN
(6.4)

Here, we need to use four statistics to calculate the metrics, namely, False Pos-
itives (FP) represent the number of non-violation comments that are classified as
violation comments; False Negatives (FN) represent the number of violation com-
ments that are classified as non-violation comments; True Positives (TP) represent
the number of violation comment that are classified as violation comments; True
Negatives (TN) represent the number of non-violation comments that are classified
as non-violation comments.

To avoid the class imbalance problem (He and Garcia, 2009), a data distribu-
tion problem that significantly impacts classifiers’ performance, we constructed our
dataset with a balanced class distribution (i.e., the same number of review com-
ments labeled as “violations” and “non-violations”), which avoids the poor gener-
alization ability of classifiers. With respect to the model training and validation
strategy, we employed 10-fold cross-validation when we conducted a performance
evaluation of the classifiers. We divided the collected dataset into three parts, i.e.,
we randomly set aside 80% of the data for the training set (60%) and validation
set (20%), and 20% for the test set. Besides, we set a fixed seed for reproducibility
during experiments.

6.3.4 Ensemble Classifier

To identify architecture violations from textual artifacts (i.e., code review com-
ments), we trained several ML and DL-based classifiers to predict the labels of new
review comments. However, the trained classifiers have varying performances in
predicting the labels of target artifacts. In RQ2, we asked whether composing the
individual classifiers into an ensemble classifier can help improve the overall perfor-
mance. This composition can be done by utilizing the ensemble learning technique,
i,e., majority voting strategy (Dietterich, 2000). Specifically, a combined classifier of
several individual classifiers is generated with the purpose of building an improved
classifier, which predicts an output (class) based on the highest probability of chosen
class as the output (Dietterich, 2000). This aggregating criterion is like an election
process and can produce combined voting results from each classifier’s output.

The voting criteria include Hard Voting (voting is calculated on the predicted
output class) and Soft Voting (voting is calculated on the predicted probability of the
output class). To reduce the training time, we employed the Hard Voting (a simple
majority voting strategy) strategy in this work. In other words, the final predicted
results depend on the majority output (i.e., labels) of the individual classifiers.

6.3. Study Design 189

6.3.5 Phase 2 - Validation Survey

Survey Design. To answer RQ3, we designed and executed a survey by follow-
ing the guidelines proposed by Kitchenham and Pfleeger’s personal opinion sur-
veys (Kitchenham and Pfleeger, 2008); we used an anonymous survey to increase
the response rate.

Surveys can be conducted in different ways, such as online questionnaires,
phone surveys, or interviews (Lethbridge et al., 2005). Our survey is an online
questionnaire of the cross-sectional type, which allows us to collect data and com-
pare differences between participants at a single point in time. We adopted self-
administered questionnaires to collect responses, since (1) respondents can answer
the survey at their convenience (reducing our time investment and increasing the
response rate); (2) questionnaires can reduce research bias since the researcher does
not have any contact with the respondents when they fill out the survey; and (3)
respondents enjoy better privacy than interviews.

We invited participants through customized emails (see the replication pack-
age (Li et al., 2023c)) attaching the links to their code review comments that con-
tain violation symptoms and are identified by our approach, as well as the survey
form (also see the replication package (Li et al., 2023c)). Our survey was constructed
based on four parts: Problem Statement, Our approach, Survey Goal, and Survey Ques-
tions. Problem Statement introduces the research background regarding what is archi-
tecture erosion and its violation symptoms, as well as why it is important to inves-
tigate violation symptoms. Our approach describes the approach that we developed
to automatically identify violation symptoms with high performance from a large
number of code reviews as well as two examples of violation symptoms of architec-
ture erosion detected by our approach from code review comments. In Survey Goal,
we explain the purpose of this survey. In Survey Questions, we ask five general ques-
tions and present six statements concerning the usefulness of our approach. Note
that, before the formal survey, we did a pilot survey (receiving 6 responses) with the
purpose of revising and improving our survey questions and examples.

The five general survey questions include demographic information (e.g., their
countries and work experience). The six statements are assessed using a five-point
Likert scale (Strong Agree, Agree, Neutral, Disagree, and Strongly Disagree) with
one option (“I don’t know”). This scale enables participants to rate the extent that
they agree or disagree with the statements. Finally, at the end of the survey, we ask
an open-ended question to let the respondents freely provide comments and sugges-
tions about our survey. To formulate the statements, we took inspiration from the
survey questions of two survey studies (Nasab et al., 2021; Khalajzadeh et al., 2022)
that evaluate the usefulness of automatic classifiers based on ML and DL techniques

190 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

in the software engineering community. We chose to use declarative statements in
our validation survey since declarative statements are deemed appropriate for ex-
ploratory studies to convey simple and clear judgements; in contrast, descriptive
statements are more suitable in explanatory studies to provide the details of the
judgements in various aspects. The statements are as follows:

• Statement 1. “Violation symptoms in code review comments identified by the ap-
proach, represent potential architectural violations”.

• Statement 2. “Violation symptoms in code review comments identified by the ap-
proach can be used to improve the code quality”.

• Statement 3. “I (as a practitioner) can find potentially constructive and useful archi-
tectural information from violation symptoms in code review comments identified by
the approach”.

• Statement 4. “Violation symptoms in code review comments identified by the ap-
proach can help us identify violation-related issues faster than if we do this manually”.

• Statement 5. “Violation symptoms in code review comments identified by the ap-
proach might help us locate, identify, and prioritize potential architectural violations
in our systems”.

• Statement 6. “Violation symptoms in code review comments identified by the ap-
proach can provide us with input to find other violations of similar nature or other-
wise”.

Participants. Our collected data from Gerrit contains the developers’ informa-
tion (i.e., names and email addresses); this information is not included in the repli-
cation package for privacy reasons. We invited participants to fill out our survey
by sending emails to the developers whose comments are identified by our classi-
fiers. During the pilot survey, we got responses from 6 developers. The pilot survey
helped us to evaluate and refine our survey design. For example, we added more
precise examples of violation symptoms from code review comments in our sur-
vey in order to enhance practitioners’ understanding, and we refined the content of
the customized emails based on the received feedback from the pilot survey partic-
ipants. Then, we invited the remaining developers involved in the discussions on
violation symptoms to fill in the survey.

Sample and Population. The target population is limited to developers whose
code review comments are identified by our approach. We used a Non-Probabilistic
Sampling method in this survey, namely, Convenience Sampling. As a type of non-
probability sampling method, Convenience Sampling can help us to conveniently

6.4. Results 191

reach a suitable number of developers who are willing to participate in our survey.
The reason we chose this sampling method is that we could not intentionally choose
a sample due to the limitations of geographical constraints and scheduling conflicts.

Data Analysis. We applied descriptive statistics to analyze the responses to the
demographic and Likert scale questions. For the optional open question, we used
the open coding and constant comparison method (Adolph et al., 2011) to analyze
and categorize the qualitative response.

6.4 Results

6.4.1 RQ1: Identifying Violation Symptoms

To answer RQ1, we trained five ML classifiers and one DL classifier based on three
word embedding techniques (i.e., word2vec, fastText, and GloVe). Moreover, we
evaluated the performance of these classifiers and compared the difference between
their performance.

RQ1.1: Performance of Classifiers

For ML-based classifiers, as shown in Table 6.2, we trained the five types of
ML classifiers with three word embedding techniques (i.e., word2vec, fastText, and
GloVe), leading to 15 classifiers (i.e., the five ML models times three word embed-
dings). We calculated the average values of the classifiers over the three pre-trained
word embeddings. For each classifier based on three word embeddings, we un-
derlined the best result of each metric (horizontal comparison); for each metric of
the classifiers (precision, recall, F1, and accuracy), we marked the best metric result
of each classifier on three word embeddings in bold (vertical comparison). From
the results, we can see that the kNN classifiers have better scores of Precision than
other classifiers with an average Precision of 0.816. As for the remaining metrics,
the SVM classifiers achieve relatively better performance on nearly all metrics than
other classifiers, with an average Recall of 0.801, F1-score of 0.779, and Accuracy of
0.773. Specifically, the SVM classifier based on word2vec performed the best with a
Precision of 0.789, a Recall of 0.828, an F1-score of 0.808, and an Accuracy of 0.803.

For DL-based classifiers, as shown in Table 6.6, we trained one type of classifier,
i.e., TextCNN, based on the vocabulary set from our dataset and three word embed-
ding techniques (i.e. in total four classifiers) as mentioned in Section 6.3.3.1. We can
see that TextCNN FT performs the best compared with the other three DL models.

The ML-based classifiers demonstrated superior performance, achieving, on av-
erage, a Precision of 0.753, a Recall of 0.667, an F1-score of 0.700, and an Accuracy

192 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

Ta
bl

e
6.

2:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
am

on
g

M
L-

ba
se

d
cl

as
si

fie
rs

C
la

ss
ifi

er
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

A
cc

ur
ac

y

w
2v

FT
G

lo
Ve

A
ve

ra
ge

w
2v

FT
G

lo
Ve

A
ve

ra
ge

w
2v

FT
G

lo
Ve

A
ve

ra
ge

w
2v

FT
G

lo
Ve

A
ve

ra
ge

SV
M

0.
78

9
0.

72
8

0.
75

9
0.

75
9

0.
82

8
0.

74
6

0.
82

8
0.

80
1

0.
80

8
0.

73
7

0.
79

2
0.

77
9

0.
80

3
0.

73
4

0.
78

3
0.

77
3

LR
0.

83
2

0.
77

7
0.

79
8

0.
80

2
0.

73
0

0.
71

3
0.

71
3

0.
71

9
0.

77
7

0.
74

4
0.

75
3

0.
75

8
0.

79
1

0.
75

4
0.

76
6

0.
77

0

N
B

0.
72

8
0.

74
3

0.
71

7
0.

72
9

0.
61

5
0.

61
5

0.
62

3
0.

61
8

0.
66

7
0.

67
3

0.
66

7
0.

66
9

0.
69

3
0.

70
1

0.
68

9
0.

69
4

D
T

0.
66

7
0.

65
7

0.
64

3
0.

65
6

0.
68

9
0.

72
1

0.
66

4
0.

69
1

0.
67

7
0.

68
8

0.
65

3
0.

67
3

0.
67

2
0.

67
2

0.
64

8
0.

66
4

kN
N

0.
86

3
0.

78
8

0.
79

7
0.

81
6

0.
51

6
0.

54
9

0.
45

1
0.

50
5

0.
64

6
0.

64
7

0.
57

6
0.

62
3

0.
71

7
0.

70
1

0.
66

8
0.

69
5

A
ve

ra
ge

0.
77

6
0.

73
9

0.
74

3
0.

75
3

0.
67

6
0.

66
9

0.
65

6
0.

66
7

0.
71

5
0.

69
8

0.
68

8
0.

70
0

0.
73

5
0.

71
2

0.
71

1
0.

71
9

w
2v

:w
or

d2
ve

c,
FT

:f
as

tT
ex

t

Ta
bl

e
6.

3:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

th
e

cl
as

si
fie

rs
ba

se
d

on
th

e
fa

st
Te

xt
m

od
el

w
it

h
di

ff
er

en
td

im
en

si
on

si
ze

C
la

ss
ifi

er
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

A
cc

ur
ac

y

10
0-

di
m

20
0-

di
m

30
0-

di
m

10
0-

di
m

20
0-

di
m

30
0-

di
m

10
0-

di
m

20
0-

di
m

30
0-

di
m

10
0-

di
m

20
0-

di
m

30
0-

di
m

SV
M

0.
74

5
0.

72
8

0.
65

7
0.

67
2

0.
74

6
0.

75
4

0.
70

7
0.

73
7

0.
70

2
0.

72
1

0.
73

4
0.

68
0

LR
0.

70
4

0.
77

7
0.

74
5

0.
66

4
0.

71
3

0.
64

8
0.

68
4

0.
74

4
0.

69
3

0.
69

3
0.

75
4

0.
71

3

N
B

0.
74

5
0.

74
3

0.
71

2
0.

62
3

0.
61

5
0.

60
7

0.
67

9
0.

67
3

0.
65

5
0.

70
5

0.
70

1
0.

68
0

D
T

0.
64

1
0.

65
7

0.
61

2
0.

61
5

0.
72

1
0.

64
8

0.
62

8
0.

68
8

0.
62

9
0.

63
5

0.
67

2
0.

61
9

kN
N

0.
83

1
0.

78
8

0.
83

1
0.

52
5

0.
54

9
0.

44
3

0.
64

3
0.

64
7

0.
57

8
0.

70
9

0.
70

1
0.

67
6

Te
xt

C
N

N
0.

57
7

0.
72

8
0.

49
4

0.
64

8
0.

54
9

0.
73

0
0.

58
5

0.
66

7
0.

46
1

0.
58

6
0.

67
2

0.
49

2

6.4. Results 193

Ta
bl

e
6.

4:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

en
se

m
bl

e
cl

as
si

fie
rs

C
la

ss
ifi

er
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

A
cc

ur
ac

y

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

SV
M

0.
75

9
0.

78
9

0.
79

5
4.

74
%

0.
76

%
0.

80
1

0.
82

8
0.

82
8

3.
37

%
0.

00
%

0.
77

9
0.

80
8

0.
81

1
4.

11
%

0.
37

%
0.

77
3

0.
80

3
0.

80
7

4.
40

%
0.

50
%

LR
0.

80
2

0.
83

2
0.

83
3

3.
87

%
0.

12
%

0.
71

9
0.

73
0

0.
73

8
2.

64
%

1.
10

%
0.

75
8

0.
77

7
0.

78
3

3.
30

%
0.

77
%

0.
77

0
0.

79
1

0.
79

5
3.

25
%

0.
51

%

N
B

0.
72

9
0.

74
3

0.
73

8
1.

23
%

-0
.6

7%
0.

61
8

0.
61

5
0.

62
3

0.
81

%
1.

30
%

0.
66

9
0.

67
3

0.
67

6
1.

05
%

0.
45

%
0.

69
4

0.
70

1
0.

70
1

1.
01

%
0.

00
%

D
T

0.
65

6
0.

65
7

0.
68

9
5.

03
%

4.
87

%
0.

69
1

0.
72

1
0.

74
6

7.
96

%
3.

47
%

0.
67

3
0.

68
8

0.
71

7
6.

54
%

4.
22

%
0.

66
4

0.
67

2
0.

70
5

6.
17

%
4.

91
%

kN
N

0.
81

6
0.

86
3

0.
83

6
2.

45
%

-3
.1

3%
0.

50
5

0.
51

6
0.

50
0

-0
.9

9%
-3

.1
0%

0.
62

3
0.

64
6

0.
62

6
0.

48
%

-3
.1

0%
0.

69
5

0.
71

7
0.

70
1

0.
86

%
-2

.2
3%

Te
xt

C
N

N
0.

57
4

0.
72

8
0.

53
7

-6
.4

5%
-2

6.
24

%
0.

66
4

0.
54

9
0.

71
3

7.
38

%
29

.8
7%

0.
54

2
0.

66
7

0.
61

3
13

.1
0%

-8
.1

0%
0.

56
3

0.
67

2
0.

54
9

-2
.4

9%
-1

8.
30

%

Ta
bl

e
6.

5:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
am

on
g

en
se

m
bl

e
M

L-
ba

se
d

cl
as

si
fie

rs
w

it
h

th
re

e
w

or
d

em
be

dd
in

gs

C
la

ss
ifi

er
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

A
cc

ur
ac

y

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
ea

n
Be

st
Vo

ti
ng

Im
p

M
Im

p
B

M
L

w
or

d2
ve

c
0.

77
6

0.
78

9
0.

81
0

4.
38

%
2.

66
%

0.
67

6
0.

82
8

0.
69

7
3.

11
%

-1
5.

82
%

0.
71

5
0.

80
8

0.
74

9
4.

76
%

-7
.3

0%
0.

73
5

0.
80

3
0.

76
6

4.
22

%
-4

.6
1%

M
L

fa
st

Te
xt

0.
73

9
0.

77
7

0.
79

8
7.

98
%

2.
70

%
0.

66
9

0.
71

3
0.

71
3

6.
58

%
0.

00
%

0.
69

8
0.

74
4

0.
75

3
7.

88
%

1.
21

%
0.

71
2

0.
75

4
0.

76
6

7.
58

%
1.

59
%

M
L

G
lo

V
e

0.
74

3
0.

75
9

0.
76

8
3.

36
%

1.
19

%
0.

65
6

0.
82

8
0.

70
5

7.
47

%
-1

4.
86

%
0.

68
8

0.
79

2
0.

73
5

6.
83

%
-7

.2
0%

0.
71

1
0.

78
3

0.
74

6
4.

92
%

-4
.7

3%

194 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

of 0.719. In contrast, the DL-based classifiers exhibited lower performance, with an
average Precision of 0.574, Recall of 0.664, F1-score of 0.542, and Accuracy of 0.563.
These findings suggest that the ML-based classifiers are more effective in accurately
classifying the target variable than the DL-based classifiers. Overall, among these
classifiers, the SVM classifiers outperform other classifiers, exhibiting the best aver-
age results on all metrics, except for the Precision metric.

Table 6.6: Performance comparison among DL-based classifiers

Classifier Precision Recall F1-score Accuracy

TextCNN voc 0.475 0.541 0.469 0.471

TextCNN w2v 0.584 0.680 0.596 0.598

TextCNN FT 0.728 0.549 0.667 0.672

TextCNN GloVe 0.507 0.885 0.434 0.512

Average 0.574 0.664 0.542 0.563

voc: vocabulary set, w2v: word2vec, FT: fastText

RQ1.2: Comparison of Embedding Models

From the results in Tables 6.2 and 6.6, we can also observe the differences be-
tween the classifiers based on three pre-trained word embedding models. As men-
tioned before, for each classifier based on three word embeddings, we underlined
the best result of each classifier on each metric (horizontal comparison). When using
the word2vec pre-trained word embedding, most of the ML classifiers have relatively
better performance on Precision and Accuracy. Most of the ML classifiers with the
fastText model have fairly better F1-scores. Besides, we found that the TextCNN
classifier based on the fastText pre-trained word embedding achieves the best per-
formance on all metrics except for Recall, with a Precision of 0.728, a Recall of 0.549,
an F1-score of 0.667, and an Accuracy of 0.672.

In addition, we can see in Table 6.6 that the overall performance of the three
TextCNN classifiers with pre-trained word embeddings outperforms the TextCNN
classifier based on the vocabulary set from our dataset. This is because pre-trained
word embedding models contain more features due to the large textual data used for
generating word vectors, and they have been proven to be invaluable for improving
the performance in NLP tasks (Qi et al., 2018; Radford et al., 2018).

In general, the three pre-trained word embedding models have an impact on the

6.4. Results 195

performance of the DL-based classifiers. As shown in Table 6.6, when we compared
their classification performance, in most cases, the classifiers with the fastText model
can achieve relatively good performance.

RQ1.3: Comparison of Word Embedding Model Dimensionality

According to the results of RQ1.2, the fastText model can help to generate bet-
ter results than the other two pre-trained word embedding models. Therefore, to
further explore the impact of dimension sizes of the pre-trained word embedding
models, we trained the classifiers based on the fastText model and we chose three
common dimension sizes: 100, 200, and 300. In Table 6.3, similarly as before, we
underlined the best result of each classifier on each metric (horizontal comparison).
We can see that five of the six ML/DL classifiers can generate better F1-scores based
on the fastText model with 200-dimensional word embedding, compared with 100
and 300-dimensional models.

RQ1 Summary. The SVM classifier trained on the pre-trained word2vec
word embedding can achieve the best performance on identifying viola-
tion symptoms, with an F1-score of 0.779. In most cases, the classifiers with
the fastText pre-trained word embedding model can achieve relatively good
performance. Furthermore, 200 as the dimension size of the pre-trained
word embedding models can generate better performance than 100 and 300-
dimensional models.

6.4.2 RQ2: Improving Performance with Voting

To answer RQ2, we employed an ensemble learning technique, i.e., majority vot-
ing strategy, to build an ensemble classifier. We compared the performance of the
individual classifiers with the ensemble classifiers. More specifically, we explored
to what extent combining one type of classifier based on three word embedding
techniques can achieve better performance, as shown in Table 6.4 and Table 6.5.

In Table 6.4, the “Mean” column presents the Average values of each metric of
each classifier on three word embeddings from Table 6.2 and Table 6.6. The “Best”
column denotes the corresponding classifier with the best performance from Ta-
ble 6.2 and Table 6.6. The “Voting” column refers to the performance of the ensemble
classifier (based on classifiers with three word embeddings) on each metric after uti-
lizing a majority voting strategy. For example, the Voting values of SVM classifiers in
Table 6.4 refer to the voting results among the three individual classifiers SVM w2v,
SVM FT, and SVM GloVe. “Impro M” and “Impro B” represent the improved results

196 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

of the corresponding ensemble classifiers compared with the results in “Mean” and
“Best” columns, respectively.

According to Table 6.4, when we utilized the voting strategy for each ML clas-
sifier based on the three word embeddings (i.e., word2vec, fastText, GloVe), we can
see that all ensemble classifiers perform better than the mean values of individual
classifiers, with F1-score improvement from 0.48% to 13.10%. Even compared with
the best-performing classifiers, most of the ensemble classifiers outperform the in-
dividual ML/DL classifiers, except for kNN. Moreover, the ensemble TextCNN of
the three TextCNN classifiers based on pre-trained word embeddings (see Table 6.6)
does not perform as well as TextCNN FT (i.e., the best one) on Precision, F1-score,
and Accuracy. This means that TextCNN FT with the fastText pre-trained word em-
bedding performs best compared with the other three TextCNN classifiers, and the
voting strategy does not have an obvious improvement for the trained DL classi-
fiers.

In addition, as shown in Table 6.5, we utilized the voting strategy for the five ML
classifiers based on each of the three word embeddings. For example, ML word2vec
is the ensemble classifier of the five ML classifiers based on the word2vec word em-
bedding (i.e., SVM w2v, LR w2v, NB w2v, DT w2v, and kNN w2v). Similarly as
before, the “Mean” column refers to the average metric results of ML classifiers (see
the last row in Table 6.2); the “Best” column presents the best-performing classifiers
in Table 6.2; the “Voting” column denotes the performance results of the ensemble
classifiers after voting. It is clear that the three ensemble classifiers outperform the
average performance results of the individual classifiers, with improvements from
3.11% to 7.98%. Even compared with the best-performing individual classifiers (i.e.,
the maximum values of the voting samples), the ensemble classifier ML fastText can
still demonstrate performance improvement on all metrics.

Moreover, we can observe the performance difference of ensemble classifiers
with three word embeddings. In general, for the selected five ML models, the fast-
Text pre-trained word embedding model can achieve relatively better performance
improvements on almost all the metrics compared with the models using word2vec
and GloVe. This finding affirms a similar observation in the result of RQ1.2.

RQ2 Summary. In comparison to individual ML classifiers, the ensemble
classifiers achieve better performances after utilizing the majority voting
strategy. However, no significant improvement was observed in the perfor-
mance of the DL classifiers on our dataset when implementing the ensemble
technique.

6.4. Results 197

6.4.3 RQ3: Validation in Practice

As elaborated in Section 6.3.5, we designed and conducted a survey to solicit the
perceptions from the practitioners on the usefulness of our trained models to auto-
matically identify violation symptoms from code review comments.

Overall, we planned to send customized survey invitation emails to 200 code
reviewers who were involved in the discussion of the collected review comments
concerning architecture violations. However, we could only derive valid email ad-
dresses for 169 of them. We finally obtained 21 valid responses to our survey af-
ter sending 169 survey invitation emails and reminder emails; the response rate of
12.4%, is a reasonable response rate considering that the general response rate is
around 5% in empirical software engineering research (Singer et al., 2008). Table 6.7
shows the demographic information of the 21 respondents. Nineteen of the respon-
dents have more than 10 years of experience in software development, while two of
them have 6-10 years of experience. Among the respondents, 52.4% (11) are software
engineers, 33.3% (7) are developers, and 14.3% (3) are architects. Note that, software
engineers usually have a broader work range than developers; for example, the for-
mer may work on full-stack development while the latter can deal only with the
back end. Regarding the size of their companies, eight of the respondents reported
that their companies have more than 1000 employees, five respondents worked in
companies with employees between 501 and 1000, five respondents in companies
with employees between 101 and 500, and three respondents in companies with
employees between 21 and 100. Besides, the respondents worked in a variety of
application domains.

Figure 6.4 presents the feedback of the 21 respondents on the usefulness of the
trained models, i.e., the automatic identification of violation symptoms from the tex-
tual content of code review comments. According to the results, most of the respon-
dents (61.9%) agreed that the violation symptoms identified by our models repre-
sent potential architectural violations (Statement 1). 38.1% respondents agreed that
the identified violation symptoms can be used to improve the code quality (State-
ment 2), while the same percentage of respondents had a neutral attitude about this
statement. 47.6% of the respondents agreed that the identified violation symptoms
contain potentially constructive and useful architectural information (Statement 3).

Statements 3 to 6 investigate whether the trained classifiers can play an auxiliary
role in development and code reviews. Approximately 42.9% respondents strongly
agreed (14.3%) or agreed (28.6%) that the identified violation symptoms can help
identify violation-related issues faster than manual identification (Statement 4); this
indicates that the classifiers may help to speed up code review. Moreover, the ma-
jority (57.2%) of the respondents strongly agreed (4.8%) or agreed (52.4%) that au-

198 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

14.3%

4.8%

61.9%

38.1%

47.6%

28.6%

52.4%

42.9%

9.5%

38.1%

23.8%

23.8%

19.0%

28.6%

4.8%

4.8%

9.5%

4.8%

14.3%

4.8%

4.8%

4.8%

4.8%

4.8%

9.5%

19.0%

19.0%

19.0%

14.3%

23.8%

Statement 1 (S1)

Statement 2 (S2)

Statement 3 (S3)

Statement 4 (S4)

Statement 5 (S5)

Statement 6 (S6)

Strongly Agree Agree Neutral Disagree Strongly Disagree I don't know

S1. The identified violation symptoms represent potential architectural violations

S2. The identified violation symptoms can be used to improve the code quality

S3. I (as a practitioner) can find potentially constructive and useful architectural information from the identified violation symptoms

S4. The identified violation symptoms can help us identify violation-related issues faster than if we do this manually

S5. The identified violation symptoms might help us locate, identify, and prioritize potential architectural violations in our systems

S6. The identified violation symptoms can provide us with input to find other violations of similar nature or otherwise

Figure 6.4: Practitioners’ responses to statements regarding the usefulness of the trained mod-
els

tomatic identification can help locate and prioritize architectural violation issues
(Statement 5). Furthermore, 42.9% of the respondents agreed that the identified vio-
lation symptoms can inspire them to find out other (or similar) violation symptoms
(Statement 6). Notably, one respondent strongly disagreed with all six statements,
indicating that he/she might not believe that ML and DL-based classifiers can be
useful for identifying architectural violations in practice; we did not treat this re-
sponse as an outlier. Overall, Figure 6.4 shows that positive feedback (strongly
agree + agree) surpasses negative (disagree + strongly disagree) and neural feed-
back in most of the statements, except for Statement 2.

As for the feedback on the open-ended question, three participants expressed
their concerns about false positives. For example, one participant pointed out: “How
useful the approach will depend a lot on the false-positive/false-negative rates, ..., an effective
approach might be to make ‘check for architecture violations’ an explicit and mandatory part
of the code review process”.

RQ3 Summary. Practitioners’ responses indicate the usefulness of the au-
tomatic identification of violation symptoms discussed in code review com-
ments in practice. Besides, the identified violation symptoms can enable and
inspire practitioners to find architecturally-related violations and prioritize
violation-related issues.

6.5. Discussion 199

6.5 Discussion

6.5.1 Interpretation of Results

RQ1: Identifying Violation Symptoms

Our trained ML/DL classifiers can identify violation symptoms in code review com-
ments. The results of RQ1.1 indicate that certain factors such as the type of classifier,
the pre-trained word embeddings, and hyperparameters influence the performance
of classifiers. Specifically, we found that the SVM classifier with word2vec outper-
forms other ML and DL-based classifiers. We also found that DL classifiers do not
always have better performance than ML classifiers; we note that training DL clas-
sifiers takes much longer time than training ML classifiers, as DL classifiers have
much more complex network architecture and more parameters. In recent years,
some studies that leveraged DL-based techniques for software engineering tasks
have achieved better performance that all other state-of-the-art techniques (e.g., ML-
based techniques) (Yang et al., 2022). However, the achieved results imply that ML
classifiers might be enough for certain text classification tasks with small-size datasets,
especially as the trained DL classifiers do not show performance improvement in
such a scenario. This finding is also observed in previous studies (Liu et al., 2018;
Fu and Menzies, 2017): for certain software engineering tasks, simple ML-based ap-
proaches are capable of achieving equal or even better performance than DL-based
approaches within less time. Thus, we advise researchers to not blindly apply DL-
based techniques and consider simple approaches first.

Finding 1: ML-based approaches have sufficient performance for many software engi-
neering tasks, such as identification of architecture violations in code reviews.

From the results of RQ1.2, we can see that the TextCNN classifier based on the
fastText pre-trained word embedding can perform better than other DL models. We
thus emphasize that the fastText pre-trained technique has a better capacity for train-
ing well-performed DL models; this also aligns with the finding in the work of Sesari
et al. (Sesari et al., 2022), that is, the fastText pre-trained word embedding model has
less bias compared to word2vec and GloVe.

Besides, the results of RQ1.3 show that 200-dimensional pre-trained word em-
bedding models outperform 100 and 300-dimensional models. Our results are
slightly different from previous studies (e.g., Ren et al. (2019); Li, Soliman and Avge-
riou (2022)) where the 300-dimensional word embedding model has better perfor-
mance. One possible reason is that the previous studies only measured the average

200 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

Ta
bl

e
6.

7:
D

em
og

ra
ph

ic
in

fo
rm

at
io

n
of

th
e

su
rv

ey
re

sp
on

de
nt

s

C
ou

nt
ry

Ex
pe

ri
en

ce
R

ol
e

C
om

pa
ny

si
ze

C
om

pa
ny

do
m

ai
n

Ir
el

an
d

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

em
pl

oy
ee

s
≥

10
00

H
C

M
se

rv
ic

es

G
er

m
an

y
M

or
e

th
an

10
ye

ar
s

D
ev

el
op

er
21

≤
em

pl
oy

ee
s
≤

10
0

In
du

st
ri

al
el

ec
tr

on
ic

s

Fi
nl

an
d

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

21
≤

em
pl

oy
ee

s
≤

10
0

M
ed

ic
al

so
ft

w
ar

e

N
or

w
ay

M
or

e
th

an
10

ye
ar

s
A

rc
hi

te
ct

50
1
≤

em
pl

oy
ee

s
≤

10
00

In
du

st
ri

al
D

at
aO

ps

Is
ra

el
M

or
e

th
an

10
ye

ar
s

So
ft

w
ar

e
En

gi
ne

er
em

pl
oy

ee
s
≥

10
00

N
et

w
or

k

G
er

m
an

y
6

-1
0

ye
ar

s
D

ev
el

op
er

10
1
≤

em
pl

oy
ee

s
≤

50
0

D
ev

el
op

m
en

tt
oo

ls

U
SA

M
or

e
th

an
10

ye
ar

s
D

ev
el

op
er

50
1
≤

em
pl

oy
ee

s
≤

10
00

Ia
as

N
or

w
ay

M
or

e
th

an
10

ye
ar

s
D

ev
el

op
er

50
1
≤

em
pl

oy
ee

s
≤

10
00

C
ro

ss
-p

la
tf

or
m

lib
ra

ri
es

fo
r

ap
pl

ic
at

io
n

de
ve

lo
pm

en
t

N
or

w
ay

M
or

e
th

an
10

ye
ar

s
D

ev
el

op
er

10
1
≤

em
pl

oy
ee

s
≤

50
0

SW
de

ve
lo

pm
en

tf
ra

m
ew

or
ks

U
SA

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

em
pl

oy
ee

s
≥

10
00

So
ft

w
ar

e
de

ve
lo

pm
en

t

G
er

m
an

y
M

or
e

th
an

10
ye

ar
s

D
ev

el
op

er
10

1
≤

em
pl

oy
ee

s
≤

50
0

M
id

dl
ew

ar
e

U
SA

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

em
pl

oy
ee

s
≥

10
00

R
es

ea
rc

h

G
er

m
an

y
M

or
e

th
an

10
ye

ar
s

So
ft

w
ar

e
En

gi
ne

er
em

pl
oy

ee
s
≥

10
00

G
am

e
de

ve
lo

pm
en

t

N
or

w
ay

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

50
1
≤

em
pl

oy
ee

s
≤

10
00

D
ev

el
op

m
en

tf
ra

m
ew

or
k

Fi
nl

an
d

M
or

e
th

an
10

ye
ar

s
A

rc
hi

te
ct

21
≤

em
pl

oy
ee

s
≤

10
0

M
ed

ic
al

de
vi

ce
s

G
er

m
an

y
M

or
e

th
an

10
ye

ar
s

D
ev

el
op

er
50

1
≤

em
pl

oy
ee

s
≤

10
00

To
ol

s
an

d
fr

am
ew

or
ks

fo
r

so
ft

w
ar

e
de

ve
lo

pm
en

t

G
er

m
an

y
M

or
e

th
an

10
ye

ar
s

So
ft

w
ar

e
En

gi
ne

er
10

1
≤

em
pl

oy
ee

s
≤

50
0

D
ef

en
ce

de
ve

lo
pm

en
t

D
en

m
ar

k
6

-1
0

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

10
1
≤

em
pl

oy
ee

s
≤

50
0

N
et

w
or

k

In
di

a
M

or
e

th
an

10
ye

ar
s

A
rc

hi
te

ct
em

pl
oy

ee
s
≥

10
00

D
ev

el
op

m
en

tf
ra

m
ew

or
k

U
SA

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

em
pl

oy
ee

s
≥

10
00

To
ol

s
fo

r
so

ft
w

ar
e

de
ve

lo
pm

en
t

C
an

ad
a

M
or

e
th

an
10

ye
ar

s
So

ft
w

ar
e

En
gi

ne
er

em
pl

oy
ee

s
≥

10
00

Fr
am

ew
or

k
to

ol

6.5. Discussion 201

results of classifiers with different dimensional word embedding models, and the
average results might be influenced by the individual results. Our results present
and compare the classification performance of each ML/DL classifier, which could
be more accurate.

Finding 2: The 200-dimensional fastText pre-trained word embedding model can be
used to train classifiers with better performance when conducting binary classification
of violation symptoms from code review comments.

In general, due to a large number of hyperparameters of DL classifiers, we did
not specifically focus on the best combination of hyperparameters of the TextCNN
classifier, but certain key hyperparameters such as the dimension size of word em-
bedding model. Thus, future work can consider performing hyperparameter tuning
(e.g., utilizing the grid search technique) to explore other possible combinations of
the hyperparameters to further improve performance.

RQ2: Improving Performance with Voting

Evaluating the performance of an ensemble classifier offers insight into the perfor-
mance improvement compared with individual classifiers. For voting-based ap-
proaches, an accurate output is attained only when a majority of the constituent
models generate the correct output (Hansen and Salamon, 1990). Our results pro-
vide further empirical evidence for the efficacy of the majority voting strategy re-
garding improving the performance of text classification. This technique effectively
combines the predictions of multiple classifiers to arrive at a final decision, re-
sulting in improved overall classification performance. Nevertheless, we also ob-
served that such performance improvement is not obvious in TextCNN in our case.
One possible reason is that we only get an ensemble DL classifier based on three
individual TextCNN models, and that causes the voting results to be particularly
susceptible to the influence of single results. We argue that the voting strategy re-
mains valuable to minimize potential prediction errors if there are more outputs for
voting.

Finding 3: Compared with individual classifiers for identifying architecture violations
from code review comments, ensemble learning is an effective way for improving classi-
fication performance. In most cases, ensemble classifiers that utilize the voting strategy
can enhance all classification performance metrics.

202 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

RQ3: Validation in Practice

The existence of architectural violations can be challenging, as they can impede
practitioners’ understanding of architecture during the development process. This
particularly influences novice developers who lack practical familiarity with archi-
tecture. The results of RQ3 indicate a predominantly positive feedback, confirming
the usefulness of our trained ML/DL classifiers in potentially helping developers
during maintenance and evolution. Through our analysis of the received responses
to the statements (e.g., Statements 3 and 5), we found that developers expressed a
significant interest in utilizing automated checking approaches, tools, or plug-ins
to identify violation symptoms during code review, recognizing their potential to
enhance the productivity of dealing with architectural violations through code re-
view. The survey results indicate that developers hold positive attitudes towards
such tools. Moreover, such automated techniques regarding identifying potential
architecture violations could be supplementary means to minimize architecture vi-
olations and improve software quality during code review. For example, such clas-
sifiers could provide warnings to reviewers based on the discussions of reviewed
code, nudging them to prioritize (e.g., offering warnings to refactor or remove) po-
tential violation symptoms that they might have ignored before based on various
factors (e.g., the importance of involved components), and prompt reviewers to ad-
dress violation symptoms.

Moreover, according to the feedback from respondents, certain practitioners
might hold a conservative attitude toward ML and DL-based classifiers for iden-
tifying violation symptoms (see the “Neutral” results in Figure 6.4). One possible
reason is that they might be skeptical about the performance of the classifiers (false
positives or negatives), casting doubt about the reliability of identified architectural
violations. Nevertheless, no classifier can ever achieve 100 % accuracy in classi-
fication tasks, and there is always a trade-off between precision and recall. This
disclaimer should be made clear when showing classification tasks to practitioners.
Another potential reason could be that certain identified review comments may be
part of the architectural design discussions during the development process, rather
than the final architectural decisions. Such concerns are beyond the target of our re-
search, as the trained classifiers can only provide judgments based on the collected
violations, instead of exploring the evolution of architecture violations.

Finding 4: Although there are concerns about the correctness of the identified archi-
tecture violations, the positive responses from participants suggest that practitioners
are receptive to the use of automated techniques for identifying architecture violations
during code review.

6.5. Discussion 203

6.5.2 Implications

Establish and enrich datasets. Many studies utilized or proposed automated ap-
proaches to identify or predict knowledge-related information from textual artifacts.
However, no studies focused on the automatic identification of violation symptoms
from code review comments. This suggests that there is a need for more empirical
reports and follow-up tools regarding such issues. Our study provides a starting
point for researchers to automatically identify architecture violations in textual ar-
tifacts such as review comments. On top of this, we encourage researchers and
practitioners to establish and share datasets related to architecture violations to lay
a solid foundation for future research.

Moreover, our study is scalable in practice, as practitioners can retrain supe-
rior classifiers by adding more code review comments of violation symptoms from
different projects, either manually or by using our classifiers. Besides, mining archi-
tecture violations from multiple textual artifacts (e.g., issues, source code comments,
and pull requests) can provide a more comprehensive examination of architectural
violations and also enrich the dataset used for identifying such violations. Fur-
thermore, our findings regarding the experiments in this study might benefit or be
adapted by researchers and practitioners to identify other issues, such as security
and vulnerability discussions.

Suggestion 1: Researchers and practitioners are encouraged to establish and share
datasets related to architecture violations. Besides, our study is scalable to retrain su-
perior classifiers by adding more data from different sources, and can also be adapted to
identify other issues.

Choose appropriate classifiers. An ensemble classifier is a collection of classi-
fiers that work together to classify instances by combining their individual outputs
through voting. Researchers can consider exploring different selections of classifiers
to further enhance the performance of ensemble classifiers. For example, to some ex-
tent, assigning varying weights to individual classifiers might partially mitigate the
impact of biased classifiers on voting results.

Suggestion 2: It is recommended for researchers to explore various combinations of
classifiers and assign different weights to individual classifiers to further enhance the
classification performance of ensemble classifiers for identifying architecture violations.

Take time investment into consideration. Even though our study did not specif-
ically investigate the time efficiency of classifiers’ training, we observed that the
TextCNN classifiers exhibited a long training time due to a large number of param-
eters. In comparison to traditional ML classifiers, DL classifiers require a longer

204 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

training time, yet the results did not demonstrate a significant performance im-
provement. Therefore, when considering the practical implementation of classifiers,
it is important to take into account the cost-benefit ratio of “Performance/Time”. In
situations where there is a limited dataset, traditional machine learning techniques
may suffice in achieving the desired goals. Further research may explore additional
methods for balancing the trade-off between performance and training time for clas-
sifiers.

Suggestion 3: For certain software engineering tasks, constructing simple classi-
fiers (e.g., individual or ensemble classifiers) can yield a superior return on investment
compared to training complex DL-based classifiers, particularly when time investment
needs to be taken into account.

Optimize code review practice. In the future, researchers and practitioners can ex-
plore the development of plug-ins for code review platforms (e.g., Gerrit) that pro-
vide warnings of violations to developers or even suggestions to fix those violations.
Such plug-ins can be developed utilizing historical code review data or harnessing
the existing large language models through fine-tuning. These plug-ins have the
potential to assist developers and maintainers in conducting comprehensive exam-
inations of preexisting architectural violations, and may even serve as reminders of
their presence. Additionally, implementing the trained classifiers (e.g., as an exten-
sion) into the existing tools (or toolsets) is also worthy of consideration in practice.
For example, code review platforms can integrate such classifiers to empower the
automated code review process. Such tools may provide more insights and help
novices or maintainers troubleshoot architecturally-relevant violation issues.

Suggestion 4: Researchers and practitioners can consider developing plug-ins for code
review platforms (e.g., Gerrit) to assist developers in identifying potential architecture
violations, or integrating the trained classifiers into existing tools to optimize the auto-
mated code review process.

6.6 Threats to Validity

In this study, we discuss the potential threats to the validity related to our study and
the adopted measures mitigating these threats by following the guidelines proposed
by Wohlin et al. (Wohlin et al., 2012).

6.6. Threats to Validity 205

6.6.1 Construct validity

Construct validity concerns the connection between operational measures and the
studied subjects. The first potential threat to construct validity is the suitability of
our selected ML/DL algorithms, feature extraction techniques, and metrics. As
mentioned by Peter et al. (Peters et al., 2017), it is not possible to use an exhaus-
tive approach to test all learning models. We selected five common ML algorithms,
one DL algorithm, and three popular pre-trained word embedding models, as they
are all widely used to conduct text classification. We admit that using different al-
gorithms and pre-trained word embedding models may generate varying results,
despite their popularity. We cannot completely mitigate this threat. In addition,
the four metrics (recall, precision, F1-score, and accuracy) are widely used to evalu-
ate the performance of various automatic software engineering techniques (see Sec-
tion 6.7.3). Therefore, the metrics pose little threat to the construct validity.

Another potential threat comes from the convenience sampling method of the
survey, as individuals with negative views towards the research might be less in-
clined to participate in our survey. This is a compromise inherent to the convenience
sampling method, and it implies that this threat cannot be completely mitigated.
Nevertheless, to improve the response rate and collect as many opinions as possible
from practitioners, we sent two rounds of reminder emails to the involved prac-
titioners. It is also possible that some survey respondents did not understand the
statements well. To reduce this threat to construct validity, we conducted a pilot sur-
vey for refining the survey design. Besides, we provided an “I Don’t Know” option
in our survey. Moreover, the survey respondents might have extra opinions besides
the six defined statements in the survey. To mitigate this threat, we offered an op-
tional open-ended question that allows respondents to freely share their thoughts
with us.

6.6.2 External validity

External validity pertains to the generalizability of our experiment results and find-
ings. We trained the ML and DL-based classifiers with our collected dataset re-
garding architecture violations. Selecting different datasets and experimental set-
tings might influence the generalizability of (part of) our findings. We acknowledge
that the chosen open-source projects are not representative of all projects from the
OpenStack and Qt platforms, and our findings may not be generalized to diverse
projects, particularly those from different domains such as closed-source projects
or projects on other platforms like Apache. Furthermore, the survey participants
are contributors to the selected projects, therefore, the findings of RQ3 might not

206 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

be generalized to other projects. To support further generalizability, we have made
our dataset (Li et al., 2023c) available to enable other researchers and practitioners
to replicate, reuse, and extend our study.

6.6.3 Reliability

Reliability reflects the replicability of a study regarding yielding the same or similar
results when other researchers reproduce this study. One potential threat to relia-
bility comes from the experimental settings (e.g., input data and hyperparameters
for training classifiers) used in this work. We used the dataset from our previous
study (Li et al., 2023d) that had publicly shared the labeled data and corresponding
scripts for collecting data. Besides, we also shared the source code in our replication
package (Li et al., 2023c) to facilitate reproduction and validation. Another poten-
tial threat might be from the survey design. To mitigate the threat, we provided the
templates of our survey and customized emails in our replication package (Li et al.,
2023c) to encourage further research in this area.

6.7 Related Work

In this section, we briefly discuss the current state of research in three associated
areas of our study. We first describe why we focused on code review comments
in Section 6.7.1; we then introduce previous studies on architecture violations in
Section 6.7.2; we finally present the benefits of utilizing automated techniques in
identifying artifacts in software development in Section 6.7.3.

6.7.1 Code Review Comments

Code review comments contain massive knowledge related to software develop-
ment, and a variety of studies analyze software defects and evolution through min-
ing review comments and commit records. Han et al. (Han, Tahir, Liang, Coun-
sell, Blincoe, Li and Luo, 2022) conducted an empirical study by manually check-
ing 25,415 code review comments to investigate code smells identified in modern
code review from four OSS projects. Their results show that most reviewers provide
constructive suggestions to help developers fix code, and developers are willing to
repair the smells through suggested refactoring operations. El Asri et al. (El Asri
et al., 2019) empirically investigated the impact of expressed sentiments on the code
review duration and its outcome. They found that reviews with negative comments
on average took longer time to complete than the reviews with positive/neutral

6.7. Related Work 207

comments. Kashiwa et al. (Kashiwa et al., 2022b) reported Self-Admitted Technical
Debt (SATD) during code review by checking 156,372 review records from Open-
Stack and Qt. They found that 28-48% SATD are introduced during code review,
and 20% SATD comments are created because of reviewers’ requests.

Besides, Uchôa et al. (Uchôa et al., 2020) investigated the impact of code review
on the evolution of design degradation through mining and analyzing a plethora
of code reviews from seven OSS projects. They found that there is a wide fluctu-
ation of design degradation during the revisions of certain code reviews. Paixão
et al. (Paixão et al., 2020) explored how developers perform refactorings in code re-
view, and they found that refactoring operations are most often used in code reviews
that implement new features. Besides, they observed that the refactoring operations
were rarely refined or undone along the code review, and such refactorings often
contribute to new code smells and bugs.

While the aforementioned studies investigated various aspects of code review
regarding development and maintenance (e.g., decisions, design degradation, and
SATD), there are no studies that investigated the automatic identification of vio-
lation symptoms in code review comments; we decided to fill this gap and explore
the application of ML/DL techniques to specifically identify violation-related issues
(e.g., violation symptoms) from code review comments.

6.7.2 Architecture Violations

Over the past decades, there have been various investigations on architecture vi-
olations. Brunet et al. (Brunet et al., 2012) performed a longitudinal study to ex-
plore the evolution of architectural violations in 19 bi-weekly versions of four open
source systems. They investigated the life cycle and location of architecture vio-
lations over time by comparing the intended and recovered architectures of a sys-
tem. They found that architectural violations tend to intensify as software evolves
and a few design entities are responsible for the majority of violations. More in-
terestingly, some violations seem to be recurring after being eliminated. Mendoza
et al. (Mendoza et al., 2021) proposed a tool called ArchVID based on model-driven
engineering techniques for identifying architecture violations from source code; this
tool supports recovering and visualizing the implemented architecture.

Besides, Terra et al. (Terra et al., 2015) reported their experience in fixing archi-
tectural violations. They proposed a recommendation system ArchFix that provides
refactoring guidelines for developers and maintainers to repair architectural viola-
tions in the module architecture view of object-oriented systems. Their results show
that their approach can provide correct recommendations for 75% and 79% of the
detected architecture violations on two selected systems, respectively. Maffort et

208 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

al. (Maffort et al., 2016) proposed an approach to check architecture conformance
for detecting architecture violations based on defined heuristics. They claimed that
their approach relies on the defined heuristic rules and can rapidly raise architecture
violation warnings.

Different from the abovementioned studies focusing on detecting architecture vi-
olations in source code, our work explores the possibility of automatic identification
of the violation symptoms from code review comments.

6.7.3 Analyzing Software Repositories with Machine Learning
and Deep Learning

The application of ML and DL techniques to extract informative knowledge from
various artifacts during software development is gaining popularity in the software
engineering community. In recent years, a plethora of empirical studies have been
conducted to investigate automated techniques for supporting software engineer-
ing tasks. Khalajzadeh et al. (Khalajzadeh et al., 2022) conducted an empirical study
by extracting and manually analyzing app reviews from 12 OSS projects and devel-
oped ML and DL models to automatically detect and classify human-centric issues
from app reviews and discussions. Their results show that automated techniques
can help developers to recognize and appreciate human-centric issues of end-users
more easily. Nasab et al. (Nasab et al., 2021) developed 15 ML and DL models to
automatically identify security discussions, and then they collected practitioners’
feedback through a validation survey and confirmed the promising applications of
the models in practice.

AlOmar et al. (AlOmar et al., 2021) proposed an approach to automatically iden-
tify and classify self-admitted refactoring in commit messages. They compared their
approach with pattern-based and simple random baselines, and the results show
that a good performance and a relatively small training dataset is sufficient to clas-
sify self-admitted refactoring commits. Hey et al. (Hey et al., 2020) proposed a novel
approach, named NoRBERT, for requirements classification by using the transfer
learning capabilities of BERT. They applied their approach to different tasks in the
domain of requirements classification, and the results show that their approach im-
proves requirements classification and can be applied to unseen projects with con-
vincing results.

In this work, word embeddings were utilized as word representations and as the
input for training ML and DL-based classifiers, as prior studies have demonstrated
the effectiveness of word embeddings in capturing rich semantic and syntactic fea-
tures of words (Ren et al., 2019). We employed ML/DL-related techniques to pro-
mote the automatic identification of violation symptoms. Although much work has

6.8. Conclusions and Future Work 209

been done on automatic text identification, there is currently no automatic way to
identify architecture violations in code review comments. Our approach is not re-
stricted to specific textual information, so future studies can replicate and extend
our work with other artifacts.

6.8 Conclusions and Future Work

During code review, reviewers typically spend a substantial amount of effort in com-
prehending code changes, as significant information (e.g., architecturally relevant
information) for inspecting code changes may be dispersed across several files that
the reviewers are not acquainted with. Automatic identification of architecture vi-
olations from the discussions between reviewers and developers can save valuable
time and effort to locate and check potential issues.

In this work, we attempted to address this issue of automatic identification of
violation symptoms in code review comments. To this end, we first performed a se-
ries of experiments on a dataset of architecture violation discussions. Subsequently,
to validate the usefulness of our trained ML and DL-based classifiers, we conducted
a survey that acquired the feedback from the involved developers who discussed
architecture violations in code reviews.

Specifically, we developed 15 ML-based and 4 DL-based classifiers to identify
violation symptoms from developer discussions in code reviews (i.e., code review
comments from four OSS projects in Gerrit). The results show that the SVM classifier
based on word2vec pre-trained word embedding performs the best with an F1-score
of 0.779. In most cases, classifiers with the fastText pre-trained word embedding
model can achieve relatively good performance. Furthermore, 200-dimensional
pre-trained word embedding models outperform classifiers that use 100 and 300-
dimensional models. In addition, an ensemble classifier based on the majority vot-
ing strategy can further enhance the classifier and outperforms the individual classi-
fiers. Moreover, practitioners’ perception of the usefulness of the classifiers’ results
validates the promising applications of automatic identification of violation symp-
toms in practice. Especially, such classifiers can enable and inspire practitioners to
find architecturally-related violation issues, prioritize, and eventually handle them.

In the future, we plan to conduct a more in-depth investigation of how practi-
tioners deal with architecture violations in code review, what kind of practices and
tools they use in dealing with architecture violations, and how using our approach
in their daily job can support the identification of architecture violations. We also
plan to further enhance the classifiers by identifying fine-grained types of architec-
ture violations based on a larger dataset of more projects from both open-source and

210 6. Towards Automatic Identification of Violation Symptoms of Architecture Erosion

industry projects. In particular, a bigger picture is that we plan to delve into a more
in-depth investigation and comparison of the performance of trained classifiers as
plug-ins or tools with fine-tuned large language models (such as Llama 2) using
real-world scenarios. The goal of such plug-ins or tools for code review platforms
is to provide warnings of potential architecture violations to practitioners (e.g., de-
velopers and reviewers) for them to re-check the related code changes during code
review.

Based on:

Ruiyin Li, Peng Liang, Paris Avgeriou, (2023) “Code Reviewer Recommendation for Architecture Violations:
An Exploratory Study,” in: Proceedings of the 27th International Conference on Evaluation and Assessment in
Software Engineering (EASE), Oulu, Finland, 2023, pp. 42–51: ACM. DOI:10.1145/3593434.3593450

Chapter 7

Code Reviewer Recommendation for
Architecture Violations: An Exploratory Study

Abstract

Code review is a common practice in software development and often con-
ducted before code changes are merged into the code repository. A number of
approaches for automatically recommending appropriate reviewers have been
proposed to match such code changes to pertinent reviewers. However, such
approaches are generic, i.e., they do not focus on specific types of issues during
code reviews. In this chapter, we propose an approach that focuses on architec-
ture violations, one of the most critical type of issues identified during code re-
view. Specifically, we aim at automating the recommendation of code reviewers,
who are potentially qualified to review architecture violations, based on reviews
of code changes. To this end, we selected three common similarity detection
methods to measure the file path similarity of code commits and the semantic
similarity of review comments. We conducted a series of experiments on finding
the appropriate reviewers through evaluating and comparing these similarity
detection methods in separate and combined ways with the baseline reviewer
recommendation approach, RevFinder. The results show that the common simi-
larity detection methods can produce acceptable performance scores and achieve
a better performance than RevFinder. The sampling techniques used in recom-
mending code reviewers can impact the performance of reviewer recommenda-
tion approaches. We also discuss the potential implications of our findings for
both researchers and practitioners.

7.1 Introduction

Code review is widely employed in modern software development and is recog-
nized as a valuable and effective practice at all stages of the development life cy-
cle (Bacchelli and Bird, 2013). Active participation of developers in code review

212 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

decreases defects, improves the software quality, and facilitates knowledge sharing
through rich communication among reviewers (Bacchelli and Bird, 2013; Ruangwan
et al., 2019). Over the last decade, several tools have been widely used in both indus-
try and open-source communities to make the code review process more effective,
such as Phabricator1, Review-Board2, and Gerrit3. Although such tools provide au-
tomated techniques to support the code review process, there is still a significant
amount of human factors that can influence code review activities, such as unquali-
fied reviewers, response delays, and overloaded review workload (Chouchen et al.,
2021; Balachandran, 2013; Ruangwan et al., 2019).

At the heart of the human-related issues lies the process of matching code to re-
viewers: authors who submit new code patches to a code review system, need to in-
vite (or the system can assign) reviewers to manually check the uploaded code frag-
ments based on the reviewers’ expertise and past experience with reviews; this may
be a labor-intensive and time-consuming task, especially for large projects (Çetin
et al., 2021). Previous studies (Bosu et al., 2016b; Chouchen et al., 2021; Ruangwan
et al., 2019) found that effective code review requires a significant amount of effort
from reviewers who thoroughly understand the submitted code. However, inap-
propriate code reviewers might hinder the review process, delay the incorporation
of a code change into a code base, and slow down the development process. Such
problems arise from misunderstanding or simply lacking knowledge of the inten-
tion or effect of code changes (Dogan et al., 2019). A proper recommendation of
code reviewers can help reduce delays and speed up development by finding ap-
propriate reviewers who are more familiar with and spend less time reviewing the
submitted code fragments (Thongtanunam et al., 2015; Balachandran, 2013).

There exist a number of code reviewer recommendation approaches in the litera-
ture (see Section 7.2.2). While these approaches can be effective, they are all generic
in terms of the issues that reviewers focus. In this work, we focus on a particu-
lar type of issues: architecture violations. While architecture violations are one of
the most frequently identified types of architecture issues during code review, they
are not effectively covered by existing techniques and tools (Li, Soliman, Liang and
Avgeriou, 2022). If code fragments with architecture violations are merged into the
code base, it will increase the risk of architecture erosion (Li, Liang, Soliman and
Avgeriou, 2022; Li, Soliman, Liang and Avgeriou, 2022) and gradually degrade ar-
chitecture sustainability and stability (Venters et al., 2018).

The goal of this work is to offer an automated recommendation of code review-
ers, who are potentially qualified to review architecture violations. More specifi-

1https://www.phacility.com/
2https://www.reviewboard.org/
3https://www.gerritcodereview.com/

https://www.phacility.com/
https://www.reviewboard.org/
https://www.gerritcodereview.com/

7.1. Introduction 213

cally, we aim at recommending potential code reviewers who have knowledge on
architecture violations, through analyzing textual content of the review comments
and the file paths of the reviewed code changes. Consequently, our approach is not
limited to specific programming languages. This can act in a complementary way to
a regular code review: a final check by reviewers who are knowledgeable in archi-
tecture violations can act as a quality gate to avoid code changes with architecture
violations merged into the code base.

Our proposed approach is novel in terms of mining semantic information in re-
view comments from code reviewers, based on common similarity detection meth-
ods. To validate our approach, we conducted a series of experiments on 547 code
review comments related to architecture violations from four Open-Source Software
(OSS) projects (i.e., Nova, Neutron, Qt Base, and Qt Creator). The results show that
the employed similarity detection methods can produce acceptable performance
scores (i.e., values of top-k accuracy and mean reciprocal rank metrics) and achieve
a better performance than the baseline approach, RevFinder (Thongtanunam et al.,
2015). We managed to further explore the performance of the proposed approach
on our dataset, by using fixed sampling instead of incremental sampling. The main
contributions of our work are:

• We explored the possibility of common similarity detection methods on rec-
ommending code reviewers who have awareness of architecture violations.

• We conducted experiments to evaluate and compare the performance of three
similarity detection methods with the baseline approach RevFinder on four
OSS projects.

• We shared the source code and dataset of our work (Li et al., 2023b) to en-
courage further research on code reviewer recommendation for architecture
issues.

The remainder of this chapter is structured as follows: Section 7.2 describes the
background regarding performing code review in Gerrit, code reviewer recommen-
dation, and architecture violations. Section 7.3 elaborates on the research questions
and study design. Section 7.4 presents the results of the research questions and dis-
cusses their implications. Section 7.5 clarifies the threats to validity and limitations
of this study. Section 7.6 reviews the related work and Section 7.7 concludes this
study with future directions.

214 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

7.2 Background

7.2.1 Code Review Process in Gerrit

Code review refers to the process of inspecting source code, which is a critical ac-
tivity during development and can help to improve software quality (Bacchelli and
Bird, 2013). The workflow of code review varies slightly between different plat-
forms, e.g., the pull-request workflow in GitHub is different than code review in
Gerrit. Gerrit is a commonly used platform for coordinating code review activities
and facilitating traceable code reviews for git-based software development. In this
work, we collected code review data from four OSS projects of two large commu-
nities OpenStack and Qt (see Section 7.3.2), both of which use Gerrit to conduct the
code review process. We thus briefly elaborate on the code review process with
Gerrit (see Figure 7.1).

A developer can submit new code patches or modify the original code fragments
fetched from the repository through revisions; both take the form of commits. Ger-
rit then creates a page to record the submitted commits after conducting automated
tasks, like a sanity check. Other developers of the project will be invited as review-
ers to inspect the submitted commits and offer feedback (i.e., code review comments
on the commits) to the developer. Such a review cycle will stop until the reviewers
either approve the submitted code (status “Merged”) or reject it (status “Abandoned”).
In this process, we argue that one of the code reviewers should have awareness of
architecture violations and provide a review on what they are and how to fix them.
Such a code review that is focused on architecture violations would be complemen-
tary to regular code reviews.

7.2.2 Code Reviewer Recommendation

Expert recommendation is a common area in software engineering (Sülün et al.,
2021), and code reviewer recommendation is a typical application of expert recom-
mendation. Over the recent years, many approaches have been proposed for recom-
mending code reviewers in the literature (Thongtanunam et al., 2015; Zanjani et al.,
2015; Yu et al., 2016; Jiang et al., 2015; Rebai et al., 2020); these are briefly introduced
below based on the categories in previous studies (Çetin et al., 2021; Lipcak and
Rossi, 2018).

Heuristic-based approaches include problem-solving and practical methods.
For example, the heuristic approaches, such as ReviewBot (Balachandran, 2013),
cHRev (Zanjani et al., 2015), RevFinder (Thongtanunam et al., 2015), calculate

7.2. Background 215

repository

reviewerdeveloper

commits

approve

merged

review comments

sanity check

reject

abandoned

invited

Figure 7.1: An overview of code review process in Gerrit

heuristic scores through building expertise models to measure candidate reviewers’
expertise.

Machine learning-based approaches usually utilize data-driven machine learning
techniques (e.g., Support Vector Machine (SVM) (Jiang et al., 2015)) and genetic al-
gorithms (e.g., Indicator-Based Evolutionary Algorithm (IBEA) (Chouchen et al.,
2021), NSGA-II (Rebai et al., 2020)) to recommend reviewers. Such approaches are
based on a series of features, such as patches, bug report information.

Hybrid approaches combine different approaches (e.g., machine learning (Jiang
et al., 2015), graph structure (Yu et al., 2016), genetic algorithm (Chouchen et al.,
2021; Rebai et al., 2020)) for recommending reviewers. For example, Xia et al. (Xia
et al., 2015) developed a hybrid incremental approach TIE (a Text mIning and filE
location-based approach) to recommend reviewers through measuring textual con-
tent (i.e., multinomial Naive Bayes, a text mining technique) and file path similarity
(i.e., a VSM-based approach).

Different approaches utilize different types of artifacts to recommend code re-
viewers. According to the recent literature review by Çetin et al. (Çetin et al., 2021),
most of the studies use pull request history (e.g., changes lines, paths of changed
files and titles), and some studies also use code review history (including comments
made by pull requests and reviews). Our approach can be regarded as a heuristic-
based approach, and is based on both the review comments and file paths of re-
viewed code changes. It differs from existing approaches as it focuses specifically
on architecture violations.

216 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

7.2.3 Architecture Violations

During software evolution, architecture erosion can degrade the stability and sus-
tainability of system architecture due to increasing changes and accumulated ar-
chitecture violations (Li, Liang, Soliman and Avgeriou, 2022, 2021b; Venters et al.,
2018). Architecture violations are the most common and prominent type of archi-
tecture erosion symptoms; various architecture violations have been investigated
in the literature (Li, Liang, Soliman and Avgeriou, 2022). Architecture violations
manifest in various ways: structural inconsistencies, violations of design decisions,
violations of design principles, violations of architecture patterns, violations of API
specification, etc. Previous studies on architecture violations have focused on ana-
lyzing history versions of source code. For example, Brunet et al. (Brunet et al., 2012)
carried out a longitudinal study to analyze the evolution of 19 bi-weekly versions of
four OSS projects, by examining the life cycle and location of architecture violations
and comparing them to the intended architecture. Maffort et al. (Maffort et al., 2016)
proposed an approach based on defined heuristics that can rapidly raise architec-
ture violation warnings. In contrast to the studies focusing on detecting architecture
violations in source code, we aim at finding reviewers who can review architecture
violations during code review, regardless of the type of architecture (e.g., micro-
services, layered architecture).

7.3 Research Methodology

7.3.1 Research Questions

RQ1: Can common similarity detection methods be effectively used in rec-
ommending code reviewers for architecture violations?

Rationale: This study aims at proposing an approach for the automated recom-
mendation of code reviewers who are knowledgeable on architecture violations.
To this end, we propose to use similarity measurement, as this technique is com-
monly used to process textual artifacts like code reviews (Chouchen et al., 2021;
Fejzer et al., 2018; Ouni et al., 2016b). With this RQ, we want to investigate whether
common similarity measurement techniques (i.e., Jaccard coefficient, adapted Ham-
ming distance, cosine similarity) can indeed be useful for recommending code re-
viewers based on the review comments and file paths of the reviewed code changes
related to architecture violations (see Section 7.3.3). Specifically, we plan to evaluate

7.3. Research Methodology 217

the performance of similarity detection methods using metrics widely adopted by
the recommendation system community (Çetin et al., 2021), i.e., Top-k Accuracy and
Mean Reciprocal Rank.

RQ2: How does the performance of the proposed similarity detection
methods compare against existing code reviewer recommendation ap-
proaches?

Rationale: With this RQ, we want to compare the similarity detection methods with
an existing approach using the artifacts that we collected in our study. Specifi-
cally, there are a number of code reviewer recommendation approaches (Lipcak and
Rossi, 2018; Çetin et al., 2021; Sülün et al., 2021), which can be compared against the
proposed approach. To be able to make the comparison, the source code of these
approaches must be publicly available in order to reproduce them.

RQ3: Do the sampling techniques affect the performance of the proposed
code reviewer recommendation approach?

Rationale: As mentioned in a recent literature review (Çetin et al., 2021), various
sampling methods were used in code review recommendation. However, there
are no studies that investigate whether sampling methods (see Section 7.3.3) can
impact the performance of reviewer recommendation approaches, and which sam-
pling techniques can achieve relatively better performance. By answering this RQ,
we aim at providing empirical evidence about the influence of sampling techniques
on reviewer recommendation performance.

7.3.2 Data Collection

Projects and Code Review Comments. The original dataset used in this study is
from our previous work (Li et al., 2023d). Through a series of tasks (e.g., keywords
search, manual identification and labeling of architecture violation related review
comments), we collected 606 review comments on code changes and commit mes-
sages related to architecture violations. In our work, we focused on recommending
reviewers who have awareness of architecture violations regarding code changes,
since one of the purposes of reviewer recommendation is to help selecting review-
ers for code changes. Therefore, we further extracted 547 review comments from
the original dataset (Li et al., 2023d) that are only related to code changes on archi-
tecture violations (Li et al., 2023b). The dataset contains the code review comments

218 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

from four OSS projects, including Nova and Neutron from the OpenStack commu-
nity4, as well as Qt Base and Qt Creator from the Qt community5. As shown in
Table 7.1, our dataset from the four OSS projects includes code review comments
regarding architecture violations in eight years from June 2012 to December 2020.
The review comments are related to various architecture violations (e.g., violations
of design decisions, design principles, and architecture patterns), and were made
by more than 200 reviewers. The items in the dataset contain review ID and patch
information, including change id, patch, file url, line, and comment. The
scripts and dataset of this work are available in (Li et al., 2023b).

Table 7.1: Details of the selected projects used in our work

Project Time Period Files1 Comments2 Reviewers3

Neutron 2013/11 - 2020/08 111 149 64

Nova 2013/01 - 2020/08 126 206 67

Qt Base 2012/12 - 2020/12 124 139 48

Qt Creator 2012/06 - 2020/11 49 53 25
1 Files: Code change files
2 Comments: Code review comments on architecture violations
3 Reviewers: Code reviewers of the code change files

7.3.3 Recommendation Approach

Problem Statement. Since the artifacts we collected are from the OSS projects that
use Gerrit as the code review tool, we take such projects as examples to formulate
our approach. A software project S contains a set of m developers D = {d1, . . . , dm}
and n code reviewers R = {r1, . . . , rn}, and includes a set of j source code files F =
{ f1, . . . , f j} and a set of k code review comments C = {c1, . . . , ck}. In general, R is
used to represent a set of candidate code reviewers for code changes. Each reviewer
ri has their own expertise on certain source code file fi, and has a review comment
ci on the corresponding commit.

In such a project, each new commit (i.e., code changes that are not yet merged
into the code base) could be reviewed by a number of invited (or assigned) code re-
viewers. Our proposal is to generate a list of recommended reviewers, in which each
prospective reviewer has a matched score representing their expertise. The higher
the expertise score of a reviewer, the greater the probability for this reviewer to be

4https://www.openstack.org/
5https://www.qt.io/

https://www.openstack.org/
https://www.qt.io/

7.3. Research Methodology 219

recommended to review the commit. As mentioned in Section 7.2.2, our reviewer
recommendation approach is based on the reviewer’s expertise, which is extracted
and calculated from historical commits (e.g., review comments and file paths) and
commonly used in previous studies (Thongtanunam et al., 2015; Chouchen et al.,
2021; Chen et al., 2022; Kong et al., 2022; Fejzer et al., 2018). The input of our recom-
mendation approach is the past commit files, including file paths, review comments
regarding architecture violations, and the corresponding reviewers.

Similarity Calculation. To answer RQ1 and present the expertise of reviewers,
we chose cosine similarity, Jaccard coefficient, and adapted Hamming distance to
measure the similarity of file paths and the semantic similarity of review comments
on architecture violations.

In terms of the similarity of file paths, Jaccard coefficient and adapted Hamming
distance are two common methods used to measure the similarity between file
paths of code changes; they are considered efficient similarity measures and widely
adopted in previous studies (e.g., Chouchen et al. (2021); Fejzer et al. (2018); Ouni
et al. (2016b)). Jaccard coefficient is calculated to measure similarity, as shown in
Equation (7.1):

Jac Similarity(X, Y) =
|X ∩ Y|
|X ∪ Y| (7.1)

where X and Y represent two entities whose similarity needs to be measured. Here,
to measure the file path similarity, X and Y represent two file paths (i.e., the sets of
tokens of file paths), and the more common tokens between the file paths X and Y,
the higher similarity of the two file paths.

In addition, the similarity between file paths can be also calculated by the
adapted Hamming distance (i.e., similarity score = Hamming distance for the same
length strings + difference in length of the two strings). If two file paths have the same
paths, then the similarity score returns 1, otherwise it returns the reciprocal score of
the adapted Hamming distance of the two file paths.

In terms of the semantic similarity of code review comments, cosine similarity and
Jaccard coefficient are used to measure the semantic similarity between code review
comments. The two methods are often used in previous studies (e.g., Yu et al. (2016);
Rahman et al. (2017)) to measure the semantic similarity of textual artifacts. Cosine
similarity can be utilized to determine lexical similarity between two entities repre-
sented by two vectors of words. In our case, cosine similarity is used to measure the
semantic similarity of review comments regarding architecture violations, as shown
in Equation (7.2):

220 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

Cos Similarity(Ci, Cj) =
vi · vj

|vi|
∣∣vj

∣∣ (7.2)

where Ci and Cj represent two code review comments, and vi and vj denote their
corresponding vectors. To generate vectors, we adopted a pre-trained Word2vec
model, which was trained based on over 15 GB of textual data from Stack Overflow
posts that contain a plethora of textual expressions and words in software engineer-
ing domain (Efstathiou et al., 2018b). The higher the similarity score, the closer the
two vectors that represent the two review comments.

Regarding the Jaccard coefficient, as shown in Equation (7.1), X and Y represent
two review comments in a set of tokens (i.e., tokenized words). The more common
tokens between X and Y, the higher similarity score of the two review comments.
Note that, before we calculated the semantic similarity by cosine similarity and Jac-
card coefficient, we applied the following four pre-processing steps:

1. Tokenization. The process of tokenization is to break a stream of text into words,
punctuation, and other meaningful elements called tokens.

2. Noise removal. Noise data usually does not contain valuable semantic informa-
tion, and we therefore removed punctuation, numbers, and special characters
(e.g., “\”, “*”);

3. Stop words removal. Stop words occur commonly but do not add valuable in-
formation to differentiate different text, such as “the”, “are”, and “is”, which
can be removed.

4. Capitalization conversion. We converted all the text to lower case, which can
help to maintain the consistency of word form and avoid recounting the
words.

Reviewer Recommendation. For a new code change that has been commented
by reviewers but has not been merged into the code base, we aim at recommending
code reviewers who are potentially aware of architecture violations through mea-
suring the similarity of the file paths and review comments of the reviewed code
changes.

We ranked the candidate code reviewers through calculating the reviewer scores
using the file path similarity and the semantic similarity of historical commits (i.e.,
file paths and review comments of the reviewed code changes). This includes File
Path similarity by Jaccard Coefficient (FP JC), File Path similarity by adapted Ham-
ming Distance (FP HD), Review Comment semantic similarity by Cosine Similarity
(RC CS), and Review Comment semantic similarity by Jaccard Coefficient (RC JC).

7.3. Research Methodology 221

Given a new code change file f, we extracted its file path fnew and review com-
ment cnew, and then calculated the above-mentioned similarity scores between the
current code change and each past code change, including the past file path fpast
and review comment cpast. For example, FP JS(fnew, fpast) calculates the file path
similarity score between fnew and the file path fpast of a past code change by Jac-
card coefficient. Similarly, RC CS(cnew, cpast) calculates the semantic similarity score
between cnew and the review comment cpast of a past review comment by cosine
similarity. Then, the scores are assigned to the associated reviewers, respectively.
In other words, each reviewer has four candidate similarity scores by using the
four similarity detection methods. By calculating the similarity scores in separate
and combined ways, a reviewer recommendation list can be generated based on the
sorted reviewers along with their scores.

Sampling and Validation. Sampling refers to the sampling techniques for con-
structing the expertise model, and validation denotes the process of testing the per-
formance and effectiveness of certain sampling techniques. Unfortunately, most
code reviewer recommendation studies did not provide detailed information and
empirical validation on the sampling techniques for constructing their expertise
models (Çetin et al., 2021), and it is nontrivial to explore the effectiveness of the sam-
pling and evaluation techniques with the purpose of providing such empirical vali-
dation. Therefore, to answer RQ3, we planned to investigate whether and to what
extent the sampling techniques can impact the performance of the proposed code re-
viewer recommendation approach. According to a recent literature review on code
reviewer recommendation (Çetin et al., 2021), incremental sampling and fixed sam-
pling are the two most popular sampling and validation techniques (see Figure 7.2),
and have been commonly used in code reviewer recommendation studies (Çetin
et al., 2021).

Since the code review data is temporal data, all prior studies organized their
dataset chronologically (Çetin et al., 2021). Thus, we also sorted our dataset in a
chronological order. The incremental sampling technique takes the historical review
data as the input of the expertise model through increasing the sample number in
each iteration (i.e., each step in Figure 7.2). The final performance of the recom-
mendation approach is the average performance value of all the steps. In terms
of the incremental sampling, we set four steps in this work, and we took 10% of
the new sample as the validation set in each step. In terms of the fixed sampling,
we employed a fixed percentage of the test set by randomly sampling with 10% in
previous studies (e.g., Al-Zubaidi et al. (2020)) of the dataset of the four projects.

222 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

Sorted chronologically

Step 1

Step n Sample Valida�on

Step 2

· · ·

Sample Valida�on

Sample Valida�on

1 2 3 4 5 6 7 8 · · · · · · N-3 N-2 N-1 N

1 2 3 4 5 6 7 8 · · · · · · N-3 N-2 N-1 N

Incremental
Sampling

Sample Valida�on

Fixed
Sampling

Dataset

Figure 7.2: Overview of incremental sampling and fixed sampling

7.3.4 Baseline Approach

To answer RQ2, we needed to reproduce existing expertise-based approaches, such
as (Yu et al., 2016; Kong et al., 2022; Thongtanunam et al., 2015; Chouchen et al.,
2021), in order to compare them against our approach. However, we were only able
to do that for one approach, namely RevFinder (Thongtanunam et al., 2015). The
rest of the approaches had two main issues: (1) they require additional information
that is not readily available (e.g., review workload); and (2) they do not make their
source code or datasets available; some approaches did share parts of the source
code, but still they can not be reproduced. This makes it difficult or even impossible
to compare and evaluate our approach with these approaches.

Therefore, we reproduced one baseline approach, RevFinder, on our collected
dataset. RevFinder is a file path-based approach, which is a specific expertise-based
approach and supports recommending reviewers by measuring the file path simi-
larity of commits. Specifically, when there is a new commit, developers who have
reviewed or engaged in similar revisions (i.e., with similar file paths) are likely to
be recommended. Previous studies (e.g., Kong et al. (2022); Chouchen et al. (2021);

7.3. Research Methodology 223

Lipcak and Rossi (2018); Zanjani et al. (2015); Rebai et al. (2020)) using various arti-
facts (e.g., pull-requests, historical issues) usually compared their approaches with
RevFinder (Thongtanunam et al., 2015), since file path is a common feature of vari-
ous artifacts related to code review.

7.3.5 Evaluation Metrics

To evaluate the similarity detection methods and the baseline approach, we adopted
two of the most prevalent metrics used in previous studies (Çetin et al., 2021): Top-k
Accuracy and Mean Reciprocal Rank. We denote a code reviewer as r and a code
reviewer set as R.

Top-k Accuracy measures the percentage of code reviews for which an approach
can properly recommend the true code reviewers within the top-k positions in a
ranked list of recommended code reviewers. In other words, this accuracy is regard-
ing the ratio of the number of correctly recommended reviewer r (i.e., isCorrect(r,
Top-k)) in the total number of reviewers of a ranked list of recommended review-
ers. isCorrect(r, Top-k) returns 1 if there is at least one top-k reviewer r who actually
reviewed the code, otherwise, isCorrect(r, Top-k) returns 0 which means a wrong rec-
ommendation. The higher the top-k accuracy value, the better the recommendation
performance. By following the previous studies in Section 7.2.2, we set the k values
of 1, 3, 5, and 10.

Top-k Accuracy =
1
|R| ∑r∈R

isCorrect(r, Top-k) (7.3)

Mean Reciprocal Rank (MRR) calculates an average of reciprocal ranks of cor-
rect code reviewers in a recommendation list. Given a set of reviewers R, MRR can
be calculated by Equation (7.4). rank(r) returns the value of the rank of the first cor-
rect reviewer in the recommendation list for reviewer r. The value of 1

rank(r) returns
0 if there is no one who actually reviewed the code in the recommendation list. Ide-
ally, an approach that can provide a perfect ranking should achieve an MRR value
of 1. Generally, the higher the MRR value, the better the recommendation approach
is.

MRR(R) =
1
|R| ∑r∈R

1
rank(r)

(7.4)

224 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

7.4 Results and Discussion

7.4.1 RQ1: Effectiveness of Our Approach

To answer RQ1, we evaluated the performance of the similarity detection methods
for recommending code reviewers. We used two similarity detection methods to
measure the similarity of file paths, as well as two similarity detection methods
to measure the similarity of code review comments, that is, FP JC, FP HD, RC CS,
and RC JC (see Section 7.3.3). Table 7.2 presents the performance of the similarity
detection methods and their combinations.

Firstly, we evaluated the performance of the individual similarity detection
methods, as shown in the four top rows per project in Table 7.2. The grey cells in-
dicate the best performance metrics. The results show that the similarity detection
methods yield varying results on different projects. For example, the performance
of FP JC and FP HD on Neutron and Nova are better (with a higher top-k accuracy
and MRR) than on Qt Base and Qt Creator. Secondly, we evaluated the performance
of the combinations of similarity detection methods on the four projects (rows 6-17
per project in Table 7.2). For the combinations of two similarity detection meth-
ods, the mixed similarity detection method of FP JC and FP HD achieves the best
performance on Neutron and Nova projects with 0.33 accuracy at top-10 recommen-
dation, and the mixed similarity detection method of FP JC and RC JC achieves the
best top-5 (i.e., 0.33, 0.19, 0.29, and 0.40) and top-10 accuracy (i.e., 0.33, 0.33, 0.43,
and 0.40) on the four projects. For the combinations of three similarity detection
methods, the mixed similarity detection method of FP JC, FP HD, and RC JC gets
the best accuracy and MRR on the four projects. In addition, we find that the per-
formance of the combination of four similarity detection methods does not improve
significantly when compared to the mixed approaches of three similarity detection
methods.

Considering the average results of the similarity detection methods, we find that
mixing three similarity detection methods can achieve a slightly higher top-k accu-
racy and MRR on Neutron, Nova, and Qt Base, and a significantly better perfor-
mance on Qt Creator when compared to mixing two methods. However, combining
four similarity detection methods has no obvious performance improvement. In
general, the results show that combining three similarity detection methods can rel-
atively get the best performance of top-k accuracy and MRR on the four projects.

Discussion of RQ1: The experiment results in Table 7.2 indicate that the selected
similarity detection methods can produce acceptable performance scores (MRR val-
ues between 0.06 and 0.36) on code reviewer recommendation for architecture vi-

7.4.R
esults

and
D

iscussion
225

Table 7.2: Top-k (1, 3, 5, 10) accuracy and MRR results of the selected similarity detection methods on four OSS projects

Project Neutron Nova

Similarity detection
method

Top-1 MRR Top-3 MRR Top-5 MRR Top-10 MRR Top-1 MRR Top-3 MRR Top-5 MRR Top-10 MRR

FP JC 0.20 0.20 0.33 0.27 0.33 0.27 0.33 0.27 0.10 0.10 0.14 0.12 0.14 0.12 0.24 0.13

FP HD 0.20 0.20 0.33 0.26 0.33 0.26 0.33 0.26 0.10 0.10 0.14 0.12 0.14 0.12 0.29 0.14

RC CS 0.07 0.07 0.20 0.12 0.30 0.12 0.27 0.13 0.00 0.00 0.00 0.00 0.05 0.01 0.19 0.03

RC JC 0.20 0.20 0.20 0.20 0.27 0.21 0.33 0.22 0.05 0.05 0.14 0.10 0.14 0.10 0.24 0.11

Average 0.17 0.17 0.27 0.21 0.31 0.22 0.32 0.22 0.06 0.06 0.11 0.09 0.12 0.09 0.24 0.10

FP JC + FP HD 0.27 0.27 0.33 0.29 0.33 0.30 0.33 0.30 0.10 0.10 0.14 0.12 0.14 0.12 0.29 0.14

FP JC + RC CS 0.20 0.20 0.20 0.20 0.27 0.22 0.27 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.02

FP JC + RC JC 0.27 0.27 0.33 0.26 0.33 0.29 0.33 0.29 0.05 0.05 0.05 0.05 0.19 0.08 0.33 0.09

FP HD + RC CS 0.13 0.13 0.13 0.13 0.27 0.16 0.27 0.16 0.00 0.00 0.00 0.00 0.05 0.01 0.19 0.03

FP HD + RC JC 0.00 0.00 0.07 0.03 0.07 0.03 0.20 0.05 0.00 0.00 0.05 0.02 0.19 0.06 0.24 0.06

RC CS + RC JC 0.00 0.00 0.07 0.03 0.07 0.03 0.20 0.05 0.00 0.00 0.05 0.02 0.10 0.03 0.19 0.04

Average 0.15 0.15 0.19 0.16 0.22 0.17 0.27 0.18 0.03 0.03 0.05 0.04 0.11 0.05 0.24 0.06

FP HD + RC CS +
RC JC

0.20 0.20 0.27 0.23 0.27 0.23 0.27 0.23 0.00 0.00 0.10 0.03 0.10 0.03 0.19 0.04

FP JC + RC CS + RC JC 0.20 0.20 0.20 0.20 0.27 0.22 0.27 0.22 0.00 0.00 0.05 0.02 0.10 0.03 0.19 0.03

FP JC + FP HD + RC JC 0.27 0.27 0.33 0.29 0.33 0.29 0.33 0.28 0.05 0.05 0.14 0.10 0.19 0.10 0.33 0.12

FP JC + FP HD +
RC CS

0.20 0.20 0.20 0.20 0.27 0.21 0.27 0.21 0.00 0.00 0.00 0.00 0.05 0.01 0.19 0.03

Average 0.22 0.22 0.25 0.23 0.29 0.24 0.29 0.24 0.01 0.01 0.07 0.04 0.11 0.04 0.23 0.06

FP JC + FP HD +
RC CS + RC JC

0.20 0.20 0.20 0.20 0.27 0.22 0.27 0.22 0.00 0.00 0.10 0.03 0.10 0.03 0.24 0.05

226
7.C

ode
R

eview
er

R
ecom

m
endation

for
A

rchitecture
V

iolations:A
n

Exploratory
Study

Project Qt Base Qt Creator

Similarity detection
method

Top-1 MRR Top-3 MRR Top-5 MRR Top-10 MRR Top-1 MRR Top-3 MRR Top-5 MRR Top-10 MRR

FP JC 0.00 0.00 0.14 0.05 0.14 0.05 0.36 0.08 0.00 0.00 0.20 0.07 0.40 0.11 0.40 0.11

FP HD 0.00 0.00 0.00 0.00 0.21 0.05 0.29 0.06 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.23

RC CS 0.00 0.00 0.00 0.00 0.21 0.05 0.29 0.06 0.00 0.00 0.20 0.10 0.60 0.19 0.80 0.21

RC JC 0.07 0.07 0.21 0.14 0.21 0.14 0.21 0.14 0.20 0.20 0.40 0.27 0.60 0.32 0.60 0.32

Average 0.02 0.02 0.09 0.05 0.19 0.07 0.29 0.09 0.10 0.10 0.25 0.16 0.45 0.21 0.55 0.22

FP JC + FP HD 0.00 0.00 0.14 0.06 0.14 0.05 0.43 0.15 0.20 0.20 0.20 0.20 0.40 0.25 0.40 0.25

FP JC + RC CS 0.14 0.14 0.14 0.14 0.21 0.16 0.29 0.17 0.20 0.20 0.40 0.30 0.40 0.30 0.80 0.36

FP JC + RC JC 0.00 0.00 0.07 0.04 0.29 0.10 0.43 0.09 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

FP HD + RC CS 0.00 0.00 0.14 0.05 0.21 0.07 0.29 0.08 0.20 0.20 0.40 0.30 0.40 0.30 0.80 0.35

FP HD + RC JC 0.07 0.07 0.21 0.13 0.29 0.15 0.36 0.16 0.00 0.00 0.20 0.07 0.20 0.07 0.40 0.10

RC CS + RC JC 0.07 0.07 0.21 0.13 0.29 0.15 0.36 0.16 0.00 0.00 0.20 0.07 0.20 0.07 0.40 0.10

Average 0.05 0.05 0.15 0.09 0.24 0.11 0.36 0.14 0.17 0.17 0.30 0.22 0.33 0.23 0.53 0.26

FP HD + RC CS +
RC JC

0.07 0.07 0.14 0.11 0.29 0.14 0.29 0.14 0.20 0.20 0.40 0.30 0.40 0.30 0.80 0.36

FP JC + RC CS + RC JC 0.07 0.07 0.14 0.11 0.21 0.13 0.29 0.14 0.40 0.40 0.40 0.40 0.40 0.40 0.80 0.46

FP JC + FP HD + RC JC 0.07 0.07 0.14 0.10 0.21 0.11 0.43 0.14 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

FP JC + FP HD +
RC CS

0.14 0.14 0.21 0.17 0.21 0.17 0.29 0.18 0.40 0.40 0.40 0.40 0.40 0.40 0.80 0.45

Average 0.09 0.09 0.16 0.12 0.23 0.14 0.33 0.15 0.35 0.35 0.40 0.38 0.40 0.38 0.70 0.42

FP JC + FP HD +
RC CS + RC JC

0.07 0.07 0.21 0.14 0.21 0.14 0.29 0.15 0.40 0.40 0.40 0.40 0.40 0.40 0.80 0.22

7.4. Results and Discussion 227

olations on the four projects, compared to the results (MRR values between 0.14
and 0.59) of related studies on generic reviewer recommendation (e.g., Chouchen
et al. (2021); Hu et al. (2020)) with more reviewer candidates (which means poten-
tially better performance due to the larger datasets). Besides, we observed that the
similarity detection methods can achieve varying performances on different OSS
projects. One possible reason is that the effectiveness of code reviewer recommen-
dation approach can be influenced by project characteristics (e.g., size and type of
project datasets), which aligns with the findings by Chen et al. (Chen et al., 2022). In
addition, the results show that combining three similarity detection methods based
on file paths and semantic information can achieve the best performance of code
reviewer recommendation. We cannot observe significant improvement when com-
bining four similarity methods. We conjecture that this is because certain similarity
detection methods might affect the final performance to varying degrees on our
dataset and need to be assigned with appropriate weights to their similarity values;
this requires further investigation, e.g., optimizing the performance by algorithms.

The results indicate that it is still challenging to recommend code reviewers
when specific issues (e.g., architecture violations) are involved, and the performance
cannot be always significantly improved by combining more similarity detection
methods.

Finding 1: The performance of the similarity detection methods and their combi-
nations can produce acceptable performance scores, and achieve varying results on
different projects. Combining three similarity methods can achieve the best perfor-
mance of reviewer recommendation.

7.4.2 RQ2: Comparison of Recommendation Approaches

To answer RQ2, we measured the performance of the similarity detection meth-
ods through a comparison with the baseline reviewer recommendation approach,
RevFinder (Thongtanunam et al., 2015). As mentioned in Section 7.3.4, this was the
only reviewer recommendation approach that we could reproduce. Specifically, we
extracted the individual methods and the best-performing combinations of the sim-
ilarity detection methods from Table 7.2, and we compared them with RevFinder on
the four OSS projects. As shown in Figure 7.3, this includes the results of the four in-
dividual similarity detection methods, the combinations of two similarity detection
methods (i.e., FP JC + FP HD and FP JC + RC JC), one combination of three similar-
ity detection methods (i.e., FP JC + FP HD + RC JC), and one combination of four
similarity detection methods (i.e., FP JC + FP HD + RC CS + RC JC). Note that Fig-

228 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

ure 7.3 shows different scale for Qt Creator, to observe and compare the differences
of the similarity detection methods. In terms of top-k accuracy, the four individual
similarity detection methods and their combinations outperform RevFinder approx-
imately 4 times on Neutron; the combination of FP JC and RC JC and the combina-
tion of FP JC, FP HD, and RC JC achieve a better top-k accuracy than RevFinder on
Nova; RevFinder achieves a relatively better top-k accuracy than the four individual
similarity detection methods on Qt Base. Nearly all the similarity detection methods
and their combinations outperform RevFinder on Qt Creator.

Table 7.3 presents the average Mean Reciprocal Rank (MRR) of the aforemen-
tioned similarity detection methods, their combinations, and RevFinder. The re-
sults show that the individual RC JC method can achieve a better MRR on the four
projects than RevFinder. All the mixed similarity detection methods can achieve
a higher MRR than RevFinder on three of the four projects (except for Nova with
mixing two and three similarity detection methods). Overall, the similarity detec-
tion methods and their combinations outperform RevFinder in the majority of the
cases.

Table 7.3: Average MRR results by the selected similarity detection methods compared with
RevFinder

Project Neutron Nova Qt Base Qt Creator

RevFinder 0.03 0.04 0.13 0.06

FP JC 0.25 0.12 0.05 0.07

FP HD 0.24 0.12 0.03 0.21

RC CS 0.11 0.01 0.03 0.13

RC JC 0.21 0.09 0.12 0.28

FP JC + FP HD 0.29 0.12 0.07 0.23

FP JC + RC JC 0.28 0.07 0.06 0.4

FP JC + FP HD + RC JC 0.28 0.09 0.11 0.4

FP JC + FP HD + RC CS + RC JC 0.21 0.03 0.13 0.36

Discussion of RQ2: According to the results in Figure 7.3 and Table 7.3, we
find that RevFinder does not perform as good as the claimed results in the original
work (Thongtanunam et al., 2015) when it runs on our dataset related to specific is-
sues (i.e., architecture violations). One possible reason could be that RevFinder rec-
ommends reviewers only by comparing the file path similarity without considering
the semantic similarity of related textual artifacts. Another potential reason is that
the specific dataset, specifically the size and type of the dataset (review comments
on architecture violations), in our work may impact the performance of reviewer

7.4. Results and Discussion 229

Neutron Nova

Qt Base Qt Creator

Figure 7.3: Performances of Top-k accuracy of mixed similarity detection methods compared
to RevFinder

recommendation. Besides, the performance of RevFinder on the four projects also
partially confirms the finding of RQ1, that is, project characteristics can impact the
effectiveness of reviewer recommendation approaches.

Finding 2: The selected similarity detection methods and their combinations achieve
a better performance than RevFinder in the majority of the cases.

7.4.3 RQ3: Comparison of Sampling Methods

To answer RQ3, we used the incremental sampling technique to construct the exper-
tise model and evaluated the performance of the selected similarity detection meth-

230 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

ods and their combinations on our dataset, as described in Section 7.3.3. We used
the same performance metrics and the baseline approach mentioned in Section 7.3.4
and Section 7.3.5. Due to space limitations, we only present the top-k accuracy of the
best-performing similarity detection methods and their combinations in Table 7.4.

According to the results in Table 7.4, when using the fixed sampling technique,
almost all the top-k accuracy of the similarity detection methods and their combi-
nations have better performance scores than when using the incremental sampling
technique. For example, in terms of Neutron, the combination of FP JC, FP HD,
and RC JC achieves top-k accuracy of around 0.267, 0.333, 0.333, 0.333 for k = 1, 3,
5, 10, respectively. In comparison, this combination method achieves top-k accu-
racy of 0.008, 0.012, 0.012, 0.016 for k = 1, 3, 5, 10 when using incremental sampling.
Moreover, the baseline approach, RevFinder, also has such performance differences
when using fixed and incremental sampling techniques. Similar observations are
also valid for the MRR results of the rest of the recommendation approaches listed
in Table 7.4. In general, compared to using incremental sampling, the similarity
detection methods and their combinations can achieve a better performance when
using fixed sampling across all metrics.

Discussion of RQ3: The results of RQ3 show that all the approaches are sensi-
tive to sampling techniques; it is clearly observed that all approaches can achieve a
significantly higher recommendation performance when using the fixed sampling
technique. One possible reason could be that the size of the dataset used to construct
expertise models can influence the accuracy of reviewer recommendation. When
small samples are taken as the historical review data, the first several iterations of
the incremental sampling process may have relatively low performance and then
decrease the final average top-k accuracy. This conjecture corroborates the recent
findings by Hu et al. (Hu et al., 2020) that the investigated code reviewer approaches
are sensitive to training data on evaluation metrics.

Finding 3: Sampling techniques can impact the performance of code recommen-
dation approaches. In our work, using the fixed sampling technique to construct
an expertise model can achieve a significantly better performance compared to the
incremental sampling technique.

7.4.4 Implications

(1) Implications for researchers

Establish explicit standards for research on code reviewer recommendation.
When a large number of submitted code changes happen, it is necessary to automate

7.4.R
esults

and
D

iscussion
231

Table 7.4: Top-k accuracy by the selected similarity detection methods compared with RevFinder

Project Neutron Nova

Sampling Fixed Sampling Incremental Sampling Fixed Sampling Incremental Sampling

k 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

RevFinder 0.000 0.067 0.067 0.200 0.000 0.000 0.002 0.014 0.000 0.048 0.190 0.238 0.001 0.008 0.014 0.018

FP JC 0.200 0.333 0.333 0.333 0.003 0.012 0.013 0.014 0.095 0.143 0.143 0.238 0.001 0.016 0.021 0.026

FP HD 0.200 0.333 0.333 0.033 0.003 0.008 0.013 0.024 0.095 0.143 0.143 0.286 0.001 0.015 0.018 0.022

RC CS 0.067 0.200 0.300 0.267 0.003 0.005 0.006 0.016 0.000 0.000 0.048 0.190 0.001 0.011 0.013 0.022

RC JC 0.200 0.200 0.267 0.333 0.005 0.018 0.024 0.024 0.048 0.143 0.143 0.238 0.001 0.010 0.015 0.016

FP JC + FP HD 0.267 0.333 0.333 0.333 0.003 0.008 0.015 0.016 0.095 0.143 0.143 0.286 0.001 0.015 0.018 0.023

FP JC + RC JC 0.267 0.333 0.333 0.333 0.008 0.012 0.013 0.014 0.048 0.048 0.190 0.333 0.005 0.016 0.019 0.024

FP JC + FP HD + RC JC 0.267 0.333 0.333 0.333 0.008 0.012 0.012 0.016 0.048 0.143 0.190 0.333 0.003 0.018 0.019 0.024

FP JC + FP HD + RC CS + RC JC 0.200 0.200 0.267 0.267 0.005 0.008 0.017 0.017 0.000 0.095 0.095 0.238 0.004 0.015 0.015 0.024

Project Qt Base Qt Creator

Sampling Fixed Sampling Incremental Sampling Fixed Sampling Incremental Sampling

k 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

RevFinder 0.071 0.214 0.286 0.357 0.004 0.022 0.025 0.038 0.000 0.200 0.400 0.400 0.003 0.006 0.011 0.033

FP JC 0.048 0.143 0.143 0.238 0.019 0.028 0.030 0.032 0.000 0.200 0.400 0.400 0.007 0.017 0.021 0.039

FP HD 0.000 0.000 0.214 0.286 0.013 0.013 0.013 0.026 0.200 0.200 0.200 0.400 0.012 0.012 0.012 0.029

RC CS 0.000 0.000 0.214 0.286 0.003 0.005 0.021 0.036 0.000 0.200 0.600 0.800 0.003 0.003 0.009 0.009

RC JC 0.071 0.214 0.214 0.214 0.010 0.016 0.023 0.033 0.200 0.400 0.600 0.600 0.000 0.000 0.000 0.013

FP JC + FP HD 0.000 0.071 0.286 0.429 0.015 0.015 0.015 0.024 0.200 0.200 0.400 0.400 0.004 0.009 0.019 0.033

FP JC + RC JC 0.400 0.400 0.400 0.400 0.014 0.016 0.020 0.025 0.400 0.400 0.400 0.400 0.004 0.004 0.015 0.033

FP JC + FP HD + RC JC 0.071 0.143 0.214 0.429 0.015 0.016 0.018 0.024 0.400 0.400 0.400 0.400 0.004 0.012 0.018 0.033

FP JC + FP HD + RC CS + RC JC 0.071 0.214 0.214 0.286 0.015 0.017 0.022 0.040 0.400 0.400 0.400 0.800 0.009 0.009 0.013 0.013

232 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

reviewer recommendation to speed up development iterations and ensure quality
code reviews. In this work, we encountered certain issues that may hinder fur-
ther research on code reviewer recommendation. For example, few existing studies
chose to share their artifacts (e.g., datasets and source code). Moreover, most of the
studies on reviewer recommendation are purely academic (Çetin et al., 2021) and
lack support and validation from the industry. Besides, prior studies often use dif-
ferent metrics (e.g., precision, recall, and F-measure) and datasets (e.g., issues and
pull-requests) in their experiments, which makes it harder to compare the perfor-
mance among different approaches. Thus, it is necessary to establish explicit stan-
dards, such as promoting open science, validation in industry, and standardized
metrics and datasets.

Refine the existing approaches and focus on specific issues during code re-
view. The existing approaches for code reviewer recommendation should be refined
through more empirical studies. For example, developer turnover is quite common
during OSS development, but is rarely considered in current studies. In addition,
employing hybrid methods to recommend reviewers by combining different ap-
proaches (see Section 7.2.2) may be promising and worth exploring in the future.
Moreover, compared to general code reviewer recommendation, recommending re-
viewers who have awareness of specific types of issues, such as architecture viola-
tions, is important to detect and solve these issues during code review. In this work,
we conducted an exploratory study that attempts to find appropriate reviewers who
have knowledge of architecture violations based on historical commits related to ar-
chitecture violations. It is worth investigating other types of issues (e.g., code smells,
cyclic dependencies), architectural or otherwise, in recommending reviewers with
pertinent knowledge.

(2) Implications for practitioners

Apply and validate in industry projects. Considering the characteristics of the
open-source communities, the code reviewer recommendation approaches might
have different performance on industrial projects; this is also pointed out in the
study by Chen et al. (Chen et al., 2022). Practitioners can employ reviewer recom-
mendation approaches in their projects by taking the associated project character-
istics into consideration (e.g., constructing project-specific models). More empirical
validation of these approaches from industrial projects is encouraged to consolidate
the findings on their performance. Moreover, there has been little research in code
reviewer recommendation (Çetin et al., 2021), and there is still a lack of industrial
tools for recommending code reviewers. More collaborations between academia
and industry are indispensable to devise dedicated tools (e.g., plug-ins or bots) for

7.5. Threats to Validity 233

existing code review systems like Gerrit.
Optimize code reviewer recommendation approaches. In this work, our re-

viewer recommendation approach is based on the similarity of file paths and the
semantic similarity of review comments. However, there are certain realistic factors
that should be considered for practical software development, such as workload,
availability, and developer turnover. Therefore, practitioners should pay more at-
tention to the above-mentioned factors when optimizing the existing approaches for
code reviewer recommendation. For example, they could periodically generate an
updated list of candidate reviewers and add weights to the reviewers’ availability.

7.5 Threats to Validity

In this section, we discuss the threats to the validity of this study, which may affect
the results of our study.

Construct Validity: The main threat to construct validity in this study concerns
the performance metrics (i.e., Top-k accuracy and MRR) used in our work. This
threat is partially mitigated in our study, as the chosen metrics are widely adopted
in existing code reviewer recommendation studies (Çetin et al., 2021). Besides, we
shared our dataset and source code (Li et al., 2023b) to facilitate the replication of
our study and future research.

Reliability: The threats to reliability stem from how researchers potentially in-
fluence the study implementation. Possible threats in this study might come from
the experimental settings (e.g., sampling percentage and iteration steps) and the
reliability of measures (e.g., results of the similarity detection methods). As de-
scribed in Section 7.3.3, we used a consistent and reproducible process to conduct
sampling and validation on our dataset. Besides, to compare the effectiveness of
our approach, we used the baseline approach (i.e., RevFinder (Thongtanunam et al.,
2015)), which is a common baseline used in related studies.

External Validity: The threats to external validity pertain to the generalizability
of our results. In this study, the experiment results were produced based on the
code review data of four OSS projects in Gerrit. Therefore, our results may not
be generalized to commercial projects or open-sourced projects on other platforms
(e.g., GitHub). Our future work will try to explore commercial and GitHub projects
with rich code review data to better generalize the results of our approach.

234 7. Code Reviewer Recommendation for Architecture Violations: An Exploratory Study

7.6 Related Work

Code reviewer recommendation has been gaining increasing attention in software
engineering research in recent years, but there is still a lack of tools for recommend-
ing code reviewers (Çetin et al., 2021). Balachandran (Balachandran, 2013) proposed
automated reviewer recommendation through the ReviewBot tool, which aims at
improving the review quality in an industrial context through automated static code
analysis. Thongtanunam et al. (Thongtanunam et al., 2015) proposed an expertise-
based approach RevFinder based on file path similarity; their assumption is that files
with similar paths have close functionality and the associated reviewers are likely to
have related experience. Zanjani et al. (Zanjani et al., 2015) developed the cHRev ap-
proach that considers the review history including review number and review time.
The cHRev approach can build an expertise model based on historical code changes
and then recommend relevant peer reviewers. Yu et al. (Yu et al., 2016) provided a
reviewer recommendation approach by building a social network named Comment
Networks, which can capture common interests in social activities between contrib-
utors and reviewers, and then rank reviewers based on historical comments and the
generated comment networks. Similarly, Kong et al. (Kong et al., 2022) proposed the
Camp approach based on collaboration networks along with reviewers’ expertise
from pull requests and file paths.

Compared with the previous studies, our study specifically focuses on semantic
information in review comments on architecture violations. We aim at recommend-
ing code reviewers who have awareness of architecture violations and can have a
final check on the pending code changes (i.e., not yet being merged into the code
base) that may potentially lead to architecture violations; this complements other
reviewer recommendation approaches that can be used in combination with our
approach to find pertinent (generic) code reviewers.

7.7 Conclusions

When a large number of code changes are submitted to a code review system like
Gerrit, it is more efficient to find suitable code reviewers through automated re-
viewer recommendation compared to manually assigning reviewers. In this chap-
ter, we conducted an exploratory study to recommend qualified reviewers who have
awareness of architecture violations, as a promising and feasible way to detect and
prevent architecture erosion through code review.

Our study is the first attempt to explore the possibility of using similarity detec-
tion methods to recommend code reviewers on architecture violations. We evalu-

7.7. Conclusions 235

ated the selected similarity detection methods and compared them with the baseline
approach, RevFinder. The results show that the similarity detection methods and
their combinations can produce acceptable performance, and the combined similar-
ity detection methods outperform the baseline approach across most performance
metrics on our dataset. Besides, we found that different sampling techniques used
to build expertise models can impact the performance of code reviewer recommen-
dation approaches, and the fixed sampling technique outperforms the incremental
sampling technique on our dataset.

In the future, we plan to further optimize our reviewer recommendation ap-
proach (e.g., improve the performance through hybrid approaches discussed in
Section 7.2.2) on larger datasets concerning architecture issues from diverse OSS
projects and commercial systems (e.g., explore the possibility in a cross-project sce-
nario).

Chapter 8

Conclusions and Future Work

This chapter concludes the dissertation by summarizing the contributions to this
Ph.D. project, and discussing future work. Section 8.1 revisits the Research Ques-
tions (RQs), their answers, and the corresponding contributions. Section 8.2 dis-
cusses some promising directions for future work.

8.1 Research Questions and Contributions

For the sake of clarity and convenience, we reiterate the problem statement as pre-
sented in Chapter 1 as follows: Current research on architecture erosion is still incomplete
and lacks a comprehensive understanding of the nature of architecture erosion. Due to the
limitations of existing tools, it is essential and complementary to identify architecture erosion
from textual artifacts beyond source code, to gain insights into the practical erosion symp-
toms and their countermeasures. One textual artifact that is particularly worth exploring for
the identification of architectural violations, is code reviews. To handle this problem, we
decomposed it into six RQs by leveraging the design science framework (Wieringa,
2014) (see Figure 1.2 in Chapter 1), including four knowledge questions and two
design problems). We answered the six RQs in Chapters 2 to 7 respectively. In the
following paragraphs, we revisit the RQs and provide a concise summary of the
findings for the six RQs.

RQ1: What is the current state of the art of architecture erosion?
Establishing a landscape of the architecture erosion phenomenon and ob-

taining a comprehensive understanding of this phenomenon is a prerequisite
of handling and addressing architecture erosion. To this end, we conducted a
systematic mapping study that covers the literature spanning from January 2006
to May 2019. The key results are summarized as follows: (1) Among the dif-
ferent terms used to describe the architecture erosion phenomenon, “architecture
erosion” is the most frequently-used term followed by “architecture decay”. Archi-
tecture erosion manifests not only through architectural violations and structural
issues, but also through causing problems in software quality and during the

238 8. Conclusions and Future Work

evolution of software systems. These four perspectives (i.e., violation, structure,
quality, and evolution) regarding the definition of architecture erosion are wor-
thy of investigation in both research and practice. (2) Four types of architecture
erosion symptoms are identified aligned to the four perspectives of architecture
erosion, while structural and violation symptoms are the most common symp-
toms. (3) Non-technical reasons, such as management and organization issues,
contribute to architecture erosion alongside technical reasons. (4) Architecture
erosion negatively impacts software system quality attributes like maintainabil-
ity and evolvability. It is essential for practitioners to raise their awareness of
the consequences of architecture erosion (e.g., increased cost, failure of software
projects). Practitioners can then advocate for management intervention to pri-
oritize addressing architecture erosion and prevent potential system failures. (5)
Approaches and tools for detecting and addressing architecture erosion are cate-
gorized into 19 and 35 categories respectively, and practitioners can adapt these
tools and methods according to their specific needs.

The contributions compared to the state of the art are as follows: This is
the first systematic mapping study to provide a comprehensive understanding
regarding the definition of architecture erosion and existing support for identi-
fying and handling architecture erosion. This study also lays a solid theoretical
foundation on the nature of architecture erosion for follow-up research.

RQ2: What is the current state of the practice regarding architecture erosion from
the developers’ perspective?

In addition to analyzing the literature regarding architecture erosion, it is crit-
ical to investigate the state of the practice of architecture erosion and the relevant
countermeasures employed in the industry. To this end, we conducted an em-
pirical study to explore how developers perceive and discuss the phenomenon
of architecture erosion by collecting relevant information on architecture erosion
from the perspective of practitioners using three data sources (i.e., developers’
online communities, surveys, and interviews). The findings unveiled that de-
velopers commonly describe architecture erosion using terms like “erode”, “de-
cay”, and “degrade”. They often consider structural issues and their impact on
run-time qualities, maintenance, and evolution. Non-technical factors also con-
tribute to architecture erosion. While there is a lack of dedicated tools for de-
tecting architecture erosion, developers can use associated practices and tools to
identify the symptoms of architecture erosion. Identifying and analyzing these
symptoms can help understand the architectural structure and detect architec-
ture erosion tendencies. The identified measures can be utilized during architec-
ture implementation to effectively address architecture erosion.

8.1. Research Questions and Contributions 239

The contributions are as follows: This is the first study to investigate the un-
derstanding of architecture erosion from the developers’ perspective in practice.
We employed triangulation (Runeson and Höst, 2009) (i.e., developers’ online
communities, surveys, and interviews) to collect data with the purpose of reveal-
ing the commonalities and differences between academic research and industrial
practice.

RQ3: How are architecture erosion symptoms discussed in code review comments?
Identifying architecture erosion is the prerequisite for handling it. One

promising and feasible way is to identify architecture erosion through architec-
ture erosion symptoms, as the occurrence of the symptoms can act as early warn-
ings for software engineers to tackle architecture erosion (e.g., by refactoring) (Li,
Liang, Soliman and Avgeriou, 2021b; Ali et al., 2018). Existing code analysis tools
may not be sufficient to accurately identify the wide range of erosion symp-
toms (Lenhard et al., 2017; Azadi et al., 2019). To this end, we focused on ar-
chitecture erosion symptoms in code reviews and analyzed discussions from the
Nova and Neutron projects in OpenStack. The results show that the most fre-
quently identified erosion symptoms are architectural violations, duplicate func-
tionality, and cyclic dependency. The number of comments on erosion symptoms
decreased over time, indicating increased stability in the architecture. Most ero-
sion symptoms were addressed by fixing or abandoning them after review votes.
Code reviews can help identify and mitigate erosion symptoms, thus extending
system longevity.

The contributions compared to the state of the art are as follows: While previ-
ous studies have examined architecture erosion symptoms through source code,
this is the first study that analyzed such symptoms through textual artifacts in
software development. Additionally, it investigated commonly discussed ero-
sion symptoms and their evolution trends during code review, along with the
corresponding measures implemented to address them in practice.

RQ4: Which violation symptoms are discussed during code review?
After finding out the common erosion symptoms discussed by developers

during software development, we conducted a case study to further investi-
gate the most frequent violation symptoms in depth. We collected and ana-
lyzed 606 code review comments from four popular open-source projects to
study violation symptoms. The key findings include: (1) Developers discuss
10 categories of violation symptoms during code review, with the most com-
mon symptoms regarding structural inconsistencies, design-related violations,
and implementation-related violations. (2) The commonly used terms to express

240 8. Conclusions and Future Work

violation symptoms are “inconsistent” and “violate”, and the most frequent lin-
guistic pattern is “Problem Discovery”. (3) Refactoring and removing code are the
primary measures (90%) employed to address violation symptoms, while some
symptoms are ignored by developers.

The contributions are as follows: This study provides insights on frequent
violation symptoms in practice during code review. The findings highlight the
importance of investigating violation symptoms for researchers to gain a deeper
understanding of the characteristics of architecture violations and to facilitate
development and maintenance activities.

RQ5: Design classifiers to automatically identify violation symptoms of architec-
ture erosion.

This RQ focuses on proposing feasible means to automatically identify ar-
chitecture violations from code reviews. Specifically, we developed 15 machine
learning-based and 4 deep learning-based classifiers using three pre-trained
word embeddings to identify violation symptoms of architecture erosion from
developer discussions in code reviews. We used the dataset collected from our
previous study pertaining to RQ4 (i.e., Chapter 5). The analysis focused on code
review comments from four prominent open-source projects: Nova and Neutron
from the OpenStack community, and Qt Base and Qt Creator from the Qt com-
munity. To validate the effectiveness of our trained classifiers, we conducted a
survey to gather feedback from participants involved in discussions about archi-
tecture violations during code reviews. The results indicate that (1) the SVM
classifier, utilizing the word2vec pre-trained word embedding, performed the
best with an F1-score of 0.779; (2) classifiers employing the fastText pre-trained
word embedding model achieved favorable performance; (3) classifiers using
200-dimensional pre-trained word embeddings outperformed those using 100 or
300-dimensional models; (4) by employing a majority voting strategy, an ensem-
ble classifier can enhance the performance and surpass individual classifiers; (5)
practitioners perceive the classifiers’ results as valuable, confirming the practical
potential of automated identification of violation symptoms.

The contributions compared to the state of the art are as follows: This is
the first study to explore the possibility of automatically identifying architecture
violations from code review comments through machine learning techniques.
Besides, this study elaborates on our experience regarding classifiers’ training,
while the identified architecture violations are validated by the involved devel-
opers in practice.

RQ6: Recommend qualified code reviewers to handle architecture violations.

8.2. Future Work 241

After proposing automated approaches to identify violation symptoms of ar-
chitecture erosion, our next step focused on streamlining the code review process
to both address architecture violations and mitigate human factors. To this end,
we aimed at automating the recommendation of code reviewers who are qual-
ified to review architecture violations based on reviews of code changes. We
employed three common similarity detection methods to measure the file path
similarity and the semantic similarity of review comments. Through a series of
experiments, we evaluated these methods separately and compared them with
the baseline approach, RevFinder (Thongtanunam et al., 2015), for recommend-
ing appropriate reviewers. The results demonstrate that the common similar-
ity detection methods achieve acceptable performance scores and outperform
RevFinder (Thongtanunam et al., 2015) in recommending code reviewers for
architecture violations. The sampling techniques used in recommending code
reviewers have an impact on the performance of reviewer recommendation ap-
proaches.

The contributions are as follows: This study is the first attempt to explore the
possibility of using similarity detection methods to recommend code reviewers
who have awareness of architecture violations, as a promising and feasible way
to detect and prevent architecture erosion through code review.

8.2 Future Work

The research presented in this Ph.D. thesis marks an initial step toward the pre-
vention of architecture erosion. Future work can further improve and broaden our
existing work in multiple directions. To encourage future research on architecture
erosion, we discuss some prospective directions.

(1) Documenting and managing architecture erosion symptoms
When we analyzed the actions taken by developers in response to erosion symp-

toms identified during code reviews, we found that developers occasionally chose to
overlook certain symptoms that had been pointed out during code reviews. These
ignored symptoms of architecture erosion can be transformed into potential tech-
nical debt (Fu et al., 2022), and over time, the accumulation of technical debt can
exacerbate the challenges associated with architecture maintenance. Therefore, we
suggest that future research should concentrate on devising effective strategies for
documenting and managing erosion symptoms; such strategies include establishing
traceable links to these erosion symptoms, and incorporating periodic architectural
evaluations for handling those symptoms into the software development process.

242 8. Conclusions and Future Work

(2) Recommending architecturally-aware developers to check architecture-related
code

Software development encompasses a series of knowledge-intensive activities
that heavily depend on the expertise of developers. Various textual artifacts gen-
erated during development contain developers’ comprehension and awareness of
software architecture. Future research can consider employing techniques, such
as AI-based code analysis and natural language processing, to analyze textual ar-
tifacts and extract relevant architecture information, and ultimately recommend
architecturally-aware developers to review and refactor architecturally-relevant
code snippets. For example, developing algorithms for recommending develop-
ers based on factors like historical data (e.g., commits), availability, workload, and
so forth, is a feasible way to reduce code maintenance effort and facilitate timely
product iterations.

(3) Designing dedicated tools for identifying architecture erosion symptoms and
issuing warnings

The results of the systematic mapping study (see Chapter 2) and the investiga-
tion involving industrial developers (see Chapter 3) shed light on a significant truth:
despite the existence of certain tools that aid in identifying architecture erosion, the
absence of dedicated tools specifically designed for this purpose remains an urgent
problem. In Chapter 6, we took an exploratory step forward by training classifiers
to automatically identify violation symptoms from textual artifacts (i.e., code review
comments). Nevertheless, dedicated tools (as IDE plug-ins or standalone applica-
tions) could play a vital role in effectively identifying symptoms of architecture ero-
sion and alerting developers during the development or code review process. The
development of dedicated tools warrants attention from both researchers and indus-
try practitioners as it holds immense potential for improving software development
practices, especially during maintenance and evolution.

Appendix A

Selected Studies for Chapter 2

[S1] Z. Li and J. Long, A case study of measuring degeneration of software ar-
chitectures from a defect perspective, in: Proceedings of the 18th Asia-Pacific
Software Engineering Conference (APSEC), Ho Chi Minh, Vietnam, 2011, pp.
242-249: IEEE.

[S2] H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, and M. Wirsing, A com-
ponent model for architectural programming, Electronic Notes in Theoretical
Computer Science, vol. 160, pp. 75-96, 2006.

[S3] M. Zhao and J. Yang, A DCA-based method for software prognostics and
health management, in: Proceedings of the IEEE Prognostics and System
Health Management Conference (PHM), Beijing, China, 2012, pp. 1-5: IEEE.

[S4] R. Terra and M. T. Valente, A dependency constraint language to manage
object-oriented software architectures, Software: Practice and Experience, vol.
39, no. 12, pp. 1073-1094, 2009.

[S5] G. M. Rama, A desiderata for refactoring-based software modularity improve-
ment, in: Proceedings of the 3rd Annual India Software Engineering Confer-
ence (ISEC), Mysore, India, 2010, pp. 93-102: ACM.

[S6] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and H. Y. Zhang, A formal
approach for managing component-based architecture evolution, Science of
Computer Programming, vol. 127, pp. 24-49, 2016.

[S7] S. Ayyaz, S. Rehman, and U. Qamar, A four method framework for fight-
ing software architecture erosion, International Journal of Computer, Control,
Quantum and Information Engineering, vol. 9, no. 1, pp. 133-139, 2015.

[S8] E. Bouwers and A. van Deursen, A lightweight sanity check for implemented
architectures, IEEE Software, vol. 27, no. 4, pp. 44-50, 2010.

[S9] C. Izurieta and J. M. Bieman, A multiple case study of design pattern decay,
grime, and rot in evolving software systems, Software Quality Journal, vol. 21,
no. 2, pp. 289-323, 2013.

244 Appendix A

[S10] M. Mirakhorli and J. Cleland-Huang, A pattern system for tracing architec-
tural concerns, in: Proceedings of the 18th Conference on Pattern Languages
of Programs (PLoP), Portland, Oregon, USA, 2011, pp. 1-10: ACM.

[S11] A. Sejfia, A pilot study on architecture and vulnerabilities: Lessons learned,
in: Proceedings of the 2nd IEEE/ACM International Workshop on Establish-
ing the Community-Wide Infrastructure for Architecture-Based Software En-
gineering (ECASE), Montreal, Quebec, Canada, 2019, pp. 42-47: IEEE.

[S12] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, A recommendation
system for repairing violations detected by static architecture conformance
checking, Software: Practice and Experience, vol. 45, no. 3, pp. 315-342, 2015.

[S13] S. Herold and A. Rausch, A rule-based approach to architecture conformance
checking as a quality management measure, in Relating System Quality and
Software Architecture: Morgan Kaufmann, 2014, pp. 181-207.

[S14] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, A unified approach to archi-
tecture conformance checking, in: Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Montreal, QC, Canada, 2015,
pp. 41-50: IEEE.

[S15] S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, ADvISE: Architec-
tural decay in software evolution, in: Proceedings of the 16th European Con-
ference on Software Maintenance and Reengineering (CSMR), Szeged, Hun-
gary, 2012, pp. 267-276: IEEE.

[S16] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and N. Med-
vidovic, An empirical study of architectural change in open-source software
systems, in: Proceedings of the 12th IEEE/ACM Working Conference on Min-
ing Software Repositories (MSR),Florence, Italy, 2015, pp. 235-245: IEEE.

[S17] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, An empirical study of
architectural decay in open-source software, in: Proceedings of the 15th IEEE
International Conference on Software Architecture (ICSA), Seattle, WA, USA,
2018, pp. 176-185: IEEE.

[S18] F. A. Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla, An experi-
ence report on detecting and repairing software architecture erosion, in: Pro-
ceedings of the 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), Venice, Italy, 2016, pp. 21-30: IEEE.

245

[S19] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-Huang,
Archie: A tool for detecting, monitoring, and preserving architecturally sig-
nificant code, in: Proceedings of the 22nd ACM/SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE), Hong Kong, China,
2014, pp. 739-742: ACM.

[S20] T. Greifenberg, K. Müller, and B. Rumpe, Architectural consistency check-
ing in plugin-based software systems, in: Proceedings of the 2nd Workshop
on Software Architecture Erosion and Architectural Consistency (SAEroCon),
Dubrovnik/Cavtat, Croatia, 2015, pp. 1-7: ACM.

[S21] M. Riaz, M. Sulayman, and H. Naqvi, Architectural decay during continuous
software evolution and impact of ‘design for change‘ on software architecture,
in: Proceedings of the International Conference on Advanced Software Engi-
neering and Its Applications (ASEA), Jeju Island, Korea, 2009, pp. 119-126:
Springer.

[S22] S. Bhattacharya and D. E. Perry, Architecture assessment model for system
evolution, in: Proceedings of the 6th Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA), Mumbai, Maharashtra, India, 2007, pp. 44-53:
IEEE.

[S23] L. Pruijt, C. Köppe, and S. Brinkkemper, Architecture compliance checking
of semantically rich modular architectures: A comparative study of tool sup-
port, in: Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM), Eindhoven, The Netherlands, 2013, pp. 220-229: IEEE.

[S24] S. Miranda, E. Rodrigues Jr, M. T. Valente, and R. Terra, Architecture confor-
mance checking in dynamically typed languages, Journal of Object Technol-
ogy, vol. 15, no. 3, pp. 1-34, 2016.

[S25] S. Schröder, M. Soliman, and M. Riebisch, Architecture enforcement concerns
and activities - An expert study, Journal of Systems and Software, vol. 145, pp.
79-97, 2018.

[S26] E. Guimarães, A. Garcia, and Y. Cai, Architecture-sensitive heuristics for pri-
oritizing critical code anomalies, in: Proceedings of the 14th International Con-
ference on Modularity (MODULARITY), Fort Collins, CO, USA, 2015, pp. 68-
80: ACM.

[S27] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. von Staa,
Are automatically-detected code anomalies relevant to architectural modular-
ity?: An exploratory analysis of evolving systems, in: Proceedings of the 11th

246 Appendix A

Annual International Conference on Aspect-oriented Software Development
(AOSD), Potsdam, Germany, 2012, pp. 167-178: ACM.

[S28] A. Bandi, E. B. Allen, and B. J. Williams, Assessing code decay: A data-driven
approach, in: Proceedings of the 24th International Conference on Software
Engineering and Data Engineering (SEDE), San Diego, CA, USA, 2015, pp.
1-8: ISCA.

[S29] V. V. G. Neto, W. Manzano, L. Garcés, M. Guessi, B. Oliveira, T. Volpato, and
E. Y. Nakagawa, Back-SoS: Towards a model-based approach to address archi-
tectural drift in systems-of-systems, in: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (SAC), Pau, France, 2018, pp. 1461-1463:
ACM.

[S30] D. Reimanis and C. Izurieta, Behavioral evolution of design patterns: Under-
standing software reuse through the evolution of pattern behavior, in: Pro-
ceedings of the 18th International Conference on Software and Systems Reuse
(ICSR), Cincinnati, OH, USA, 2019, pp. 77-93: Springer.

[S31] A. Gurgel, I. Macia, A. Garcia, A. von Staa, M. Mezini, M. Eichberg, and
R. Mitschke, Blending and reusing rules for architectural degradation pre-
vention, in: Proceedings of the 13th International Conference on Modularity
(MODULARITY), Lugano, Switzerland, 2014, pp. 61-72: ACM.

[S32] M. Langhammer, Co-evolution of component-based architecture-model and
object-oriented source code, in: Proceedings of the 18th International Doc-
toral Symposium on Components and Architecture (WCOP), Vancouver, BC,
Canada, 2013, pp. 37-42: ACM.

[S33] S. Herold and A. Rausch, Complementing model-driven development for the
detection of software architecture erosion, in: Proceedings of the 5th Interna-
tional Workshop on Modeling in Software Engineering (MiSE), San Francisco,
CA, USA, 2013, pp. 24-30: IEEE.

[S34] L. De Silva and D. Balasubramaniam, Controlling software architecture ero-
sion: A survey, Journal of Systems and Software, vol. 85, no. 1, pp. 132-151,
2012.

[S35] H. Rocha, R. S. Durelli, R. Terra, S. Bessa, and M. T. Valente, DCL 2.0: modular
and reusable specification of architectural constraints, Journal of the Brazilian
Computer Society, vol. 23, no. 1, pp. 1-25, 2017.

247

[S36] I. M. Bertran, Detecting architecturally-relevant code smells in evolving soft-
ware systems, in: Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE), Waikiki, Honolulu, HI, USA, 2011, pp. 1090-1093:
ACM.

[S37] L. Zhang, Y. Sun, H. Song, F. Chauvel, and H. Mei, Detecting architecture ero-
sion by design decision of architectural pattern, in: Proceedings of the 23rd
International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE), Miami Beach, FL, USA, 2011, pp. 758-763: KSI.

[S38] S. Wong, Y. Cai, M. Kim, and M. Dalton, Detecting software modularity vio-
lations, in: Proceedings of the 33rd International Conference on Software En-
gineering (ICSE), Waikiki, Honolulu, HI, USA, 2011, pp. 411-420: ACM.

[S39] M. Mirakhorli and J. Cleland-Huang, Detecting, tracing, and monitoring ar-
chitectural tactics in code, IEEE Transactions on Software Engineering, vol. 42,
no. 3, pp. 206-221, 2016.

[S40] S. Herold, M. English, J. Buckley, S. Counsell, and M. Ó. Cinnéide, Detection
of violation causes in reflexion models, in: Proceedings of the 22nd IEEE In-
ternational Conference on Software Analysis, Evolution, and Reengineering
(SANER), Montreal, QC, Canada, 2015, pp. 565-569: IEEE.

[S41] R. Pérez-Castillo, I. G. R. de Guzmán, and M. Piattini, Diagnosis of software
erosion through fuzzy logic, in: Proceedings of the IEEE Symposium on Com-
putational Intelligence in Dynamic and Uncertain Environments (CIDUE),
Paris, France, 2011, pp. 49-56: IEEE.

[S42] D. Nam, Y. K. Lee, and N. Medvidovic, Eva: A tool for visualizing software
architectural evolution, in: Proceedings of the 40th International Conference
on Software Engineering (ICSE) Companion, Gothenburg, Sweden, 2018, pp.
53-56: ACM.

[S43] M. Altinisik, E. Ersoy, and H. Sözer, Evaluating software architecture ero-
sion for PL/SQL programs, in: Proceedings of the 11th European Conference
on Software Architecture (ECSA) Companion, Canterbury, United Kingdom,
2017, pp. 159-165: ACM.

[S44] M. Lindvall, M. Becker, V. Tenev, S. Duszynski, and M. Hinchey, Good change
and bad change: An analysis perspective on software evolution, Transactions
on Foundations for Mastering Change I, vol. 9960, pp. 90-112, 2016.

248 Appendix A

[S45] V. Bandara and I. Perera, Identifying software architecture erosion through
code comments, in: Proceedings of the 18th International Conference on Ad-
vances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 2018, pp.
62-69: IEEE.

[S46] J. K. Chhabra, Improving package structure of object-oriented software using
multi-objective optimization and weighted class connections, Journal of King
Saud University-Computer and Information Sciences, vol. 29, no. 3, pp. 349-
364, 2017.

[S47] M. de Oliveira Barros, F. de Almeida Farzat, and G. H. Travassos, Learning
from optimization: A case study with Apache Ant, Information and Software
Technology, vol. 57, pp. 684-704, 2015.

[S48] C. Dimech and D. Balasubramaniam, Maintaining architectural conformance
during software development: A practical approach, in: Proceedings of the 7th
European Conference on Software Architecture (ECSA), Montpellier, France,
2013, pp. 208-223: Springer.

[S49] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, Mapping architectural decay in-
stances to dependency models, in: Proceedings of the 4th International Work-
shop on Managing Technical Debt (MTD), San Francisco, CA, USA, 2013, pp.
39-46: IEEE.

[S50] A. Strasser, B. Cool, C. Gernert, C. Knieke, M. Körner, D. Niebuhr, H. Peters,
A. Rausch, O. Brox, and S. Jauns-Seyfried, Mastering erosion of software ar-
chitecture in automotive software product lines, in: Proceedings of the 40th
International Conference on Current Trends in Theory and Practice of Infor-
matics (SOFSEM), Smokovec, Slovakia, 2014, pp. 491-502: Springer.

[S51] H. Koziolek, D. Domis, T. Goldschmidt, and P. Vorst, Measuring architecture
sustainability, IEEE Software, vol. 30, no. 6, pp. 54-62, 2013.

[S52] H. Koziolek, D. Domis, T. Goldschmidt, P. Vorst, and R. J. Weiss, MORPHO-
SIS: A lightweight method facilitating sustainable software architectures, in:
Proceedings of the Joint Working IEEE/IFIP Conference on Software Archi-
tecture and European Conference on Software Architecture (WICSA/ECSA),
Helsinki, Finland, 2012, pp. 253-257: IEEE.

[S53] T. Olsson, M. Ericsson, and A. Wingkvist, Motivation and impact of model-
ing erosion using static architecture conformance checking, in: Proceedings
of the 1st IEEE International Conference on Software Architecture Workshops
(ICSAW), Gothenburg, Sweden, 2017, pp. 204-209: IEEE.

249

[S54] F. Schmidt, S. MacDonell, and A. M. Connor, Multi-objective reconstruction
of software architecture, International Journal of Software Engineering and
Knowledge Engineering, vol. 28, no. 6, pp. 869-892, 2018.

[S55] J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo, On the evolutionary
nature of architectural violations, in: Proceedings of the 19th Working Con-
ference on Reverse Engineering (WCRE), Kingston, ON, Canada, 2012, pp.
257-266: IEEE.

[S56] F. Jaafar, S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, and B. Adams, On the rela-
tionship between program evolution and fault-proneness: An empirical study,
in: Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR), Genova, Italy, 2013, pp. 15-24: IEEE.

[S57] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa, On the rele-
vance of code anomalies for identifying architecture degradation symptoms,
in: Proceedings of the 16th European Conference on Software Maintenance
and Reengineering (CSMR), Szeged, Hungary, 2012, pp. 277-286: IEEE.

[S58] L. Juarez Filho, L. Rocha, R. Andrade, and R. Britto, Preventing erosion in
exception handling design using static-architecture conformance checking,
in: Proceedings of the 11th European Conference on Software Architecture
(ECSA), Canterbury, UK, 2017, pp. 67-83: Springer.

[S59] T. Bakota, P. Hegedüs, I. Siket, G. Ladányi, and R. Ferenc, QualityGate
SourceAudit: A tool for assessing the technical quality of software, in: Pro-
ceedings of the IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), Antwerp, Belgium, 2014, pp. 440-
445: IEEE.

[S60] S. Herold and M. Mair, Recommending refactorings to re-establish architec-
tural consistency, in: Proceedings of the 8th European Conference on Software
Architecture (ECSA), Vienna, Austria, 2014, pp. 390-397: Springer.

[S61] T. Haitzer, E. Navarro, and U. Zdun, Reconciling software architecture and
source code in support of software evolution, Journal of Systems and Software,
vol. 123, pp. 119-144, 2017.

[S62] M. Stal, Refactoring software architectures, in Agile Software Architecture,
Chapter 3: Elsevier, 2014, pp. 63-82.

[S63] J. Adersberger and M. Philippsen, ReflexML: UML-based architecture-to-code
traceability and consistency checking, in: Proceedings of the 5th European

250 Appendix A

Conference on Software Architecture (ECSA), Essen, Germany, 2011, pp. 344-
359: Springer.

[S64] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, Relating architectural de-
cay and sustainability of software systems, in: Proceedings of the 13th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy,
2016, pp. 178-181: IEEE.

[S65] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonça, Static
architecture-conformance checking: An illustrative overview, IEEE Software,
vol. 27, no. 5, pp. 82-89, 2010.

[S66] B. Merkle, Stop the software architecture erosion: Building better software
systems, in: Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA) Companion, Reno/Tahoe, Nevada, USA, 2010, pp. 129-
138: ACM.

[S67] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, and D. Le, The ARAMIS
workbench for monitoring, analysis and visualization of architectures based
on run-time interactions, in: Proceedings of the 2nd Workshop on Software Ar-
chitecture Erosion and Architectural Consistency (SAEroCon), Dubrovnik/-
Cavtat, Croatia, 2015, pp. 1-7: ACM.

[S68] M. Feilkas, D. Ratiu, and E. Jurgens, The loss of architectural knowledge dur-
ing system evolution: An industrial case study, in: Proceedings of the 17th
IEEE International Conference on Program Comprehension (ICPC), Vancou-
ver, BC, Canada, 2009, pp. 188-197: IEEE.

[S69] M. Mair, S. Herold, and A. Rausch, Towards flexible automated software ar-
chitecture erosion diagnosis and treatment, in: Proceedings of the 11th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA) Companion,
Sydney, NSW, Australia, 2014, pp. 1-6: ACM.

[S70] S. Gerdes, S. Jasser, M. Riebisch, S. Schröder, M. Soliman, and T. Stehle,
Towards the essentials of architecture documentation for avoiding architec-
ture erosion, in: Proceedings of the Workshop on Sustainable Architecture:
Global Collaboration, Requirements, Analysis (SAGRA), Copenhagen, Den-
mark, 2016, pp. 1-4: ACM.

[S71] N. Medvidovic and V. Jakobac, Using software evolution to focus architectural
recovery, Automated Software Engineering, vol. 13, no. 2, pp. 225-256, 2006.

251

[S72] D. Baum, J. Dietrich, C. Anslow, and R. Müller, Visualizing design erosion:
How big balls of mud are made, in: Proceedings of the 6th IEEE Working
Conference on Software Visualization (VISSOFT), Madrid, Spain, 2018, pp.
122-126: IEEE.

[S73] M. Dalgarno, When good architecture goes bad, Methods and Tools, vol. 17,
no. 1, pp. 27-34, 2009.

Bibliography

Adersberger, J. and Philippsen, M.: 2011, Reflexml: Uml-based architecture-to-code trace-
ability and consistency checking, in: Proceedings of the 5th European Conference on Software
Architecture (ECSA), Springer, Essen, Germany, pp. 344–359.

Adolph, S., Hall, W. and Kruchten, P.: 2011, Using grounded theory to study the experience
of software development, Empirical Software Engineering 16(4), 487–513.

Al-Zubaidi, W. H. A., Thongtanunam, P., Dam, H. K., Tantithamthavorn, C. and Ghose, A.:
2020, Workload-aware reviewer recommendation using a multi-objective search-based ap-
proach, in: Proceedings of the 16th ACM International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE), ACM, Virtual, USA, pp. 21–30.

Ali, N., Baker, S., O’Crowley, R., Herold, S. and Buckley, J.: 2018, Architecture consistency:
State of the practice, challenges and requirements, Empirical Software Engineering 23(1), 224–
258.

AlOmar, E. A., Mkaouer, M. W. and Ouni, A.: 2021, Toward the automatic classification of
self-affirmed refactoring, Journal of Systems and Software 171, 110821.

Avgeriou, P., Kruchten, P., Ozkaya, I. and Seaman, C.: 2016, Managing technical debt in
software engineering (dagstuhl seminar 16162), Dagstuhl Reports, Vol. 6, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, pp. 110–138.

Ayyaz, S., Rehman, S. and Qamar, U.: 2015, A four method framework for fighting software
architecture erosion, International Journal of Computer, Control, Quantum and Information En-
gineering 9(1), 133–139.

Azadi, U., Fontana, F. A. and Taibi, D.: 2019, Architectural smells detected by tools: A cat-
alogue proposal, in: Proceedings of the 2nd IEEE/ACM International Conference on Technical
Debt (TechDebt), IEEE, Montreal, QC, Canada, pp. 88–97.

Baabad, A., Zulzalil, H. B. and Baharom, S. B.: 2020, Software architecture degradation in
open source software: A systematic literature review, IEEE Access 8, 173681–173709.

254 BIBLIOGRAPHY

Babar, M. A., Dingsøyr, T., Lago, P. and Van Vliet, H.: 2009, Software Architecture Knowledge
Management, Springer.

Bacchelli, A. and Bird, C.: 2013, Expectations, outcomes, and challenges of modern code
review, in: Proceedings of the 35th International Conference on Software Engineering (ICSE),
IEEE, San Francisco, CA, USA, pp. 712–721.

Badampudi, D., Unterkalmsteiner, M. and Britto, R.: 2023, Modern code reviews—survey of
literature and practice, ACM Transactions on Software Engineering and Methodology 32(4), 1–
61.

Balachandran, V.: 2013, Reducing human effort and improving quality in peer code re-
views using automatic static analysis and reviewer recommendation, in: Proceedings of the
35th International Conference on Software Engineering (ICSE), IEEE, San Francisco, CA, USA,
pp. 931–940.

Balalaie, A., Heydarnoori, A. and Jamshidi, P.: 2016, Microservices architecture enables De-
vOps: Migration to a cloud-native architecture, IEEE Software 33(3), 42–52.

Bandi, A., Allen, E. B. and Williams, B. J.: 2015, Assessing code decay: A data-driven ap-
proach, in: Proceedings of the 24th International Conference on Software Engineering and Data
Engineering (SEDE), ISCA, San Diego, CA, USA, pp. 1–8.

Bandi, A., Williams, B. J. and Allen, E. B.: 2013, Empirical evidence of code decay: A sys-
tematic mapping study, in: Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE), IEEE, Koblenz, Germany, pp. 341–350.

Barney, S., Petersen, K., Svahnberg, M., Aurum, A. and Barney, H.: 2012, Software quality
trade-offs: A systematic map, Information and Software Technology 54(7), 651–662.

Basili, V. R., Caldiera, G. and Rombach, H. D.: 1994, The goal question metric approach,
Encyclopedia of Software Engineering pp. 528–532.

Bass, L., Clements, P. and Kazman, R.: 2012, Software Architecture in Practice (3rd Edition), 3rd
edn, Addison-Wesley Professional.

Bass, L., Clements, P. and Kazman, R.: 2021, Software Architecture in Practice (4th Edition), 4th
edn, Addison-Wesley Professional.

Baum, D., Dietrich, J., Anslow, C. and Müller, R.: 2018, Visualizing design erosion: How
big balls of mud are made, in: Proceedings of the 6th IEEE Working Conference on Software
Visualization (VISSOFT), IEEE, Madrid, Spain, pp. 122–126.

Behnamghader, P., Le, D. M., Garcia, J., Link, D., Shahbazian, A. and Medvidovic, N.: 2017,
A large-scale study of architectural evolution in open-source software systems, Empirical
Software Engineering 22(3), 1146–1193.

BIBLIOGRAPHY 255

Beller, M., Bacchelli, A., Zaidman, A. and Juergens, E.: 2014, Modern code reviews in open-
source projects: Which problems do they fix?, in: Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR), ACM, Hyderabad, India, pp. 202–211.

Besker, T., Martini, A. and Bosch, J.: 2018, Managing architectural technical debt: A unified
model and systematic literature review, Journal of Systems and Software 135, 1–16.

Bhattacharya, S. and Perry, D. E.: 2007, Architecture assessment model for system evolution,
in: Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA),
IEEE, Mumbai, Maharashtra, India, pp. 44–53.

Bi, T., Ding, W., Liang, P. and Tang, A.: 2021, Architecture information communication in two
OSS projects: The why, who, when, and what, Journal of Systems and Software 181, 111035.

Bi, T., Liang, P. and Tang, A.: 2018, Architecture patterns, quality attributes, and design con-
texts: How developers design with them, in: Proceedings of the 25th Asia-Pacific Software
Engineering Conference (APSEC), IEEE, pp. 49–58.

Bi, T., Liang, P., Tang, A. and Yang, C.: 2018, A systematic mapping study on text analysis
techniques in software architecture, Journal of Systems and Software 144, 533–558.

Bianchi, A., Caivano, D., Lanubile, F. and Visaggio, G.: 2001, Evaluating software degra-
dation through entropy, in: Proceedings of the 7th International Software Metrics Symposium
(METRICS), IEEE, pp. 210–219.

Bird, S., Klein, E. and Loper, E.: 2010, Natural language processing with Python: Analyzing
text with the natural language toolkit, Language Resources and Evaluation 44, 421–424.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T.: 2017, Enriching word vectors with sub-
word information, Transactions of the Association for Computational Linguistics 5, 135–146.

Booch, G.: 2005, The unified modeling language user guide, Pearson Education India.

Bosu, A., Carver, J. C., Bird, C., Orbeck, J. and Chockley, C.: 2016a, Process aspects and so-
cial dynamics of contemporary code review: Insights from open source development and
industrial practice at microsoft, IEEE Transactions on Software Engineering 43(1), 56–75.

Bosu, A., Carver, J. C., Bird, C., Orbeck, J. and Chockley, C.: 2016b, Process aspects and
social dynamics of contemporary code review: Insights from open source development
and industrial practice at microsoft, IEEE Transactions on Software Engineering 43(1), 56–75.

Bosu, A., Carver, J. C., Hafiz, M., Hilley, P. and Janni, D.: 2014, Identifying the characteristics
of vulnerable code changes: An empirical study, in: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), ACM, Hong Kong,
China, pp. 257–268.

Bosu, A., Greiler, M. and Bird, C.: 2015, Characteristics of useful code reviews: An empiri-
cal study at Microsoft, in: Proceedings of the 12th IEEE/ACM Working Conference on Mining
Software Repositories (MSR), IEEE, Florence, Italy, pp. 146–156.

256 BIBLIOGRAPHY

Breivold, H. P. and Crnkovic, I.: 2010, A systematic review on architecting for software evolv-
ability, in: Proceedings of the 21st Australian Software Engineering Conference (ASWEC), IEEE,
Auckland, New Zealand, pp. 13–22.

Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H. and Kounev, S.: 2014, Quantita-
tive evaluation of model-driven performance analysis and simulation of component-based
architectures, IEEE Transactions on Software Engineering 41(2), 157–175.

Brunet, J., Bittencourt, R. A., Serey, D. and Figueiredo, J.: 2012, On the evolutionary nature of
architectural violations, in: Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE), IEEE, pp. 257–266.

Brunet, J., Murphy, G. C., Terra, R., Figueiredo, J. and Serey, D.: 2014, Do developers discuss
design?, in: Proceedings of the 11th Working Conference on Mining Software Repositories (MSR),
IEEE, Hyderabad, India, pp. 340–343.

Caracciolo, A., Lungu, M. F. and Nierstrasz, O.: 2015, A unified approach to architecture
conformance checking, in: Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA), IEEE, Montreal, QC, Canada, pp. 41–50.

Çetin, H. A., Doğan, E. and Tüzün, E.: 2021, A review of code reviewer recommendation
studies: Challenges and future directions, Science of Computer Programming 208, 102652.

Chaniotaki, A.-M. and Sharma, T.: 2021, Architecture smells and pareto principle: A prelimi-
nary empirical exploration, in: Proceedings of the 18th IEEE/ACM International Conference on
Mining Software Repositories (MSR), IEEE, Madrid, Spain, pp. 190–194.

Charmaz, K.: 2014, Constructing Grounded Theory, sage.

Chen, L.: 2018, Microservices: Architecting for continuous delivery and DevOps, in: Proceed-
ings of the 15th IEEE International Conference on Software Architecture (ICSA), IEEE, pp. 39–
397.

Chen, L., Babar, M. A. and Zhang, H.: 2010, Towards an evidence-based understanding of
electronic data sources, in: Proceedings of the 14th International Conference on Evaluation and
Assessment in Software Engineering (EASE), BCS, Keele University, UK, pp. 1–4.

Chen, Q., Kong, D., Bao, L., Sun, C., Xia, X. and Li, S.: 2022, Code reviewer recommendation
in tencent: Practice, challenge, and direction, in: Proceedings of the 44nd International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-SEIP), ACM, Pittsburgh,
PA, USA, pp. 115–124.

Chouchen, M., Ouni, A., Mkaouer, M. W., Kula, R. G. and Inoue, K.: 2021, Whoreview:
A multi-objective search-based approach for code reviewers recommendation in modern
code review, Applied Soft Computing 100, 106908.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.
and Stafford, J.: 2010, Documenting Software Architectures: Views and Beyond (2nd Edition),
Pearson Education.

BIBLIOGRAPHY 257

Cohen, J.: 1960, A coefficient of agreement for nominal scales, Educational and Psychological
Measurement 20(1), 37–46.

Conway, M. E.: 1968, How do committees invent, Datamation 14(4), 28–31.

Da Silva, A. R.: 2017, Linguistic patterns and linguistic styles for requirements specification (i)
an application case with the rigorous rsl/business-level language, in: Proceedings of the 22nd
European Conference on Pattern Languages of Programs (EuroPLoP), ACM, Irsee, Germany,
pp. 1–27.

Dalgarno, M.: 2009, When good architecture goes bad, Methods and Tools 17(1), 27–34.

D’Ambros, M., Gall, H., Lanza, M. and Pinzger, M.: 2008, Analysing software repositories to
understand software evolution, Software Evolution, Springer, chapter 3, pp. 37–67.

Davila, N. and Nunes, I.: 2021, A systematic literature review and taxonomy of modern code
review, Journal of Systems and Software 177, 110951.

de Oliveira Barros, M., de Almeida Farzat, F. and Travassos, G. H.: 2015, Learning from
optimization: A case study with Apache Ant, Information and Software Technology 57, 684–
704.

De Silva, L. and Balasubramaniam, D.: 2012, Controlling software architecture erosion: A
survey, Journal of Systems and Software 85(1), 132–151.

Di Sorbo, A., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio, C. A., Canfora, G. and
Gall, H. C.: 2016, What would users change in my app? summarizing app reviews for
recommending software changes, in: Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), ACM, Seattle, WA, USA, pp. 499–
510.

Di Sorbo, A., Panichella, S., Alexandru, C. V., Visaggio, C. A. and Canfora, G.: 2017, Surf:
Summarizer of user reviews feedback, in: Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering Companion (ICSE-C), IEEE, Buenos Aires, Argentina,
pp. 55–58.

Di Sorbo, A., Panichella, S., Visaggio, C. A., Di Penta, M., Canfora, G. and Gall, H.: 2016, Deca:
development emails content analyzer, in: Proceedings of the 38th IEEE/ACM International
Conference on Software Engineering (ICSE) Companion, ACM, Austin, TX, USA, pp. 641–644.

Dietterich, T. G.: 2000, Ensemble methods in machine learning, in: Proceedings of the 1st Inter-
national Workshop of Multiple Classifier Systems (MCS) 2000, Springer, Cagliari, Italy, pp. 1–
15.

Dogan, E., Tüzün, E., Tecimer, K. A. and Güvenir, H. A.: 2019, Investigating the va-
lidity of ground truth in code reviewer recommendation studies, in: Proceedings of the
13th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE, Gothenburg, Sweden, pp. 1–6.

258 BIBLIOGRAPHY

Efstathiou, V., Chatzilenas, C. and Spinellis, D.: 2018a, Word embeddings for the software
engineering domain, in: Proceedings of the 15th International Conference on Mining Software
Repositories (MSR), ACM, Gothenburg, Sweden, pp. 38–41.

Efstathiou, V., Chatzilenas, C. and Spinellis, D.: 2018b, Word embeddings for the software
engineering domain, in: Proceedings of the 15th International Conference on Mining Software
Repositories (MSR), ACM, Gothenburg, Sweden, pp. 38–41.

El Asri, I., Kerzazi, N., Uddin, G., Khomh, F. and Idrissi, M. J.: 2019, An empirical study of
sentiments in code reviews, Information and Software Technology 114, 37–54.

Fagan, M.: 1976, Design and code inspections to reduce errors in program development, IBM
Systems Journal 15(3), 182–211.

Feilkas, M., Ratiu, D. and Jurgens, E.: 2009, The loss of architectural knowledge during system
evolution: An industrial case study, in: Proceedings of the 17th IEEE International Conference
on Program Comprehension (ICPC), IEEE, Vancouver, BC, Canada, pp. 188–197.

Fejzer, M., Przymus, P. and Stencel, K.: 2018, Profile based recommendation of code review-
ers, Journal of Intelligent Information Systems 50(3), 597–619.

Fellah, A. and Bandi, A.: 2019, On architectural decay prediction in real-time software sys-
tems, in: Proceedings of the 28th International Conference on Software Engineering and Data
Engineering (SEDE), Vol. 64, ISCA, San Diego, CA, USA, pp. 98–108.

Fontana, F. A., Roveda, R., Zanoni, M., Raibulet, C. and Capilla, R.: 2016, An experience report
on detecting and repairing software architecture erosion, in: Proceedings of the 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), IEEE, Venice, Italy, pp. 21–30.

Foote, B. and Yoder, J.: 1997, Big ball of mud, Pattern Languages of Program Design 4, 654–692.

Fowler Jr, F. J.: 2013, Survey Research Methods (5th edition), Sage publications.

Fu, L., Liang, P., Rasheed, Z., Li, Z., Tahir, A. and Xiaofeng, H.: 2022, Potential technical
debt and its resolution in code reviews: An exploratory study of the OpenStack and Qt
communities, in: Proceedings of the 16th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), ACM, Helsinki, Finland, pp. 216–226.

Fu, W. and Menzies, T.: 2017, Easy over hard: A case study on deep learning, in: Proceed-
ings of the 11th joint meeting on Foundations of Software Engineering (FSE), ACM, Paderborn,
Germany, pp. 49–60.

Ganesh, S., Sharma, T. and Suryanarayana, G.: 2013, Towards a principle-based classification
of structural design smells, Journal of Object Technology 12(2), 1–29.

Garcia, J., Kouroshfar, E., Ghorbani, N. and Malek, S.: 2022, Forecasting architectural decay
from evolutionary history, IEEE Transactions on Software Engineering 48(7), 2439–2454.

BIBLIOGRAPHY 259

Garcia, J., Popescu, D., Edwards, G. and Medvidovic, N.: 2009, Identifying architectural bad
smells, in: Proceedings of the 13th European Conference on Software Maintenance and Reengi-
neering (CSMR), IEEE, Kaiserslautern, Germany, pp. 255–258.

Garlan, D., Allen, R. and Ockerbloom, J.: 1995, Architectural mismatch: Why reuse is so hard,
IEEE Software 12(6), 17–26.

Garlan, D., Allen, R. and Ockerbloom, J.: 2009, Architectural mismatch: Why reuse is still so
hard, IEEE Software 26(4), 66–69.

Gerdes, S., Jasser, S., Riebisch, M., Schröder, S., Soliman, M. and Stehle, T.: 2016, Towards the
essentials of architecture documentation for avoiding architecture erosion, in: Proceedings
of the 10th European Conference on Software Architecture Workshops (ECSA), ACM, pp. 1–4.

Godfrey, M. W. and Lee, E. H.: 2000, Secrets from the monster: Extracting Mozilla’s soft-
ware architecture, in: Proceedings of the 2nd International Symposium on Constructing Software
Engineering Tools (CoSET), Citeseer, pp. 1–9.

Gonçalves, P. W., Fregnan, E., Baum, T., Schneider, K. and Bacchelli, A.: 2020, Do explicit
review strategies improve code review performance?, in: Proceedings of the 17th International
Conference on Mining Software Repositories (MSR), ACM, Seoul, South Korea, pp. 606–610.

Gopal, M. K.: 2016, Design quality metrics on the package maintainability and reliability of
open source software, International Journal of Intelligent Engineering and Systems 9(4), 195–
204.

Grottke, M., Matias, R. and Trivedi, K. S.: 2008, The fundamentals of software aging, in: Pro-
ceedings of the 19th IEEE International Conference on Software Reliability Engineering Workshops
(ISSREW), IEEE, Seattle, WA, USA, pp. 1–6.

Grundy, J., Hosking, J. and Mugridge, W. B.: 1998, Inconsistency management for multiple-
view software development environments, IEEE Transactions on Software Engineering
24(11), 960–981.

Gurgel, A., Macia, I., Garcia, A., von Staa, A., Mezini, M., Eichberg, M. and Mitschke, R.: 2014,
Blending and reusing rules for architectural degradation prevention, in: Proceedings of the
13th International Conference on Modularity (MODULARITY), ACM, Lugano, Switzerland,
pp. 61–72.

Han, J., Pei, J. and Tong, H.: 2022, Data Mining: Concepts and Techniques, Morgan kaufmann.

Han, X., Tahir, A., Liang, P., Counsell, S., Blincoe, K., Li, B. and Luo, Y.: 2022, Code smells
detection via modern code review: A study of the openstack and qt communities, Empirical
Software Engineering 27(6), 127.

Han, X., Tahir, A., Liang, P., Counsell, S. and Luo, Y.: 2021, Understanding code smell de-
tection via code review: A study of the OpenStack community, in: Proceedings of the 29th
IEEE/ACM International Conference on Program Comprehension (ICPC), IEEE, Madrid, Spain
(Virtual), pp. 323–334.

260 BIBLIOGRAPHY

Hansen, L. K. and Salamon, P.: 1990, Neural network ensembles, IEEE transactions on pattern
analysis and machine intelligence 12(10), 993–1001.

Hassaine, S., Guéhéneuc, Y.-G., Hamel, S. and Antoniol, G.: 2012, ADvISE: Architectural de-
cay in software evolution, in: Proceedings of the 16th European Conference on Software Mainte-
nance and Reengineering (CSMR), IEEE, Szeged, Hungary, pp. 267–276.

He, H. and Garcia, E. A.: 2009, Learning from imbalanced data, IEEE Transactions on Knowl-
edge and Data Engineering 21(9), 1263–1284.

Herold, S.: 2020, An initial study on the association between architectural smells and degra-
dation, in: Proceedings of the 14th European Conference on Software Architecture (ECSA),
Springer, L’Aquila, Italy, pp. 193–201.

Herold, S., Blom, M. and Buckley, J.: 2016, Evidence in architecture degradation and consis-
tency checking research: Preliminary results from a literature review, in: Proceedings of the
10th European Conference on Software Architecture Workshops (ECSAW), ACM, pp. 1–7.

Herold, S., English, M., Buckley, J., Counsell, S. and Cinnéide, M. Ó.: 2015, Detection of
violation causes in reflexion models, in: Proceedings of the 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER), IEEE, Montreal, QC, Canada,
pp. 565–569.

Hey, T., Keim, J., Koziolek, A. and Tichy, W. F.: 2020, Norbert: Transfer learning for require-
ments classification, in: Proceedings of the 28th IEEE International Requirements Engineering
Conference (RE), IEEE, Zurich, Switzerland, pp. 169–179.

Hirao, T., McIntosh, S., Ihara, A. and Matsumoto, K.: 2022, Code reviews with divergent
review scores: An empirical study of the openstack and qt communities, IEEE Transactions
on Software Engineering 48(2), 69–81.

Hochstein, L. and Lindvall, M.: 2005, Combating architectural degeneration: A survey, Infor-
mation and Software Technology 47(10), 643–656.

Host, M., Rainer, A., Runeson, P. and Regnell, B.: 2012, Case study research in software engineer-
ing: Guidelines and examples, John Wiley & Sons.

Hove, S. E. and Anda, B.: 2005, Experiences from conducting semi-structured interviews
in empirical software engineering research, in: Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS), IEEE, Como, Italy, pp. 10–23.

Hu, Y., Wang, J., Hou, J., Li, S. and Wang, Q.: 2020, Is there a ”golden” rule for code reviewer
recommendation?: An experimental evaluation, in: Proceedings of the 20th IEEE International
Conference on Software Quality, Reliability and Security (QRS), IEEE, Macau, China, pp. 497–
508.

Huang, Q., Xia, X., Lo, D. and Murphy, G. C.: 2018, Automating intention mining, IEEE
Transactions on Software Engineering 46(10), 1098–1119.

BIBLIOGRAPHY 261

Hutter, F., Kotthoff, L. and Vanschoren, J.: 2019, Automated machine learning: methods, systems,
challenges, Springer Nature.

ISO/IEC25010: 2011, ISO/IEC 25010: 2011 Systems and software engineering-Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE)-System and software quality models.

Israel, G. D.: 1992, Determining sample size, Technical report, Florida Cooperative Extension
Service, Institute of Food and Agricultural Sciences, University of Florida, Florida, U.S.A.

Izurieta, C. and Bieman, J. M.: 2007, How software designs decay: A pilot study of pattern
evolution, in: Proceedings of the 1st International Symposium on Empirical Software Engineering
and Measurement (ESEM), IEEE, pp. 449–451.

Izurieta, C. and Bieman, J. M.: 2013, A multiple case study of design pattern decay, grime,
and rot in evolving software systems, Software Quality Journal 21(2), 289–323.

Jaktman, C. B., Leaney, J. and Liu, M.: 1999, Structural analysis of the software architecture: A
maintenance assessment case study, Working Conference on Software Architecture, Springer,
pp. 455–470.

Jiang, J., He, J.-H. and Chen, X.-Y.: 2015, Coredevrec: Automatic core member recommenda-
tion for contribution evaluation, Journal of Computer Science and Technology 30(5), 998–1016.

Juarez Filho, L., Rocha, L., Andrade, R. and Britto, R.: 2017, Preventing erosion in exception
handling design using static-architecture conformance checking, in: Proceedings of the 11th
European Conference on Software Architecture (ECSA), Springer, Canterbury, UK, pp. 67–83.

Kashiwa, Y., Nishikawa, R., Kamei, Y., Kondo, M., Shihab, E., Sato, R. and Ubayashi, N.:
2022a, An empirical study on self-admitted technical debt in modern code review, Informa-
tion and Software Technology 146, 106855.

Kashiwa, Y., Nishikawa, R., Kamei, Y., Kondo, M., Shihab, E., Sato, R. and Ubayashi, N.:
2022b, An empirical study on self-admitted technical debt in modern code review, Informa-
tion and Software Technology 146, 106855.

Khalajzadeh, H., Shahin, M., Obie, H. O., Agrawal, P. and Grundy, J.: 2022, Supporting de-
velopers in addressing human-centric issues in mobile apps, IEEE Transactions on Software
Engineering 49(4), 2149–2168.

Kim, Y.: 2014, Convolutional neural network for sentence classification, in: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), ACL, Doha,
Qatar, pp. 1746–1751.

Kiremire, A. R.: 2011, The application of the pareto principle in software engineering, Con-
sulted January 13, 1–12.

Kitchenham, B. A. and Pfleeger, S. L.: 2008, Personal opinion surveys, Guide to Advanced
Empirical Software Engineering, Springer, chapter 3, pp. 63–92.

262 BIBLIOGRAPHY

Kitchenham, B. and Charters, S.: 2007, Guidelines for performing systematic literature re-
views in software engineering, Report, Technical Report, Version 2.3 EBSE-2007-01, Keele
University & University of Durham.

Kong, D., Chen, Q., Bao, L., Sun, C., Xia, X. and Li, S.: 2022, Recommending code reviewers
for proprietary software projects: A large scale study, in: Proceedings of the 29th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, Honolulu,
HI, USA, pp. 630–640.

Koziolek, H., Domis, D., Goldschmidt, T. and Vorst, P.: 2013, Measuring architecture sustain-
ability, IEEE Software 30(6), 54–62.

Kumar, N.: 2016, Software architecture validation methods, tools support and case stud-
ies, Emerging Research in Computing, Information, Communication and Applications, Springer,
chapter 32, pp. 335–345.

Land, R.: 2002, Software deterioration and maintainability-a model proposal, in: Proceedings
of the 2nd Conference on Software Engineering Research and Practice in Sweden (SERPS), Cite-
seer.

Le, D. M., Behnamghader, P., Garcia, J., Link, D., Shahbazian, A. and Medvidovic, N.: 2015,
An empirical study of architectural change in open-source software systems, in: Proceed-
ings of the 12th IEEE/ACM Working Conference on Mining Software Repositories (MSR), IEEE,
pp. 235–245.

Le, D. M., Carrillo, C., Capilla, R. and Medvidovic, N.: 2016, Relating architectural decay and
sustainability of software systems, in: Proceedings of the 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), IEEE, Venice, Italy, pp. 178–181.

Le, D. M., Link, D., Shahbazian, A. and Medvidovic, N.: 2018, An empirical study of architec-
tural decay in open-source software, in: Proceedings of the 15th IEEE International Conference
on Software Architecture (ICSA), IEEE, Seattle, WA, USA, pp. 176–185.

Lehman, M. M. and Ramil, J. F.: 2002, Software evolution and software evolution processes,
Annals of Software Engineering 14(1-4), 275–309.

Lenhard, J., Blom, M. and Herold, S.: 2019, Exploring the suitability of source code metrics
for indicating architectural inconsistencies, Software Quality Journal 27(1), 241–274.

Lenhard, J., Hassan, M. M., Blom, M. and Herold, S.: 2017, Are code smell detection tools suit-
able for detecting architecture degradation?, in: Proceedings of the 11th European Conference
on Software Architecture (ECSA) Companion, ACM, Canterbury, United Kingdom, pp. 138–
144.

Lethbridge, T. C., Sim, S. E. and Singer, J.: 2005, Studying software engineers: Data collection
techniques for software field studies, Empirical Software Engineering 10(3), 311–341.

BIBLIOGRAPHY 263

Li, R., Liang, P. and Avgeriou, P.: 2022, Replication Package for the Paper: Warnings: Viola-
tion Symptoms Indicating Architecture Erosion, https://doi.org/10.5281/zenodo.
7054370.

Li, R., Liang, P. and Avgeriou, P.: 2023a, Code reviewer recommendation for architecture
violations: An exploratory study, in: Proceedings of the 27th International Conference on Eval-
uation and Assessment in Software Engineering (EASE), IEEE, Oulu, Finland, pp. 42–51.

Li, R., Liang, P. and Avgeriou, P.: 2023b, Replication Package for the Paper: Code Re-
viewer Recommendation for Architecture Violations: An Exploratory Study, https:
//doi.org/10.5281/zenodo.7292880.

Li, R., Liang, P. and Avgeriou, P.: 2023c, Replication Package for the Paper: Towards Auto-
matic Identification of Violation Symptoms of Architecture Erosion, https://zenodo.
org/doi/10.5281/zenodo.10038355.

Li, R., Liang, P. and Avgeriou, P.: 2023d, Warnings: Violation symptoms indicating architec-
ture erosion, Information and Software Technology 164, 107319.

Li, R., Liang, P., Soliman, M. and Avgeriou, P.: 2021a, Li R, Liang P, Soliman M, Avgeriou
P. Replication package for the paper: Understanding software architecture erosion: A sys-
tematic mapping study, https://doi.org/10.5281/zenodo.5562418.

Li, R., Liang, P., Soliman, M. and Avgeriou, P.: 2021b, Understanding architecture erosion:
The practitioners’ perceptive, in: Proceedings of the 29th IEEE/ACM International Conference
on Program Comprehension (ICPC), IEEE, Madrid, Spain, pp. 311–322.

Li, R., Liang, P., Soliman, M. and Avgeriou, P.: 2022, Understanding software architecture
erosion: A systematic mapping study, Journal of Software: Evolution and Process 34(3), e2423.

Li, R., Soliman, M., Liang, P. and Avgeriou, P.: 2021a, Replication Package for the Paper:
Symptoms of Architecture Erosion in Code Reviews: A Study of Two OpenStack Projects,
https://doi.org/10.5281/zenodo.5676037.

Li, R., Soliman, M., Liang, P. and Avgeriou, P.: 2021b, Replication package for the paper:
Understanding architecture erosion: The practitioners’ perceptive, https://doi.org/
10.5281/zenodo.4481564.

Li, R., Soliman, M., Liang, P. and Avgeriou, P.: 2022, Symptoms of architecture erosion in code
reviews: A study of two openstack projects, in: Proceedings of the 19th IEEE International
Conference on Software Architecture (ICSA), IEEE, Honolulu, Hawaii, USA, pp. 24–35.

Li, Y., Soliman, M. and Avgeriou, P.: 2022, Identifying self-admitted technical debt in issue
tracking systems using machine learning, Empirical Software Engineering 27(6), 131.

Li, Z., Avgeriou, P. and Liang, P.: 2015, A systematic mapping study on technical debt and its
management, Journal of Systems and Software 101, 193–220.

https://doi.org/10.5281/zenodo.7054370
https://doi.org/10.5281/zenodo.7054370
https://doi.org/10.5281/zenodo.7292880
https://doi.org/10.5281/zenodo.7292880
https://zenodo.org/doi/10.5281/zenodo.10038355
https://zenodo.org/doi/10.5281/zenodo.10038355
https://doi.org/10.5281/zenodo.5562418
https://doi.org/10.5281/zenodo.5676037
https://doi.org/10.5281/zenodo.4481564
https://doi.org/10.5281/zenodo.4481564

264 BIBLIOGRAPHY

Li, Z. and Long, J.: 2011, A case study of measuring degeneration of software architectures
from a defect perspective, in: Proceedings of the 18th Asia-Pacific Software Engineering Confer-
ence (APSEC), IEEE, Ho Chi Minh, Vietnam, pp. 242–249.

Li, Z., Qi, X., Yu, Q., Liang, P., Mo, R. and Yang, C.: 2021, Multi-programming-language
commits in oss: An empirical study on apache projects, in: Proceedings of the 29th IEEE/ACM
International Conference on Program Comprehension (ICPC), IEEE, Madrid, Spain, pp. 219–229.

Lipcak, J. and Rossi, B.: 2018, A large-scale study on source code reviewer recommendation,
in: Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA), IEEE, Prague, Czech, pp. 378–387.

Liu, Z., Xia, X., Hassan, A. E., Lo, D., Xing, Z. and Wang, X.: 2018, Neural-machine-
translation-based commit message generation: How far are we?, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE), ACM, Mont-
pellier, France, pp. 373–384.

Ma, Z., Li, R., Li, T., Zhu, R., Jiang, R., Yang, J., Tang, M. and Zheng, M.: 2020, A data-driven
risk measurement model of software developer turnover, Soft Computing 24(2), 825–842.

Macia, I., Arcoverde, R., Garcia, A., Chavez, C. and von Staa, A.: 2012, On the relevance of
code anomalies for identifying architecture degradation symptoms, in: Proceedings of the
16th European Conference on Software Maintenance and Reengineering (CSMR), IEEE, Szeged,
Hungary, pp. 277–286.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N. and von Staa, A.: 2012,
Are automatically-detected code anomalies relevant to architectural modularity?: An ex-
ploratory analysis of evolving systems, in: Proceedings of the 11th Annual International Con-
ference on Aspect-oriented Software Development (AOSD), ACM, pp. 167–178.

Maffort, C., Valente, M. T., Terra, R., Bigonha, M., Anquetil, N. and Hora, A.: 2016, Mining
architectural violations from version history, Empirical Software Engineering 21(3), 854–895.

Mair, M. and Herold, S.: 2013, Towards extensive software architecture erosion repairs, in:
Proceedings of the 7th European Conference on Software Architecture (ECSA), Springer, Mont-
pellier, France,, pp. 299–306.

Mair, M., Herold, S. and Rausch, A.: 2014, Towards flexible automated software architecture
erosion diagnosis and treatment, in: Proceedings of the 11th Working IEEE/IFIP Conference on
Software Architecture (WICSA) Companion, ACM, Sydney, NSW, Australia, pp. 1–6.

March, S. T. and Smith, G. F.: 1995, Design and natural science research on information tech-
nology, Decision support systems 15(4), 251–266.

Marcus, A. and Poshyvanyk, D.: 2005, The conceptual cohesion of classes, in: Proceedings of
the 21st IEEE International Conference on Software Maintenance (ICSM), IEEE, pp. 133–142.

Martin, R. C.: 2000, Design principles and design patterns, Object Mentor 1(34), 597.

BIBLIOGRAPHY 265

Martin, R. C.: 2003, Agile software development: principles, patterns, and practices, Prentice Hall
PTR.

Martin, R. C. and Martin, M.: 2006, Agile Principles, Patterns, and Practices in C#, 1st Edition,
Pearson.

Mendoza, C., Bocanegra, J., Garcés, K. and Casallas, R.: 2021, Architecture violations detec-
tion and visualization in the continuous integration pipeline, Software: Practice and Experi-
ence 51(8), 1822–1845.

Merkle, B.: 2010, Stop the software architecture erosion: Building better software systems, in:
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (SPLASH/OOPSLA) Companion, ACM, Reno/Tahoe,
Nevada, USA, pp. 129–138.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J.: 2013, Distributed represen-
tations of words and phrases and their compositionality, in: Proceedings of the 27th Annual
Conference on Neural Information Processing Systems (NeurIPS), Curran Associates, Inc., Lake
Tahoe, Nevada, United States, pp. 3111–3119.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M. and Gao, J.: 2021,
Deep learning-based text classification: A comprehensive review, ACM Computing Surveys
54(3), 1–40.

Miranda, S., Rodrigues Jr, E., Valente, M. T. and Terra, R.: 2016, Architecture conformance
checking in dynamically typed languages, Journal of Object Technology 15(3), 1–34.

Mo, R., Garcia, J., Cai, Y. and Medvidovic, N.: 2013, Mapping architectural decay instances to
dependency models, in: Proceedings of the 4th International Workshop on Managing Technical
Debt (MTD), IEEE, San Francisco, CA, USA, pp. 39–46.

Mokni, A., Huchard, M., Urtado, C., Vauttier, S. and Zhang, Y.: 2015, An evolution manage-
ment model for multi-level component-based software architectures, in: Proceedings of the
27th International Conference on Software Engineering and Knowledge Engineering (SEKE), KSI,
Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, pp. 674–679.

Mokni, A., Urtado, C., Vauttier, S., Huchard, M. and Zhang, H. Y.: 2016, A formal approach
for managing component-based architecture evolution, Science of Computer Programming
127, 24–49.

Morales, R., McIntosh, S. and Khomh, F.: 2015, Do code review practices impact design qual-
ity? A case study of the Qt, VTK, and ITK projects, in: Proceedings of the 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE, Montreal, QC,
Canada, pp. 171–180.

Mumtaz, H., Singh, P. and Blincoe, K.: 2021, A systematic mapping study on architectural
smells detection, Journal of Systems and Software 173, 110885.

266 BIBLIOGRAPHY

Murphy, G. C., Notkin, D. and Sullivan, K.: 1995, Software reflexion models: Bridging the gap
between source and high-level models, in: Proceedings of the 3rd ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE), ACM, Washington, DC, USA, pp. 18–28.

Murphy, G. C., Notkin, D. and Sullivan, K. J.: 2001, Software reflexion models: Bridging
the gap between design and implementation, IEEE Transactions on Software Engineering
27(4), 364–380.

Nasab, A. R., Shahin, M., Liang, P., Basiri, M., Raviz, S. H., Khalajzadeh, H., Waseem, M.
and Naseri, A.: 2021, Automated identification of security discussions in microservices
systems: Industrial surveys and experiments, Journal of Systems and Software p. 111046.

Neri, D., Soldani, J., Zimmermann, O. and Brogi, A.: 2020, Design principles, architectural
smells and refactorings for microservices: A multivocal review, SICS Software-Intensive
Cyber-Physical Systems 35(1), 3–15.

Neto, V. V. G., Manzano, W., Garcés, L., Guessi, M., Oliveira, B., Volpato, T. and Nakagawa,
E. Y.: 2018, Back-sos: Towards a model-based approach to address architectural drift in
systems-of-systems, in: Proceedings of the 33rd Annual ACM Symposium on Applied Comput-
ing (SAC), ACM, Pau, France, pp. 1461–1463.

Nord, R. L., Ozkaya, I., Kruchten, P. and Gonzalez-Rojas, M.: 2012, In search of a metric for
managing architectural technical debt, in: Proceedings of the 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Architecture (WIC-
SA/ECSA), IEEE, Helsinki, Finland, pp. 91–100.

Oizumi, W., Garcia, A., Sousa, L. D. S., Cafeo, B. and Zhao, Y.: 2016, Code anomalies flock to-
gether: Exploring code anomaly agglomerations for locating design problems, in: Proceed-
ings of the 38th International Conference on Software Engineering (ICSE), ACM, pp. 440–451.

Oizumi, W. N., Garcia, A. F., Colanzi, T. E., Ferreira, M. and Staa, A. V.: 2015, On the rela-
tionship of code-anomaly agglomerations and architectural problems, Journal of Software
Engineering Research and Development 3(1), 1–22.

Oizumi, W., Sousa, L., Oliveira, A., Carvalho, L., Garcia, A., Colanzi, T. and Oliveira, R.:
2019, On the density and diversity of degradation symptoms in refactored classes: A multi-
case study, in: Proceedings of the 30th IEEE International Symposium on Software Reliability
Engineering (ISSRE), IEEE, Berlin, Germany, pp. 346–357.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D. S. and Wolf, A. L.: 1999, An architecture-based approach to self-adaptive
software, IEEE Intelligent Systems and Their Applications 14(3), 54–62.

Ouni, A., Kula, R. G. and Inoue, K.: 2016a, Search-based peer reviewers recommendation
in modern code review, in: Proceedings of the 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, Raleigh, NC, USA, pp. 367–377.

BIBLIOGRAPHY 267

Ouni, A., Kula, R. G. and Inoue, K.: 2016b, Search-based peer reviewers recommendation
in modern code review, in: Proceedings of the 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, Raleigh, NC, USA, pp. 367–377.

Pagano, R. R.: 2012, Understanding Statistics in the Behavioral Sciences, Cengage Learning.

Paixao, M., Krinke, J., Han, D., Ragkhitwetsagul, C. and Harman, M.: 2019, The impact of
code review on architectural changes, IEEE Transactions on Software Engineering pp. 1–19.

Paixão, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J. and Arvonio, E.: 2020,
Behind the intents: An in-depth empirical study on software refactoring in modern code
review, in: Proceedings of the 17th International Conference on Mining Software Repositories
(MSR), ACM, Seoul, South Korea, pp. 125–136.

Pal, A., Chang, S. and Konstan, J. A.: 2012, Evolution of experts in question answering
communities, in: Proceedings of the 6th International Conference on Weblogs and Social Media
(ICWSM), AAAI, pp. 274–281.

Parnas, D. L.: 1994, Software aging, in: Proceedings of the 16th International Conference on Soft-
ware Engineering (ICSE), IEEE, Sorrento, Italy, pp. 279–287.

Pennington, J., Socher, R. and Manning, C. D.: 2014, Glove: Global vectors for word rep-
resentation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), ACL, Doha, Qatar, pp. 1532–1543.

Perry, D. E. and Wolf, A. L.: 1992, Foundations for the study of software architecture, ACM
SIGSOFT Software Engineering Notes 17(4), 40–52.

Peters, F., Tun, T. T., Yu, Y. and Nuseibeh, B.: 2017, Text filtering and ranking for security bug
report prediction, IEEE Transactions on Software Engineering 45(6), 615–631.

Petersen, K., Vakkalanka, S. and Kuzniarz, L.: 2015, Guidelines for conducting systematic
mapping studies in software engineering: An update, Information and Software Technology
64, 1–18.

Pruijt, L. and Brinkkemper, S.: 2014, A metamodel for the support of semantically rich mod-
ular architectures in the context of static architecture compliance checking, in: Proceedings
of the 11th Working IEEE/IFIP Conference on Software Architecture (WICSA) Companion, ACM,
Sydney, NSW, Australia, pp. 1–8.

Qi, Y., Sachan, D., Felix, M., Padmanabhan, S. and Neubig, G.: 2018, When and why are
pre-trained word embeddings useful for neural machine translation?, in: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), ACL, New Orleans, Louisiana, USA,
pp. 529–535.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I. et al.: 2018, Improving language
understanding by generative pre-training, In: Preprint pp. 1–12.

268 BIBLIOGRAPHY

Rahman, M. M., Roy, C. K. and Kula, R. G.: 2017, Predicting usefulness of code review com-
ments using textual features and developer experience, in: Proceedings of the 14th IEEE/ACM
International Conference on Mining Software Repositories (MSR), IEEE, Buenos Aires, Ar-
gentina, pp. 215–226.

Rama, G. M.: 2010, A desiderata for refactoring-based software modularity improvement,
in: Proceedings of the 3rd Annual India Software Engineering Conference (ISEC), ACM, Mysore,
India, pp. 93–102.

Rebai, S., Amich, A., Molaei, S., Kessentini, M. and Kazman, R.: 2020, Multi-objective code re-
viewer recommendations: Balancing expertise, availability and collaborations, Automated
Software Engineering 27(3), 301–328.

Reimanis, D. and Izurieta, C.: 2019, Behavioral evolution of design patterns: Understanding
software reuse through the evolution of pattern behavior, in: Proceedings of the 18th Inter-
national Conference on Software and Systems Reuse (ICSR), Springer, Cincinnati, OH, USA,
pp. 77–93.

Ren, X., Xing, Z., Xia, X., Lo, D., Wang, X. and Grundy, J.: 2019, Neural network-based detec-
tion of self-admitted technical debt: From performance to explainability, ACM Transactions
on Software Engineering and Methodology 28(3), 1–45.

Rocha, H., Durelli, R. S., Terra, R., Bessa, S. and Valente, M. T.: 2017, Dcl 2.0: modular and
reusable specification of architectural constraints, Journal of the Brazilian Computer Society
23(1), 1–25.

Ruangwan, S., Thongtanunam, P., Ihara, A. and Matsumoto, K.: 2019, The impact of human
factors on the participation decision of reviewers in modern code review, Empirical Software
Engineering 24(2), 973–1016.

Runeson, P. and Höst, M.: 2009, Guidelines for conducting and reporting case study research
in software engineering, Empirical Software Engineering 14(2), 131–164.

Sadowski, C., Söderberg, E., Church, L., Sipko, M. and Bacchelli, A.: 2018, Modern code
review: A case study at Google, in: Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), ACM, Gothenburg, Sweden,
pp. 181–190.

Sangal, N., Jordan, E., Sinha, V. and Jackson, D.: 2005, Using dependency models to manage
complex software architecture, in: Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM,
pp. 167–176.

Sangwan, R. S., Vercellone-Smith, P. and Laplante, P. A.: 2008, Structural epochs in the com-
plexity of software over time, IEEE Software 25(4), 66–73.

Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K., Rangarajan, K. and Sivagnanam,
S.: 2009, Modularization of a large-scale business application: A case study, IEEE Software
26(2), 28–35.

BIBLIOGRAPHY 269

Schmitt Laser, M., Medvidovic, N., Le, D. M. and Garcia, J.: 2020, Arcade: an extensible
workbench for architecture recovery, change, and decay evaluation, in: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), ACM, Sacramento, CA, USA, pp. 1546–
1550.

Schröder, S. and Riebisch, M.: 2017, Architecture conformance checking with description log-
ics, in: Proceedings of the 11th European Conference on Software Architecture (ECSA) Companion,
ACM, Canterbury, United Kingdom, pp. 166–172.

Schultis, K.-B., Elsner, C. and Lohmann, D.: 2016, Architecture-violation management for
internal software ecosystems, in: Proceedings of the 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE, Venice, Italy, pp. 241–246.

Sesari, E., Hort, M. and Sarro, F.: 2022, An empirical study on the fairness of pre-trained word
embeddings, in: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL), ACL, Dublin, Ireland.

Shahin, M., Liang, P. and Babar, M. A.: 2014a, A systematic review of software architecture
visualization techniques, Journal of Systems and Software 94, 161–185.

Shahin, M., Liang, P. and Babar, M. A.: 2014b, A systematic review of software architecture
visualization techniques, Journal of Systems and Software 94, 161–185.

Sharma, T., Singh, P. and Spinellis, D.: 2020, An empirical investigation on the relationship
between design and architecture smells, Empirical Software Engineering 25(5), 4020–4068.

Sharma, T. and Spinellis, D.: 2018, A survey on software smells, Journal of Systems and Software
138, 158–173.

Shaw, M. and Clements, P.: 2006, The golden age of software architecture, IEEE Software
23(2), 31–39.

Shull, F., Singer, J. and Sjøberg, D. I.: 2007, Guide to Advanced Empirical Software Engineering,
Springer.

Singer, J., Sim, S. E. and Lethbridge, T. C.: 2008, Software engineering data collection for field
studies, Guide to Advanced Empirical Software Engineering, Springer, chapter 1, pp. 9–34.

Sinha, V. S., Mani, S. and Gupta, M.: 2013, Exploring activeness of users in QA forums, in: Pro-
ceedings of the 10th Working Conference on Mining Software Repositories (MSR), IEEE, pp. 77–
80.

Soliman, M., Galster, M., Salama, A. R. and Riebisch, M.: 2016, Architectural knowledge for
technology decisions in developer communities: An exploratory study with stackoverflow,
in: Proceedings of the 13th Working IEEE/IFIP Conference on Software Architecture (WICSA),
IEEE, Venice, Italy, pp. 128–133.

270 BIBLIOGRAPHY

Soliman, M., Salama, A. R., Galster, M., Zimmermann, O. and Riebisch, M.: 2018, Improving
the search for architecture knowledge in online developer communities, in: Proceedings
of the 15th IEEE International Conference on Software Architecture (ICSA), IEEE, Seattle, WA,
USA, pp. 186–195.

Stal, M.: 2014, Refactoring software architectures, Agile Software Architecture, Elsevier, chap-
ter 3, pp. 63–82.

Stol, K.-J., Ralph, P. and Fitzgerald, B.: 2016, Grounded theory in software engineering re-
search: A critical review and guidelines, in: Proceedings of the 38th International Conference
on Software Engineering (ICSE), ACM, Austin, TX, USA, pp. 120–131.

Strasser, A., Cool, B., Gernert, C., Knieke, C., Körner, M., Niebuhr, D., Peters, H., Rausch,
A., Brox, O. and Jauns-Seyfried, S.: 2014, Mastering erosion of software architecture in
automotive software product lines, in: Proceedings of the 40th International Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM), Springer, Smokovec, Slovakia,
pp. 491–502.

Sturtevant, D.: 2017, Modular architectures make you agile in the long run, IEEE Software
35(1), 104–108.

Sülün, E., Tüzün, E. and Doğrusöz, U.: 2021, Rstrace+: Reviewer suggestion using software
artifact traceability graphs, Information and Software Technology 130, 106455.

Tahir, A., Yamashita, A., Licorish, S., Dietrich, J. and Counsell, S.: 2018, Can you tell me
if it smells?: A study on how developers discuss code smells and anti-patterns in stack
overflow, in: Proceedings of the 22nd International Conference on Evaluation and Assessment in
Software Engineering (EASE), ACM, pp. 68–78.

Tan, P.-N., Steinbach, M. and Kumar, V.: 2016, Introduction to Data Mining, Pearson Education
India.

Terra, R. and Valente, M. T.: 2009, A dependency constraint language to manage object-
oriented software architectures, Software: Practice and Experience 39(12), 1073–1094.

Terra, R., Valente, M. T., Czarnecki, K. and Bigonha, R. S.: 2015, A recommendation system for
repairing violations detected by static architecture conformance checking, Software: Practice
and Experience 45(3), 315–342.

Thongtanunam, P., McIntosh, S., Hassan, A. E. and Iida, H.: 2017, Review participation in
modern code review: An empirical study of the android, qt, and openstack projects, Em-
pirical Software Engineering 22(2), 768–817.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida, N., Iida, H. and Matsumoto,
K.-i.: 2015, Who should review my code? A file location-based code-reviewer recom-
mendation approach for modern code review, in: Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE, Montreal, QC,
Canada, pp. 141–150.

BIBLIOGRAPHY 271

Tian, F., Liang, P. and Babar, M. A.: 2019, How developers discuss architecture smells? an
exploratory study on stack overflow, in: Proceedings of the 16th IEEE International Conference
on Software Architecture (ICSA), IEEE, pp. 91–100.

Tran, J. B. and Holt, R. C.: 1999, Forward and reverse repair of software architecture, in:
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research (CAS-
CON), IBM Press, Mississauga, Ontario, Canada, pp. 1–9.

Tsay, J., Dabbish, L. and Herbsleb, J.: 2014, Influence of social and technical factors for eval-
uating contribution in github, in: Proceedings of the 36th International Conference on Software
Engineering (ICSE), ACM, pp. 356–366.

Uchôa, A., Barbosa, C., Oizumi, W., Blenilio, P., Lima, R., Garcia, A. and Bezerra, C.: 2020,
How does modern code review impact software design degradation? An in-depth empir-
ical study, in: Proceedings of the 36th IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, Adelaide, Australia, pp. 511–522.

van Gurp, J. and Bosch, J.: 2002, Design erosion: Problems and causes, Journal of Systems and
Software 61(2), 105–119.

Vassileva, J.: 2008, Toward social learning environments, IEEE Transactions on Learning Tech-
nologies 1(4), 199–214.

Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Nakagawa, E. Y.,
Becker, C. and Carrillo, C.: 2018, Software sustainability: Research and practice from a
software architecture viewpoint, Journal of Systems and Software 138, 174–188.

Wang, S., Lo, D. and Jiang, L.: 2013, An empirical study on developer interactions in stack-
overflow, in: Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC),
ACM, pp. 1019–1024.

Wang, T., Wang, D. and Li, B.: 2019, A multilevel analysis method for architecture erosion,
in: Proceedings of the 31st International Conference on Software Engineering and Knowledge En-
gineering (SEKE), KSI, Hotel Tivoli, Lisbon, Portugal, pp. 443–566.

Watson, C., Cooper, N., Palacio, D. N., Moran, K. and Poshyvanyk, D.: 2022, A systematic
literature review on the use of deep learning in software engineering research, ACM Trans-
actions on Software Engineering and Methodology 31(2), 1–58.

Wieringa, R. J.: 2014, Design Science Methodology for Information Systems and Software Engineer-
ing, Springer.

Wohlin, C.: 2016, Second-generation systematic literature studies using snowballing, in: Pro-
ceedings of the 20th International Conference on Evaluation and Assessment in Software Engineer-
ing (EASE), ACM, Limerick, Ireland, pp. 1–6.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A.: 2012, Experi-
mentation in Software Engineering, Springer Science & Business Media.

272 BIBLIOGRAPHY

Xia, X., Lo, D., Wang, X. and Yang, X.: 2015, Who should review this change?: Putting text
and file location analyses together for more accurate recommendations, in: Proceedings of
the 31st IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE,
Bremen, Germany, pp. 261–270.

Yang, Y., Xia, X., Lo, D., Bi, T., Grundy, J. and Yang, X.: 2022, Predictive models in software
engineering: Challenges and opportunities, ACM Transactions on Software Engineering and
Methodology 31(3), 1–72.

Yin, R. K.: 2009, Case Study Research: Design and Methods, Vol. 5, sage.

Yu, Y., Wang, H., Yin, G. and Wang, T.: 2016, Reviewer recommendation for pull-requests
in GitHub: What can we learn from code review and bug assignment?, Information and
Software Technology 74, 204–218.

Zanjani, M. B., Kagdi, H. and Bird, C.: 2015, Automatically recommending peer reviewers in
modern code review, IEEE Transactions on Software Engineering 42(6), 530–543.

Zar, J. H.: 1972, Significance testing of the Spearman rank correlation coefficient, Journal of the
American Statistical Association 67(339), 578–580.

Zhang, L., Sun, Y., Song, H., Chauvel, F. and Mei, H.: 2011, Detecting architecture erosion
by design decision of architectural pattern, in: Proceedings of the 23rd International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE), KSI, Miami Beach, FL, USA,
pp. 758–763.

Zhou, X., Jin, Y., Zhang, H., Li, S. and Huang, X.: 2016, A map of threats to validity of sys-
tematic literature reviews in software engineering, in: Proceedings of the 23rd Asia-Pacific
Software Engineering Conference (APSEC), IEEE, pp. 153–160.

Zhou, Y. and Sharma, A.: 2017, Automated identification of security issues from commit
messages and bug reports, in: Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering (FSE), ACM, Paderborn, Germany, pp. 914–919.

	Abstract
	Samenvatting
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Architecture Erosion and Its Symptoms
	Architecture and Its Erosion
	Erosion Symptoms

	Causes and Impact of Architecture Erosion
	Mining Architecture Information from Textual Artifacts
	Research Design
	Problem Statement
	Design Science Framework
	Problem Decomposition
	Empirical Research Methodology

	Overview of the Dissertation

	Understanding Software Architecture Erosion: A Systematic Mapping Study
	Introduction
	Context
	Terms of architecture erosion
	Characteristics of architecture erosion

	Mapping study design
	Research questions
	Pilot search and selection
	Formal search and selection
	Data extraction
	Data synthesis

	Results
	Overview
	RQ1: What are the definitions of architecture erosion in software development?
	RQ2: What are the symptoms of architecture erosion in software development?
	RQ3: What are the reasons that cause architecture erosion in software development?
	RQ4: What are the consequences of architecture erosion in software development?
	RQ5: What approaches and tools have been used to detect architecture erosion in software development?
	RQ6: What measures have been used to address and prevent architecture erosion in software development?
	RQ7: What are the difficulties when detecting, addressing, and preventing architecture erosion?
	RQ8: What are the lessons learned about architecture erosion in software development?

	Discussion
	Analysis of results
	Implications

	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Related Work
	Conclusions

	Understanding Architecture Erosion: The Practitioners' Perceptive
	Introduction
	Related Work
	Architecture Erosion
	Online Developer Communities

	Study Design
	Research Questions
	Research Process

	Results
	RQ1 - Description of architecture erosion
	RQ2 - Causes and consequences of architecture erosion
	RQ3 - Identifying architecture erosion
	RQ4 - Addressing architecture erosion

	Discussion
	Interpretation of Results
	Implications for Researchers and Practitioners

	Threats to Validity
	Conclusions and Future Work

	Symptoms of architecture erosion in code reviews: A study of two OpenStack projects
	Introduction
	Background
	Code Review Process
	Architecture Erosion Symptoms

	Study Design
	Research Questions
	Data Collection and Analysis

	Results
	Results of RQ1
	Results of RQ2
	Results of RQ3

	Discussion
	RQ1: Frequently Identified Erosion Symptoms
	RQ2: Trend of Identified Erosion Symptoms
	RQ3: Impact of Identified Erosion Symptoms

	Implications
	Implications for Researchers
	Implications for Practitioners

	Threats to Validity
	Related Work
	Code Review
	Identification of Architecture Erosion Symptoms

	Conclusions and Future Work

	Warnings: Violation Symptoms Indicating Architecture Erosion
	Introduction
	Background
	Code Review
	Architecture Erosion

	Methodology
	Research Questions
	Project Selection
	Data Collection
	Data Labeling and Analysis

	Results
	Overview
	RQ1 - Categories of Violations Symptoms
	RQ2 - Expression of Violation Symptoms
	RQ3 - Dealing with Violation Symptoms

	Discussion
	Interpretation of Results
	Implications

	Threats to Validity
	Related Work
	Architecture Violations
	Architecture Conformance Checking
	Code Review Comments

	Conclusions

	Towards Automatic Identification of Violation Symptoms of Architecture Erosion
	Introduction
	Background
	Architecture Erosion and Related Symptoms
	Code Review in Gerrit

	Study Design
	Research Questions
	Data Collection
	Phase 1 - Automatic Classification of Violation Symptoms
	Ensemble Classifier
	Phase 2 - Validation Survey

	Results
	RQ1: Identifying Violation Symptoms
	RQ2: Improving Performance with Voting
	RQ3: Validation in Practice

	Discussion
	Interpretation of Results
	Implications

	Threats to Validity
	Construct validity
	External validity
	Reliability

	Related Work
	Code Review Comments
	Architecture Violations
	Analyzing Software Repositories with Machine Learning and Deep Learning

	Conclusions and Future Work

	Code Reviewer Recommendation for Architecture Violations: An Exploratory Study
	Introduction
	Background
	Code Review Process in Gerrit
	Code Reviewer Recommendation
	Architecture Violations

	Research Methodology
	Research Questions
	Data Collection
	Recommendation Approach
	Baseline Approach
	Evaluation Metrics

	Results and Discussion
	RQ1: Effectiveness of Our Approach
	RQ2: Comparison of Recommendation Approaches
	RQ3: Comparison of Sampling Methods
	Implications

	Threats to Validity
	Related Work
	Conclusions

	Conclusions and Future Work
	Research Questions and Contributions
	Future Work

	Selected Studies for Chapter 2
	Appendix A
	Bibliography

