

 University of Groningen

Does it matter who pays back Technical Debt? An empirical study of self-fixed TD
Tan, Jie; Feitosa, Daniel; Avgeriou, Paris

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2021.106738

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tan, J., Feitosa, D., & Avgeriou, P. (2022). Does it matter who pays back Technical Debt? An empirical
study of self-fixed TD. Information and Software Technology, 143, [106738].
https://doi.org/10.1016/j.infsof.2021.106738

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://doi.org/10.1016/j.infsof.2021.106738
https://research.rug.nl/en/publications/e145a32f-c611-4797-a37b-aee932f44a30
https://doi.org/10.1016/j.infsof.2021.106738

Information and Software Technology 143 (2022) 106738

A
0

D
s
J
a

b

A

K
T
S
P
H
S

1

m
b
l
b
c
t
f
o
t
o
d
e
h
t

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

oes it matter who pays back Technical Debt? An empirical study of
elf-fixed TD
ie Tan a,∗, Daniel Feitosa a,b, Paris Avgeriou a

Faculty of Science and Engineering, University of Groningen, Netherlands
Campus Fryslân, University of Groningen, Netherlands

R T I C L E I N F O

eywords:
echnical Debt
elf-fixed issues
ython
uman factors
tatic analysis

A B S T R A C T

Context: Technical Debt (TD) can be paid back either by those that incurred it or by others. We call the
former self-fixed TD, and it can be particularly effective, as developers are experts in their own code and are
well-suited to fix the corresponding TD issues.
Objective: The goal of our study is to investigate self-fixed technical debt, especially the extent in which TD
is self-fixed, which types of TD are more likely to be self-fixed, whether the remediation time of self-fixed TD
is shorter than non-self-fixed TD and how development behaviors are related to self-fixed TD.
Method: We report on an empirical study that analyzes the self-fixed issues of five types of TD (i.e., Code,
Defect, Design, Documentation and Test), captured via static analysis, in more than 44,000 commits obtained
from 20 Python and 16 Java projects of the Apache Software Foundation.
Results: The results show that about half of the fixed issues are self-fixed and that the likelihood of contained
TD issues being self-fixed is negatively correlated with project size, the number of developers and total issues.
Moreover, there is no significant difference of the survival time between self-fixed and non-self-fixed issues.
Furthermore, developers are more keen to pay back their own TD when it is related to lower code level issues,
e.g., Defect Debt and Code Debt. Finally, developers who are more dedicated to or knowledgeable about the
project contribute to a higher chance of self-fixing TD.
Conclusions: These results can benefit both researchers and practitioners by aiding the prioritization of TD
remediation activities and refining strategies within development teams, and by informing the development
of TD management tools.
. Introduction

When Technical Debt (TD) results increasingly in extra effort during
aintenance and evolution, it needs to be (at least partially) paid

ack, e.g., through refactoring. Previous studies have shown that a
arge percentage of source code Technical Debt (TD) is indeed paid
ack [1,2]. There is however, an elementary distinction between two
ases of TD repayment, depending on whether the debt is paid back by
he developer who introduced it or by others. We call the former self-
ixed TD, and it is significant, because developers are familiar with their
wn code, and may perform the repayment differently than others. On
he contrary, we call the latter non-self-fixed TD. Of course, remediation
f TD incurred by others also takes place systematically. For example,
evelopers that join an open source project are ideally pointed to
asier tasks, which can involve update of documentation or simple code
acks [3]. This helps the newcomers to build know-how and get used
o the team’s operations.

∗ Corresponding author.
E-mail addresses: j.tan@rug.nl (J. Tan), d.feitosa@rug.nl (D. Feitosa), p.avgeriou@rug.nl (P. Avgeriou).

In spite of the intriguing nature of the mentioned distinction, the
phenomenon of self-fixed technical debt has not been thoroughly stud-
ied so far. Investigating this can help identify good and bad practices
in TD remediation, especially when comparing TD that is self-fixed and
TD that is not. In particular, there are two aspects to study with regards
to self-fixed TD: the phenomenon itself, and how human factors are
related to it.

Studying the phenomenon itself may help to understand which types
of TD are self-fixed and which ones are not. This can provide an insight
on how developers prioritize the remediation of different types of TD,
either their own or of others. Moreover, it may highlight cases where
TD lives long in systems before it gets fixed and thus forces developers
to pay high amounts of interest. Such findings can also indicate how
developers generate value (measured as improved quality) by managing
their own TD. For example, learning what types of TD developers are
vailable online 16 October 2021
950-5849/© 2021 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.infsof.2021.106738
eceived 4 January 2021; Received in revised form 22 September 2021; Accepted
 24 September 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:j.tan@rug.nl
mailto:d.feitosa@rug.nl
mailto:p.avgeriou@rug.nl
https://doi.org/10.1016/j.infsof.2021.106738
https://doi.org/10.1016/j.infsof.2021.106738
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106738&domain=pdf

Information and Software Technology 143 (2022) 106738J. Tan et al.
more keen to self-fix or to self-fix faster may hint towards practices to
boost software value creation.

Studying human factors is also important as they can have a sig-
nificant impact on software quality. For example, a strong feeling of
ownership over a piece of code might increase the pride of accom-
plishment and contribute to delivering code with higher quality and
fewer defects [4]. Investigating such factors can further explain why
developers self-fix TD differently, and why some projects are more
likely to have TD that is not fixed. To the best of our knowledge, only
a few studies have addressed the relationship between human factors
and technical debt management [5,6]; among them, there is no research
that focuses on how human factors influence developers to self-fix TD.

In this paper, we report on the extension of a previous study [7],
which is, to the best of our knowledge, the first study to exclusively
focus on self-fixed technical debt. First, we investigate the extent of
this phenomenon, as well as the types of TD that are more likely to be
self-fixed and the survival time of self-fixed TD, especially compared
to non-self-fixed TD. Second, we examine the relationship between
human factors related to the effort of developers and development
teams against the self-fixing rate, together with exploring the potential
aspects that may influence developers in fixing their own TD. We em-
phasize that the extension comprises: a larger (approx. doubled) dataset
including an additional programming language, namely Java; two new
research questions regarding the examination of human-related factors;
a more rigorous statistical analysis; and, finally, a revisit of all research
questions to confirm previous findings.

To perform the study, we analyzed more than 17K commits from 20
Python projects and 27K commits from 16 Java projects of the Apache
Software Foundation and investigated five types of TD, namely Code
Debt, Defect Debt, Design Debt, Documentation Debt and Test Debt;
these five types are defined by Alves et al. [8] and Li et al. [9]. We used
SonarQube 7.0 to detect and measure TD by identifying violations of
a number of rules, which correspond to the different types of TD. The
justification for the choice of projects, language and tool is elaborated
in Sections 3.2 and 3.3.

The results indicate that the phenomenon of self-fixed TD is preva-
lent, as about half of the fixed issues are self-fixed. In addition, Defect
Debt and Code Debt receive more attention from developers who intro-
duced them, which may indicate that these developers are more keen
to pay back their own TD when it is related to lower code level issues
(e.g., compared to Design Debt and Documentation Debt). Moreover,
there is no significant difference in the survival time between self-fixed
and non-self-fixed issues.

Looking at project characteristics, the likelihood of TD issues to
be self-fixed is negatively correlated with project size, the number of
developers and total number of issues. Despite that, having developers
who are more dedicated to or knowledgeable about the project (e.g., by
contributing more commits) may positively impact the probability of
the issues to be self-fixed. However, the longer the developers are
involved in a project, the less often they self-fix TD.

Summarizing our findings, we have explored the phenomenon of
self-fixed technical debt and how human factors are related to how de-
velopers self-fix technical debt. Broadly, the contribution encompasses
the following items:

• This is the first study to focus on how developers pay back their
own technical debt in a comprehensive way, and looks at two of
the most popular programming languages, i.e., Python and Java.

• The study provides a comparison of the self-fixed and non-self-
fixed TD items in terms of number, type of debt, and survival
time.

• The study provides insight into the circumstances (e.g., project
size and the number of developers) that would improve the
likelihood of developers self-fixing technical debt, which can help
predict project quality.
2

• The replication package of the study is publicly available, so
other researchers can advance the work in the area of self-fixed
technical debt.

The remainder of this paper is structured as follows. Section 3
reports on the study objectives, the research questions, and provides
details regarding the data collection and analysis. Section 4 illustrates
the results of our study and Section 5 discusses the results in depth and
their implications. Section 6 reports on the threats to the validity of our
study. Section 7 provides information about our dataset and replication
package. After the discussion of related work in Section 2, Section 8
concludes the paper and outlines the directions of future work.

2. Related work

The body of knowledge in TD management has grown substantially
over the years. We are particularly interested in work pertaining to TD
remediation and human factors related to it.

Significant research on TD remediation has focused on fixing code
smells, which is a very popular sub-type of design debt [9]. In this
context, Chatzigeorgiou et al. [10] found that the amount of code smells
increases over time and Tufano et al. [11] that some smells could
survive for a long time. Focusing on maintenance activities, Palomba
et al. [12] found that the removal of code smells is beneficial for code
change-proneness most of the times. Sjøberg et al. [13] identified that
the 12 analyzed code smells have no significant effects on maintenance
effort. Finally, Digkas et al. [1] observed that a large percentage of TD,
including code smells, is paid back during software evolution.

Another aspect of TD remediation regards the concept of self-
admitted technical debt (SATD), i.e. developers admitting incurring
TD (e.g. in source code comments). In this context, Potdar and Shi-
hab [14] extracted SATD based on source code comments and found
that developers introduce and remove SATD throughout all develop-
ment activities, i.e., they do not only introduce or remove SATD during
the beginning or end of their development activities. Other studies
found that the majority of SATD is removed and often by the same
developer who introduced it [2,15]. However, Potdar and Shihab [14]
also noticed that developers with more experience tend to introduce
more SATD. In Section 5.2.2, after presenting our results, we discuss
how these observations compare to our findings. Furthermore, Wen
et al. [16] manually analyzed 500 quick remedy commits, i.e., the
commits that fix issues introduced by the same developers as the result
of omitted code changes or errors in the previous commit. Such com-
mits were identified by looking at their objective. During the analysis,
Wen et al. found 49 remedy commits related to software documenta-
tion, among which 16 are related to code comment (including missed
removal of SATD instances).

Unlike the studies mentioned in the previous paragraphs, which
considered one or two types of source code technical debt, or SATD, we
analyzed five common types: Code, Defect, Design, Documentation and
Test Debt in source code. Among these five types of TD, one previous
study has shown that developers mostly considered Design Debt, Test
Debt and Defect Debt [17]. Regarding TD remediation, we focused on
who fixed TD, i.e., whether it was fixed by the developer who intro-
duced it or not. In particular, we investigated the types and survival
time of TD in a comparison between self-fixed and non-self-fixed TD.

Since software development is the result of teamwork, factors
related to the development team can have a significant impact on
software quality. For example, casual developers are likely to in-
troduce quality-related problems of greater severity and in greater
quantity [18]. Thus, investigating the factors related to developers and
development team may further explain why the self-fixing rates vary
among different projects. In our study, such factors include the number
of developers and the frequency of their modifications.

Regarding the relationship between TD and human factors, Amana-
tidis et al. [5] investigated to what extent seniority relates to a tendency

Information and Software Technology 143 (2022) 106738J. Tan et al.

R

R

R

p

to accumulate more TD. Although they found a negative association,
the evidence is still inconclusive. In addition, they discovered that
80% of the most TD-incurring developers have low project-related
experience. In a separate study, Alfayez et al. [6] investigated how
different developers and developer characteristics, such as developer’s
seniority, are related to the introduction of TD in 38 Apache Java
systems. They found that developer’s seniority are negatively correlated
with the amount of introduced TD. In contrast to these studies, we
focused on remediation of TD rather than its introduction, and in the
context of self-fixed TD.

There are also external factors that can affect how developers
remediate technical debt, such as using tools. For example, Gilson
et al. [19] found that junior developers tend to use static analysis tools
to value composite quality indicators (e.g., maintainability, reliability
in SonarQube), even if they do not fully understand their meaning.
However, Ernst et al. [20] conducted a survey with 1831 participants,
primarily software engineers and architects, and found that the lack of
tool support for accurately managing and tracking architectural sources
of debt is a key issue and remains a gap in practice. Thus, the findings
of how developers remediate their own TD can be used to improve the
current tools.

3. Study design

This empirical study was designed based on the guidelines of Rune-
son et al. [21] and is reported according to the Linear Analytic Struc-
ture [21].

3.1. Objective and research questions

The goal of our study is to investigate self-fixed technical debt
with respect to the extent of this phenomenon, its different types and
survival time, and its association with human factors by analyzing
Python and Java projects.

Based on this goal, this study will examine the following five
research questions:

RQ1: How much technical debt is self-fixed in open source
projects?

Ideally, a developer who introduces technical debt to source
code is also the best candidate to pay it back in the future. Since
developers have the best understanding of their own code, they
are more likely to know the causes of technical debt they in-
curred and have potential remediation strategies. This research
question aims to investigate to what extent developers indeed
take care of their own technical debt and also investigate how
project characteristics, i.e., SLOC, the number of commits and
developers, and the total number of issues, relate to the like-
lihood that the contained issues to be self-fixed. Such findings
can be used to further explain how developers pay back TD
in projects with different characteristics, e.g., learning whether
they are more likely to fix a TD item by themselves or wait for
other developers to address it.

RQ2: Which type of technical debt is more likely to be self-fixed?

Different issues belong to different types of technical debt and
require different amounts of effort to be resolved. Therefore, this
research question examines which issues and their correspond-
ing TD types are more likely to be fixed by the developers who
introduced them. The answer to this research question will shed
further light on how developers consider their own technical
debt by allowing to look at how the type of TD plays a role
on what extent TD is fixed. For example, some issues may be
associated with higher risks and thus be regarded as important
to fix by the developers that introduced them. Or the opposite,
3

some issues may be regarded as ‘low hanging fruits’, i.e. easy to
self-fix. In addition, software components containing issues that
are mostly fixed by others could be inspected to ensure proper
documentation to support future maintenance activities.

Q3: How long does self-fixed technical debt survive during the
evolution of a system?

This research question focuses on investigating if self-fixed is-
sues are addressed faster than the issues that are introduced by
other developers, and comparing which types of TD issues are
likely to be self-fixed in a shorter time. Analyzing the survival
time of self-fixed technical debt during the evolution of each
system helps us better understand how developers prioritize
technical debt repayment, and how much interest is paid accord-
ingly. Since developers tend to be more familiar with their own
code, one would expect that developers can address their own
TD issues in a shorter time.

Q4: How does the number of developers and the frequency of
their modifications relate with the likelihood of TD issues
to be self-fixed?

Previous research has shown that not only human aspects re-
lated to individual developers, but also the collaboration of team
members can have a significant impact on software quality [18].
Similarly, we explore not only the impact of individual devel-
oper behavior on the likelihood that the issues to be self-fixed,
but also team behavior. In particular, we look into how many
developers maintain a given file and how many times a file has
been modified by all the participating developers. In the former
case, a higher number of developers maintaining a file/module
at the same time (assuming that other factors are constant) may
be associated with a higher chance of issues being fixed by
developers that did not introduce them in the first place. In the
latter case, the more a file changes, the more likely an issue is
to be self-fixed.

Q5: Who (self) fixes technical debt?

Developers have different ranges of involvement and contribu-
tion within a system. In general, developers with a high involve-
ment are more familiar and experienced with their projects [4].
This research question aims at investigating the possible factors
that drive some developers to have a higher chance to self-fix
TD than others, by looking at seniority (i.e., how long they have
been working on the project), file count (i.e., how many files
they have involved in), commit count (i.e., how many commits
they have authored) and commit size (i.e., how many lines of
code (LOC) they have contributed on average per commit).

3.2. Case selection

For the purpose of this study, we selected Python and Java projects
from the Apache Software Foundation (hereafter referred to as the
Apache ecosystem) as subject systems. Python and Java are currently
ranked as two of the top three most popular programming languages.1
While our earlier study [7] solely focused on projects written in Python,
we expanded this study to include Java projects, improving the external
validity of our findings.

The Apache ecosystem is one of the largest open source foundation,
with more than 8000 Apache code committers.2 In addition, the ecosys-
tem has 55 Python and 1000 Java projects on GitHub, which contain
different domains, sizes, activity and number of files. Finally, Apache

1 According to the Tiobe Index, one of the best known indices of
rogramming languages popularity, https://www.tiobe.com/tiobe-index/.

2 https://www.apache.org/ visited in November 2020.

https://www.tiobe.com/tiobe-index/
https://www.apache.org/

Information and Software Technology 143 (2022) 106738J. Tan et al.

h
t
s
f
f
o
c

c
t
r
t
c
t
a
a
A
l
t

3

t
s
c

h
d
(
f
i

S

t
(
v

b

2

i
2

projects have long-term stability3: a team of self-selected technical
experts manages each project by following Apache-wide meritocratic
rules, and an incubator filters projects based on their likelihood of
becoming a successful community.

To select systems among the Apache projects on GitHub, we used
four inclusion criteria:

1. The project must show up on the Apache Projects List,4 which
excludes Apache Incubator projects. Incubated projects are on
a transition period to conform to Apache standards and are,
therefore, non-representative.

2. The project’s main programming language must be Python or
Java, i.e., the largest number of files and source lines of code
(SLOC) are written in Python or Java.

3. The project must involve at least two developers.
4. The project must have at least 10% of its issues fixed. A fixing

rate lower than 10% may indicate poor quality and decreased
attention on maintenance.

Analyzing the entire history of commits for some projects is pro-
ibitive in terms of the required computational power and time. Thus,
o still guarantee the inclusion of sufficient revisions for long-lived
oftware systems, we decided to use at least the first 2000 commits
or each project. We particularly focus on the first 2000 (rather than
or example the last 2000) since it facilitates determining the authors
f commits that introduce TD. For projects that have less than 2000
ommits, we considered their entire history.

Based on the criteria, we selected all Python projects that fit these
riteria at the time of data collection (i.e., 20 projects). Compared
o Python the number of potential Java projects is vast; thus, we
andomly selected 16 projects. The selected projects partially represent
he diversity of the Apache ecosystem in terms of SLOC, number of
ommits and developers. We note that although one Python project has
wo developers, 17 projects have at least five developers (median: 9;
verage: 18; max 85). Moreover, among the 16 Java projects 13 have
t least 20 developers (min: 15; median: 55; average: 89 max: 319).
lso, the majority of the projects have a long history of commits (at

east 3 years), which allows to investigate the survival time of self-fixed
echnical debt over an extensive period [22].

.3. Variables and data collection

In this section, we describe the sets of variables necessary to answer
he research questions, as well as the necessary tooling and the major
teps of the data collection process. In particular, each unit of analysis
omprises the tuple:

<snapshot identification; snapshot information; TD issues>
The snapshot identification comprises the project name and commit

ashcode. The snapshot information encompasses the developer’s name,
eveloper’s email,5 time-stamp (i.e., date of commit), and list of files
added, removed and modified). TD issues concern the amount of self-
ixed and non-self-fixed issues in a particular snapshot. Data collection
s comprised of three main steps.

tep 1: Technical Debt Detection
To perform our study, we use the tool SonarQube [23] to detect

echnical debt. There are two main reasons for choosing SonarQube:
1) it can track the evolution of technical debt by analyzing multiple
ersions of projects; (2) it is being widely used in both industry,6 and

3 http://www.apache.org/foundation/how-it-works.html visited in Novem-
er 2020.

4 https://www.apache.org/index.html#projects-list visited in September
020.

5 For privacy reasons, we do not disclose the developers’ name and email
n our replication package.

6

4

https://www.sonarsource.com/customers/ visited in September 2020. 2
for research purposes [1,24–27]. SonarQube defines a set of rules to
detect various types of technical debt and classifies them into four
severity levels: blocker, critical, major and minor. We do not consider
minor issues, since many of them, e.g., , are trivial and have low impact
and likelihood.7 Moreover, some developers might not treat issues of
minor severity as technical debt [1]. During the analysis, SonarQube
creates a new issue when a piece of code breaks one of the predefined
rules and also assigns a time estimate of how long it would take to
resolve it.

To simplify the organization of the technical debt issues, we grouped
the rules into five categories, i.e., Code Debt, Defect Debt, Design Debt,
Documentation Debt and Test Debt, according to the classification
given by Alves et al. [8] and Li et al. [9]. In addition, we also filtered
out rules that could not be meaningfully or directly mapped into one
of the studied TD types. For example, we did not consider the FIXME
rule since it can fit multiple TD types. Based on the selected severity
levels and the selection, SonarQube detects 49 and 52 rules in Python
and Java projects, respectively. The description of the rules and their
classification can be found in Table 9 (shown in Appendix).

Based on the above, the variables that comprise the TD issues for
each unit of analysis are: (a) the count of self-fixed and non-self-fixed
issues for each type of debt, calculated as the sum of the issues for all
rules mapped to that type, (b) the count of self-fixed and non-self-fixed
issues for each rule, and (c) the remediation time for each self-fixed
and non-self-fixed issue.

Step 2: Snapshot Data Extraction
For this step, we cloned the selected Apache Python and Java

projects from GitHub.
Then, we used a script to: (1) extract the entire change history of

each project; (2) reserve at least the first 2000 consecutive commits per
project, therefore defining the snapshots (see Section 3.2); and (3) sub-
mit the snapshots to SonarQube in chronological order. As mentioned
before, for each snapshot, we recorded project name, commit hashcode,
the changed files, and the developer who is the author of the commit,
including their name and email. Furthermore, we only analyzed the
commits of the main branch of the studied systems, since the changes
are inspected responsibly by the project’s core team [28] and we focus
on TD that has been repaid in the final product. We acknowledge
that there are limitations with the use of such tools (e.g., thresholds
associated with some detection rules), which are discussed in Section 6.

Step 3: Self-Fixed Technical Debt Identification
When analyzing multiple revisions of a system, SonarQube tracks

the detailed information of issues that are fixed during the system
evolution. For example, the first commit that contains the issue is
considered as the commit that introduced it; similarly, the commit in
which the issue disappeared is considered as the one that fixed that
issue.

According to the documentation of SonarQube,8 issues that are
considered to be fixed could be involved in one of two situations: (1)
issues have been corrected (i.e., the issues are truly fixed); or (2) the
file is no longer available (removed from the project). The latter would
be false positives in our study, as it is doubtful whether the developers
actually aimed at fixing the technical debt by deleting a file. To handle
this problem, we filter out the issues that disappeared due to file
deletion. The same method was used in some previous studies [1,29].

To identify whether an issue is fixed by the same developer who
introduces it, we search the snapshots to find the developer who intro-
duced and fixed that issue. Furthermore, developers might submit a
commit using a different email (e.g., work or personal) or version of
the name (e.g., with acronyms). Thus, we compare developers’ name
and email address, considering it to be the same person when either
the name or email address is the same.

7 https://docs.sonarqube.org/latest/user-guide/rules/ visited in September
020.

8 https://docs.sonarqube.org/latest/user-guide/issues/ visited in September
020.

http://www.apache.org/foundation/how-it-works.html
https://www.apache.org/index.html#projects-list
https://www.sonarsource.com/customers/
https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/issues/

Information and Software Technology 143 (2022) 106738J. Tan et al.

c
a

e
S
w
s
E

i
i
c
s

m

w
𝑓
c
T

a

a
T

S
s
l

4

4

p
i
i
3

t
i
t
i
s
t
w
p
h
f
t
i

c
n
d
f
t
f
I
t
i
i
i
J
e

H
r
o
t

3.4. Data analysis

To answer RQ1, we compare the number of TD issues that were
self-fixed and non-self-fixed (i.e., fixed by another developer) for each
project 𝑝. In particular, we calculate the self-fixing_rate per project,
i.e., the percentage of TD issues that are fixed by the same developers
in each project, which is measured as:

𝑠𝑒𝑙𝑓 -𝑓𝑖𝑥𝑖𝑛𝑔_𝑟𝑎𝑡𝑒𝑝 =
count_self-fixed𝑝

count_fixed𝑝
(1)

where count_self-fixed𝑝 is the number of self-fixed TD issues in project
𝑝 and count_fixed𝑝 is the total number of issues that have been fixed in
the same project.

Furthermore, we build a generalized linear mixed model
(GLMM) [30] to investigate the relationship between the likelihood of
an issue being self-fixed and several project characteristics: the number
of commits, number of developers, SLOC, and the total number of
issues.

For RQ2, we calculate the self-fixing_rate per rule, i.e., the percent-
age of TD issues pertaining to rule 𝑟 that have been self-fixed in all
projects:

𝑠𝑒𝑙𝑓 -𝑓𝑖𝑥𝑖𝑛𝑔_𝑟𝑎𝑡𝑒𝑟 =
∑𝑛

𝑝=1 count_self-fixed𝑝,𝑟
∑𝑛

𝑝=1 count_fixed𝑝,𝑟
(2)

where 𝑛 is the number of projects (i.e., 36), count_fixed𝑝,𝑟 is the
amount of issues that have been fixed for rule 𝑟 in project 𝑝 and
ount_self-fixed𝑝,𝑟 is the number of issues for rule 𝑟 in project 𝑝 that
re self-fixed.

Subsequently, we compare the difference of the self-fixing rate for
ach debt type between Python and Java projects with Wilcoxon Rank
um tests and calculate Cliff’s Delta Effect Size. We also investigate
hich types of debt are more likely to be self-fixed and evaluate the

ignificance of the observed differences by conducting a Scott–Knott
ffect Size Difference test.

For RQ3, we calculate and analyze the survival time of each TD
ssue. This variable is measured as the number of days between the
ntroduction of an issue and the moment when it is fixed in the source
ode. We use the Kaplan–Meier method to analyze and compare the
urvival time of the self-fixed and non-self-fixed issues.

To answer RQ4, we extract the detailed commit information to esti-
ate how many developers maintain a given file 𝑓 , i.e.,

𝑒𝑓𝑓𝑜𝑟𝑡_𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑓 . This value is extracted by calculating the amount of
developers that changed a file 𝑓 from the time it was created to the
last analyzed commit.

Using 𝑒𝑓𝑓𝑜𝑟𝑡_𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑓 alone to represent effort sharing may incur
some bias. For example, we hypothesize that the fewer developers
contribute to the file,9 the more likely they will modify their own
code, implying a higher chance of fixing their own issues in that file.
However, if these developers only make a few changes to the file,
TD issues that were introduced by themselves may still remain in the
project. Thus, investigating the number of changes that developers
made to a file is also important. For that, we calculate an adjusted effort
sharing using the following formula:

𝑒𝑓𝑓𝑜𝑟𝑡_𝑠ℎ𝑎𝑟𝑖𝑛𝑔_𝑎𝑑𝑗𝑓 =
∑count_dev𝑓

𝑑=1 change_count𝑑,𝑓
count_dev𝑓

(3)

here count_dev𝑓 is the amount of developers that changed a file
from the time it was created to the last analyzed commit;

hange_count𝑑,𝑓 is how many times a developer 𝑑 changed one file.
o assess the association between these two variables (i.e., count_dev𝑓

and change_count𝑑,𝑓) and self-fixing, we build and examine a GLMM

9 By ‘file contribution’ we mean that a commit contains a change (i.e., line
ddition, removal or edit) to a given file.
5

where the likelihood of an issue being self-fixed is predicted based on
the two mentioned factors.

For RQ5, to investigate the association between independent vari-
bles related to developers and the likelihood of a developer to self-fix
D, we first introduce four variables.

• The seniority represents the number of days a developer has been
involved in a project, and is based on Eyolfson et al. and Alfayez
et al. [6,31]. To calculate the seniority of each author, we first
look for the author’s last commit date in the analyzed commits
and then subtract the author’s first commit date.

• The file count refers to the number of files that a developer
changed in throughout the analyzed history.

• The commit count refers to the number of commits that a devel-
oper authored throughout the analyzed history.

• The commit size refers to the average number of LOC that a devel-
oper contributed per commit throughout the analyzed history.

imilar to the previous research questions, we build a GLMM to as-
ess the relationship between the developer-related variables and the
ikelihood of issues being self-fixed by them.

. Results

.1. How much technical debt is self-fixed in open source projects?

This study required the mining of over 17K commits from 20 Python
rojects and 27K commits from 16 Java projects. After filtering out
ssues that were fixed due to file deletion (see Section 3.3), 54K Python
ssues and 71K Java issues have been selected in total, among which
5K and 34K, respectively, were fixed.

Table 1 provides the following details about the 36 selected projects:
he number of commits, SLOC, the number of developers involved
n our study (i.e., in the analyzed commits), the absolute number of
otal issues, fixing rate, and the rate of the self-fixed issues. As shown
n Table 1, Python projects seem to have a higher fixing rate and
elf-fixing rate than Java projects in general. Especially, about two
hirds of the fixed Python issues are fixed by the same developers
ho introduced them, while this proportion is only one third in Java
rojects. Considering all projects together (Python and Java), almost
alf of the issues have been fixed, and among them, about half of the
ixed issues were self-fixed. The results indicate that about half of the
echnical debt seems to be paid back by the same developers who
ntroduced them.

From Table 1, we also observe that the projects have different
haracteristics, i.e., the number of commits, developers, SLOC, the
umber of total issues, which might affect the self-fixing rates of
ifferent projects. To estimate how these characteristics relate to self-
ixing, we build a generalized linear mixed model (GLMM) [30], where
he dependent variable captures, for each TD issue, whether it is self-
ixed or non-self-fixed. The random effect is represented by the project
D, and helps to account for differences between projects in terms of
he mentioned characteristics. In addition, to properly interpret the
mportance of each variable in the model, we use min–max normal-
zation to normalize variable values, within each characteristic, in the
nterval [0, 1].10 Moreover, we use the whole dataset from Python and
ava projects to perform the analysis because we intend to build an
xplanatory model, not a predictive model.

To avoid multi-collinearity, we use the R function redun, of the
misc package [33], for removing redundant variables. The function
edun removes variables stepwise, starting from the most predictable
ne until no variable can be predicted with an adjusted 𝑅2 greater
han a given threshold, i.e., 0.8 in this study. The result of executing

10 This is done by subtracting the minimum and dividing by the difference
between the maximum and minimum, similarly as was performed in [32].

Information and Software Technology 143 (2022) 106738J. Tan et al.

T
R

g

s

Table 1
Details of the 20 Python and 16 Java Projects.

Python Java All

Median Average Max Median Average Max Median Average

Commits 337 853 2443 1454 1760 3799 1222 1227
SLOC 5307 14983 74658 87637 110881 316552 39043 56242
Developers 9 18 85 55 89 319 21 48
Total issues 542 2679 24931 3518 4994 9904 2686 3723
Fixing rate 48.85% 51.91% 86.34% 39.78% 44.44% 81.08% 48.86% 49.06%
Self-fixing rate 67.21% 65.54% 100.00% 28.99% 33.26% 93.86% 47.64% 50.84%
Fig. 1. Distribution of self-fixing rates of five TD types among 20 Python and 16 Java projects.
d
t

able 2
esults of the generalized linear mixed model.
Diagnostics

AIC BIC logLik deviance df resid.
74950.6 75005.5 −37469.3 74938.6 68945

Scaled residuals

Min 1Q Median 3Q Max
−11.338 −0.591 −0.510 0.912 4.368

Random effects

Groups name Variance Std.Dev.
Project ID (Intercept) 3.944 1.986

Quality metrics

Metric OR Estimate Std.Error z-value 𝑝-value

(Intercept) 5.085 1.626 0.320 5.082 <0.001
SLOC 0.115 −2.164 0.600 −3.606 <0.001
Commits 1.318 0.276 0.483 0.573 0.567
Developers 0.138 −1.981 0.485 −4.082 <0.001
Total Issues 0.033 −3.426 0.501 −6.844 <0.001

redun shows that there is no redundant variable. Then, we build the
eneralized linear mixed model using the function glmer of the lme4

R package [34]. Table 2 reports the results of the mixed-effect regres-
sion model. The top part of the table reports the model diagnostics,
i.e., Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), log likelihood, deviance and degree of freedom residuals, the
scaled residuals and the random effects. The bottom part of the table
reports the odds ratio (OR), estimate, standard error, z-value and
𝑝-value.11

As shown in the table, SLOC, the number of developers and the
total number of TD issues have a statistically significant effect on the
likelihood of an issue being self-fixed. The result indicates that the size
of the project, the number of developers involved in it, and the
overall quality of the project (i.e., the total number of TD issues
in this study) are associated with whether TD items are self-fixed,
while the number of commits has no significant relation.

11 Among these values, the 𝑝-value indicates whether the factor is
tatistically significant or not (for a significance level of 95%).
6

In addition, Table 2 shows that the increase of SLOC, number of
evelopers and number of total issues can decrease the likelihood that
he issue will be self-fixed (i.e., OR <1).12 The results suggest that
as a project evolves, growing in size, number of developers and
total issues, the likelihood of its TD issues to be self-fixed tends to
decline.

4.2. Which type of technical debt is more likely to be self-fixed?

Fig. 1 shows a series of box plots depicting the distributions of self-
fixing rates of the five studied TD types among the 20 Python and
16 Java projects, together with the average and median values, and
the number of fixed issues (bottom of figure). According to Fig. 1, the
self-fixing rate for each debt type in Python projects is nearly double
compared to Java projects. To further evaluate the significance of the
difference for each type of debt, we calculated the Wilcoxon Rank Sum
test [35] and Cliff’s Delta Effect Size [36] on the self-fixing rates of
the Java and Python projects, since we cannot assume the rates are
normally distributed. Table 3 shows the results of the statistical tests,
which reveal that except for Test Debt, the difference between the self-
fixing rates of each type in Python and Java projects is significant
(i.e., 𝑝-value <0.05) and with a medium effect size13 at least. Thus,
issues related to most types of TD are more likely to be self-fixed in
Python projects than in Java projects.

To investigate the self-fixing rate of TD in more depth, we consider
the numerous rules for the different TD types (see Section 3.3). Table 9
(in Appendix) shows for each rule: the ID number, type and definition
of the rule, self-fixing rate, issue fixing rate, the total number of issues
and the number of projects in which violations of the rule appear. In
total, Table 9 includes 49 Python and 52 Java rules, and they are sorted
in decreasing order of self-fixing rates.

Table 9 includes 38, 41, 14, 4 and 4 rules related to Code Debt,
Defect Debt, Design Debt, Documentation Debt and Test Debt, respec-
tively. The self-fixing rates vary widely between different types of debt,

12 OR is given by 𝑒𝑐𝑖 where 𝑐𝑖 is the coefficient of the 𝑖th factor for a logistic
regression model. An OR >1 indicates that an increase of variable increases of
OR times the chances of an issue to be self-fixed.

13 The magnitude is assessed using the thresholds provided by Romano
et al. [37], i.e. |𝑑𝑒𝑙𝑡𝑎| <0.147 is negligible, |𝑑𝑒𝑙𝑡𝑎| <0.33 is small, |𝑑𝑒𝑙𝑡𝑎|
<0.474 is medium, otherwise is large.

Information and Software Technology 143 (2022) 106738J. Tan et al.

D
i
l
T

4
a

M
n
v
I
c
T
b
n
e

Table 3
Results of Wilcoxon Rank Sum tests and Cliff’s Delta Effect Size.

Code Defect Design Documentation Test

𝑝-value 0.006** 0.006** 0.005** 0.034* 0.253
𝑑𝑒𝑙𝑡𝑎 −0.541 (large) −0.544 (large) −0.550 (large) −0.427 (medium) −0.252
Fig. 2. Results of Kaplan–Meier method for the survival time of self-fixed and non-self-fixed issues.
T
P

Table 4
Ranks of five debt types according to the Scott–Knott ESD tests.
Group Types of TD

1 Defect Debt, Code Debt
2 Design Debt, Documentation Debt
3 Test Debt

i.e., from 5% to 100%. To investigate which types of debt are more
likely to be self-fixed and evaluate the significance of the self-fixing
rates among different types, we conducted a Scott–Knott Effect Size
Difference (ESD) test [38] to group the five TD types into statistically
distinct ranks based on the their self-fixing rates. As a variant of
the Scott–Knott test [39], the Scott–Knott ESD test evaluates a non-
normally distributed dataset and merges any two statistically distinct
groups that have a negligible effect size into a single group [38].
Table 4 shows the rank of the five TD types based on their self-fixing
rates. We found that the five TD types are distributed in three distinct
groups and, thus, the self-fixing rates are significantly different between
groups. The self-fixing rates of Defect Debt and Code Debt (group #1)
are considerably higher than the other three; in other words, Defect
ebt and Code Debt receive more attention from developers who
ntroduced them in the projects. In contrast, Test Debt was ranked
owest (group #3) according to their self-fixing rates, indicating that
est Debt is less likely to be self-fixed.

.3. How long does self-fixed technical debt survive during the evolution of
system?

To answer this research question, we used the Kaplan–Meier (K–
) method to analyze the survival time of the fixed issues, which is a

on-parametric statistic [40]. Fig. 2 shows the Kaplan–Meier plots to
isualize survival curves for all the self-fixed and non-self-fixed issues.
n Fig. 2, the left figure shows all fixed issues and their entire life
ycle, i.e., the number of days between introduction and repayment.
he y-axis represents the cumulative percentage of TD issues that have
een fixed within a specified number of days (x-axis). In addition, the
umber of surviving issues is shown at the bottom of the figure. For
7

xample, there are 23,897 self-fixed issues and 45,054 non-self-fixed
able 5
ercentages of self-fixed and non-self-fixed issues within different time periods.

Code Defect Design Documentation Test

≤ 1 week Self-fixed 73.25% 67.80% 49.09% 60.08% 76.25%
Non-self-fixed 71.41% 60.01% 49.34% 62.99% 67.00%

≤ 1 month Self-fixed 79.33% 72.69% 58.00% 72.34% 82.92%
Non-self-fixed 76.20% 66.06% 55.74% 74.37% 75.03%

≤ 1 year Self-fixed 91.78% 86.98% 80.43% 93.28% 97.08%
Non-self-fixed 93.54% 88.02% 80.43% 96.27% 93.93%

issues in the beginning of the projects, while 1259 and 1535 issues
survived for more than 1000 days, respectively.

From the left side of Fig. 2, we found that most of both self-fixed
and non-self-fixed issues were paid back in a short period of time. Since
most issues have been fixed quickly, we zoomed in on the issues fixed
within one month as shown on the right side of Fig. 2. As shown in the
figure, the survival curves of self-fixed and non-self-fixed issues almost
overlap, and the percentage of self-fixed issues is pretty similar to that
of the non-self-fixed issues.

To further investigate the survival time of different types of self-
fixed issues and compare them with the non-self-fixed issues, we cal-
culated the survival time for all issues belonging to the different types.
The results are shown in Fig. 3. Similar to Fig. 2, the left side depicts all
fixed issues in their entire life cycle for each TD type, and the right side
zooms in the issues fixed within one month. A visual inspection shows
that there are some differences between self-fixed and non-self-fixed
issues in the 30-day window, but they do not appear to be major.

Table 5 shows how often an issue was fixed within a certain time-
frame (i.e., one week, one month and one year) for each type of debt.
To investigate whether the self-fixed issues are fixed more quickly than
non-self-fixed issues, we conducted pairwise Fisher’s exact tests [41]
on the percentages of self-fixed and non-self-fixed issues. The results
confirm the aforementioned visual inspection, showing that, for indi-
vidual types of TD, there is no significant difference between the
percentages of self-fixed and non-self-fixed issues within each time
frame (𝑝-values >0.05).

Focusing on the results related to self-fixing in Table 5, it seems

that the issues related to Code Debt, Defect Debt and Test Debt are

Information and Software Technology 143 (2022) 106738J. Tan et al.
Fig. 3. Results of Kaplan–Meier method for the survival time for self-fixed and
non-self-fixed issues belonging to different types.

repaid in a shorter time. To further investigate whether the issues
belonging to one TD type are self-fixed faster or slower than other
types, we conducted a Scott–Knott Effect Size Difference (ESD) test [38]
to group the five TD types into statistically distinct ranks based on their
percentages for the three time-frames. Table 6 shows the rank of the
five TD types based on their percentages of issues that have been self-
fixed within the three time-frames. We found that the five TD types
are distributed in four distinct groups and, thus, the percentages of
self-fixed issues for all time-frames are significantly different between
groups. Since the percentages of Test Debt (group #1) and Code Debt
(group #2) are considerably higher than the others, it implies that Test
Debt tends to be self-fixed faster than the other four debt types,
followed by Code Debt. On the contrary, Design Debt was ranked
lowest (group #4) according to their percentages, which indicates that
self-fixed issues related to Design Debt have a longer survival time.
8

Table 6
Ranks of five debt types according to the Scott–Knott ESD tests.
Group Types of TD

1 Test Debt
2 Code Debt
3 Defect Debt, Documentation Debt
4 Design Debt

Table 7
Results of the generalized linear mixed model.

Diagnostics

AIC BIC logLik deviance df resid.
56735.7 56781.1 −28362.8 56725.7 65529

Scaled residuals

Min 1Q Median 3Q Max
−8.5715 −0.5055 −0.1879 0.2854 9.4512

Random effects

Groups name Variance Std.Dev.
File ID (Intercept) 5.387 2.321
Project ID (Intercept) 11.298 3.361

Quality metrics

Metric OR Estimate Std.Error z-value 𝑝-value

(Intercept) 2.773 1.020 0.472 2.160 0.03
effort sharing 0.064 −2.755 0.279 −9.870 <0.001
adjust effort sharing 23.492 3.157 0.362 8.714 <0.001

4.4. How does the number of developers and the frequency of their modifi-
cations relate with the likelihood of TD issues to be self-fixed?

This research question concerns effort sharing (i.e. the number
of developers that maintain a given file) and adjusted effort sharing
(i.e., the number of changes that developers made to a file). To examine
these factors, we build a generalized linear mixed model [30] to
estimate whether and how an issue that has been self-fixed correlates
with the effort sharing and adjusted effort sharing of the corresponding
file in which the issue was detected. In the model, the random effect
is represented by the project and file ID, and helps to account for dif-
ferences between different files in terms of effort sharing and adjusted
effort sharing. Moreover, we use the whole dataset (both Python and
Java projects) to perform the analysis because we intend to build an
explanatory model, not a predictive model. In addition, the value of the
independent variables can depend on projects’ characteristics, e.g., the
larger a project is, the more developers might be involved in it. To
properly interpret the importance of each variable in the model, we
normalize variable values, within each project, in the interval [0, 1].14

After that, similarly to RQ1, we build the generalized linear mixed
model using the glmer function of the lme4 R package [34].

Table 7 reports the results of the logistic regression mixed-effect
model; it can be read similarly to Table 2. The results show that both
effort sharing and adjust effort sharing have a statistically significant
effect on the likelihood of an issue being self-fixed; in other words,
the number of developers involved in the files and the number of
changes that developers make per file can affect the probability of
the contained issues being self-fixed.

In addition, the increase of adjusted effort sharing (i.e., based on
the number of changes) can increase by about 23.5 times the odds
of an issue being self-fixed. However, the increase of effort sharing
(i.e., based on the number of developers) can decrease the likelihood of
the issue to be self-fixed (OR <1). The results indicate that the fewer
developers maintaining a file and the more changes made per file,
the higher the chance of an issue being self-fixed. More generally,

14 This is done by subtracting the minimum and dividing by the difference
between the maximum and minimum, which was also used in [32].

Information and Software Technology 143 (2022) 106738J. Tan et al.

c

p
a
b
c
w
v
u
i
o
W
d
f
s
t
s
c

s
f
d
t
f
i
w

m
t
f
c
p
(
t
a
c

t
s
t
f
i

5

s
a

b

we argue that when investigating effort sharing, it is not enough to look
at the number of developers that maintain a given file, but one should
also consider the amount of changes per developer.

4.5. Who (self) fixes technical debt?

The study involved 180 Python developers and 331 Java developers
that have fixed technical debt during the evolution of the 20 Python and
16 Java projects. Among them, 96 Python and 141 Java developers
have self-fixed TD. To answer this research question, we investigate
the relationship between self-fixed issues and developers’ seniority, file
ount, commit count and commit size.

The seniority refers to how long a developer has contributed to a
roject, calculated as the number of days between the developer’s last
nd first commit date (see Section 3.4). However, if a developer has
een working on a project for a long time but has contributed few
ommits or to few files, then this developer tends to be unfamiliar
ith the progress update and feel less responsible for the project. Con-
ersely, experienced developers might be over-confident in modifying
nfamiliar code, and thus inadvertently lower its quality. Therefore, it
s paramount to also examine variables that reflect a developer’s level
f involvement in the project, i.e., the commit count and file count.
e assess the two variables based on the commits performed by a

eveloper (see Section 3.4). Moreover, some developers may commit
ewer times or participate in fewer files, but they contribute more to
ome key components, which may also increase the likelihood that
hey will repay their own debt. Thus, we also consider the commit
ize, i.e., the average number of LOC that a developer contributed per
ommit (see Section 3.4).

To investigate the relationship between the mentioned variables and
elf-fixing, we build a GLMM where the dependent variable captures,
or each TD issue, whether it is self-fixed or non-self-fixed. The ran-
om effect is represented by the project and developer ID, and helps
o account for differences between developers in terms of seniority,
ile count, commit count and commit size. To properly interpret the
mportance of each variable in the model, we normalize variable values,
ithin each project, in the interval [0, 1].15

Table 8 reports the results of the logistic regression mixed-effect
odel and is interpreted as Table 2. From the table, we observe

hat seniority and commit count have a statistically significant ef-
ect on the likelihood of an issue being self-fixed. The result indi-
ates that the number of days developers have been involved in a
roject (i.e., seniority) and the number of commits they authored
i.e., commit count) relate to whether they self-fix TD. In contrast,
he number of files to which they have contributed (i.e., file count)
nd the average number of LOC that developers contribute per
ommit (i.e., commit size) have no significant effect.

In addition, the increase of commit count can increase by about 7.8
imes the odds of an issue being self-fixed. However, the increase of
eniority can decrease this likelihood (OR <1). These results indicate
hat developers who contributed more commits are more likely to
ix their debt. Furthermore, the longer the developers are involved
n a project, the less often they self-fix TD.

. Discussion

In this section, we first discuss the interpretation of the findings pre-
ented in Section 4. Then, we describe the implications for researchers
nd practitioners.

15 This is done by subtracting the minimum and dividing by the difference
etween the maximum and minimum, which was also used in [32].
9

Table 8
Results of the generalized linear mixed model.

Diagnostics

AIC BIC logLik deviance df resid.
56113.0 56176.2 −28049.5 56099.0 61836

Scaled residuals

Min 1Q Median 3Q Max
−8.9266 −0.6001 −0.1930 0.6890 15.9939

Random effects

Groups name Variance Std.Dev.
Developer ID (Intercept) 2.800 1.673
Project ID (Intercept) 2.713 1.647

Quality metrics

Metric OR Estimate Std.Error z-value 𝑝-value

(Intercept) 0.513 −0.667 0.406 −1.643 0.100
Seniority 0.380 −0.968 0.345 −2.807 0.005
File count 1.260 0.231 0.524 0.441 0.659
Commit count 7.849 2.060 0.406 5.071 <0.001
Commit size 1.163 0.151 0.343 0.440 0.660

5.1. Interpretation of results

5.1.1. The likelihood of TD to be self-fixed
The phenomenon of self-fixed TD, as examined in this study, is

widely spread in the analyzed Python and Java projects, as we observed
that around half of fixed issues are self-fixed. This indicates that these
developers tend to clean up their own work, paying back the technical
debt they incurred themselves. However, we also found that the like-
lihood of TD issues to be self-fixed is negatively associated with the
number of developers, the total number of issues and SLOC of projects.
Thus, our results suggest that, as a project grows in size, number of
developers and total issues, one can expect a decline in self-fixing rate.

To expand our understanding of the phenomenon, we delved into
certain human factors related to how developers maintain the projects.
In particular, we investigated the distribution of effort among compo-
nents from two perspectives. First, we looked from the point of view
of teams and found that, when multiple developers work in a same
file, the likelihood of self-fixed TD issues contained in the file and the
overall project tends to decline as teams get larger. Second, we looked
from the point of view of individuals and found that developers who
contributed more commits are more likely to self-fix TD, while a longer
involvement in the project reduces the chances of self-fixing TD. This
may be an indication that a greater dedication (e.g., by providing more
commits) but not seniority may reflect on a higher chance of self-fixing
TD. Although we expected that commit size would render interesting
observations, it displayed no significant effect; exploring the reason
why is an interesting path for further research.

Putting the presented findings together, we note that even if fos-
tering dedication among developers sounds like a good strategy, it is
not necessarily desirable to push all developers to be extra active, as it
would naturally lead to higher levels of collaboration on the same files,
which would in turn drive the overall likelihood of TD being self-fixed
down. We also note that merely driving the likelihood of TD being self-
fixed up should not be a strategy, as some development strategies that
serve various purposes (incl. TD remediation) can also result in lower
likelihood of TD being self-fixed. Examples of such strategies include
rotation of developers, contributions from external developers (e.g., via
pull requests) and maintenance tactics (e.g., assigning certain types of
TD items to newcomers).

5.2. Differences between python and java

The results of RQ2 (see Section 4.2) reveal that, except for Test Debt,
the difference between the self-fixing rates of each type in Python and
Java projects is significant. Especially for Code Debt, Defect Debt and

Information and Software Technology 143 (2022) 106738J. Tan et al.

f
d
m
r

D
i
i
i
s
a

k
c
k
a
(
a

5

t
d
i

S

s

Design Debt, there are large effect sizes of the differences between the
self-fixing rates of the two languages.

One possible reason may be related to Python’s dynamic type sys-
tem, which makes it popular for flexibility, expressiveness and suc-
cinctness, but also less maintainable and secure [42]. Developers may
spend extra effort on software maintenance [43] and software quality
improvement [44] (related to Code Debt and Design Debt), especially
since Python code is more change-prone due to having a higher number
of dynamic features [43]. In addition, the misuse of dynamic features
could lead to coding issues that are often fixed by adding exception
handling (Defect Debt remediation) [45]. Altogether, Python develop-
ers may be more concerned about the issues they introduce themselves,
making such TD more likely to be fixed in Python projects than in Java
projects.

5.2.1. Types of technical debt and survival time
It is worth noting that Defect Debt and Code Debt are more likely

to be self-fixed than other debt types. This may be an indication that
developers are more aware of these two types or that it is easier to fix
those issues.16 However, the Defect Debt issues seem to survive a bit
longer than Code Debt issues before being self-fixed (according to the
grouping results of a Scott–Knott ESD test). These observations suggest
that although Defect Debt and Code Debt are preferably self-fixed and
by the majority of developers (i.e., regardless of the project and team
setting), developers may prioritize Code Debt.

Design Debt has quite a low self-fixing rate and this is worrisome.
One study by Besker et al. [46] shows that TD related to design has the
greatest negative impact on the daily software development activities.
This entails that Design Debt can be risky and that the person that may
know most about the code (i.e., the developer who incurred the debt)
is not addressing it sufficiently. Moreover, the situation seems worse in
larger projects, where the self-fixing rate of Design Debt issues is even
lower. To verify that, we calculated the Spearman correlation between
the size of the project (i.e., SLOC) and self-fixing rate of Design Debt,
which showed to be strongly negative17 (𝜌 = −0.58). Furthermore, we
ound Design Debt issues to have the longest survival time among five
ebt types. One way to tackle problems related to growing Design Debt,
ight be to focus on developers with expertise on this type of debt

ather than encouraging self-fixing.
Finally, we found that developers are least likely to self-fixed Test

ebt. However, when developers decided to pay back their Test Debt,
t was done in the shortest possible time. These results need further
nvestigation as only four rules related to Test Debt were considered
n our study (i.e. they were detected by SonarQube); Other related
tudies analyzed ten or more test smells, some of which can lead to
ccumulating Test Debt [48,49].

In summary, the results could be an indicative that developers are
een to resolve their own issues when they are related to decreasing
ode quality (Code Debt) or increasing chance of bugs and uncorrected
nown defects (Defect Debt). In contrast, developers may pay less
ttention to their own issues when they are related to Design Debt
e.g., long files and spaghetti code), which can affect understandability
nd maintainability and happen to be more often fixed by others.

.2.2. Human factors
We found that the more developers are maintaining a file, the lower

he chance of an issue being self-fixed. However, the number of files
evelopers contribute to does not appear to impact the likelihood of
ssues being self-fixed. Thus, strategies such as encouraging developers

16 This observation may also be related to the definition of those types in
onarQube (see Section 6).
17 We interpret the correlation coefficient according to Cohen [47], i.e., a
trong correlation is when 0.5 ≤ |𝜌| ≤ 1.
10
to take over more components (i.e., contribute to more files) may not
boost TD remediation.

Furthermore, we found that developers who contribute more com-
mits are more likely to fix their TD. This may be because these develop-
ers are more experienced or have a better understanding of the project
code. Such an explanation would align with the findings by Alfayez
et al. [6] that developers with higher experience in the projects are
less likely to introduce technical debt.

In a somewhat contrasting finding, Potdar et al. [14] observed
that developers with more experience tend to introduce more SATD.
However, such a difference may be due to the nature of SATD, i.e., de-
velopers admitting debt. The more experienced developers are, the
easier it is to identify TD in the source code and document it. We
clarify that the results of Potdar et al. do not contradict ours since they
discuss the introduction of TD (and not repayment). Furthermore, other
studies showed that the experience of developers fixing SATD is higher
than that of developers introducing SATD [15], and that the majority
of SATD is self-fixed [2].

5.3. Implications for researchers and practitioners

The findings and discussion drawn from this study can benefit both
researchers and practitioners.

5.3.1. Implications for researchers
Researchers can use the self-fixing rates to develop tools to prioritize

TD remediation by assigning different weights to TD issues and giving
suggestions to developers. Such suggestions could concern what types
of issues to repay faster and whether they should pay the issues
themselves or not. For example, TD tools could highlight critical issues
that tend to survive for a longer period of time. The developer who
incurred it could be notified first and, if she does not fix it, other team
members could be involved.

Such tools could also monitor the source code and warn developers
when an entire component is becoming a hot-spot of (potentially)
long-living issues. The involved developers could be then notified and
decide whether the involved TD issues should be fixed, delegated to
other developers, or even ignored. Moreover, investigating how devel-
opment behaviors (e.g., effort sharing) and developers’ characteristics
(e.g., seniority) are associated with the likelihood of the TD contained
in a project being self-fixed may provide insights for predicting which
projects (or components) are more likely to have unpaid TD. For
example, if there is a lack of experienced developers contributing to
a component, team leaders could ask more experienced developers
to assess the severity of the accumulated debt. If necessary, these
developers could also be allocated to test and maintain the component.

Furthermore, researchers can use our findings to design different
software maintenance strategies tailored for a variety of team configu-
rations. For example, for parts of a project that require urgent delivery,
the team leader can be suggested to coordinate with experienced devel-
opers to focus on those parts. Because the experienced developers who
concentrate on a certain component are better at self-fixing their TD,
this practice may boost the quality of the code that has to be written
in the short term (TD will be fixed quicker and better).

5.3.2. Implications for practitioners
Practitioners can use the results to guide their refactoring and

maintenance activities. Specifically, software development teams can
use them to better assign tasks among different developers and adjust
team collaboration. For example, Code Debt and Defect Debt that
need to be addressed urgently can be assigned to the developer who
introduced them; in contrast, Design Debt can better be assigned to
other developers because it is not often self-fixed, and tends to survive
longer. By knowing which TD types are more likely to be fixed in the
near future, both developers and team leaders can concentrate on TD

Information and Software Technology 143 (2022) 106738J. Tan et al.
that is already overdue and has not been addressed, and on who is most
suited to fix it.

Our investigation on how human factors are associated with the
phenomenon of self-fixed TD can directly support practitioners to re-
allocate suitable developers to components. For example, consider a
component that displays a high incidence of TD and is maintained by,
among others, self-fixing-prone developers. If the accumulation of TD
in the component is related to time pressure (i.e., the developers have
knowledge to repay it but not enough time), a good strategy may be
to let them focus their effort further on this component by reducing
their workload on other components; this could effectively reduce TD
through intensive self-fixing. In addition, other developers (with lower
self-fixing rates) may be re-allocated to different components; this may
give them an opportunity to improve their skills and knowledge of the
project and become themselves self-fixing-prone developers.

Moreover, knowledge of human factors may further inform which
components are more TD-prone (or less fix-prone) so that more testing
effort can be budgeted for them. When maintaining those components,
developers could also be encouraged to address their TD issues that
belong to the debt types with a high self-fixing rate, since those issues
might be more familiar and easier for them.

Finally, teams that already manage their TD by other means, can
compare their current practice with our results or the results from
replicating our study in their own source code, allowing for more
informed decisions. For example, if a team has several open issues
related to software comprehension and maintenance (e.g., long file
and spaghetti code), they should be aware that the developers who
introduced them are not likely to fix the issues in a short time.

6. Threats to validity

In the following, we discuss the threats to construct and external
validity of the reported study, as well as reliability threats.

Construct validity is related to the connection between the re-
search questions and the objects of study. In this respect, we used
SonarQube to detect TD issues in our study and, thus, our interpretation
of TD is limited to the capabilities of the tool. In particular, SonarQube
defines several thresholds for some rules. For example, it will flag a new
violation of the rule ‘‘Lines should have sufficient coverage by tests’’
when a test covers less than 65% of the lines of code; and a violation
of the rule ‘‘Source files should have a sufficient density of comment
lines’’ is flagged for a file as soon as the density of comment lines on
this file is less than 25%. Although SonarQube has been widely used in
both industry and academia, tools using different strategies could lead
to variations in the TD issues, and in turn, self-fixed issues. In principle,
any used tool would be subject to similar threats.

There might also be potential threats due to false positives flagged
by SonarQube. To assess SonarQube’s limitations, we manually ana-
lyzed 0.5% of the number of total fixed issues (i.e., ≈ 350) to investigate
whether those issues represent technical debt and whether their evolu-
tion is accurately captured. For that, we randomly selected issues by
using stratified random sampling [50], which is used to estimate pop-
ulation parameters efficiently when subpopulations have substantial
variability [51]. For each rule, we randomly selected a number of issues
based on its fixing prevalence (i.e., the results shown in Table 9) and
checked their source code to verify whether they may represent TD
according to the definitions of Alves et al. [8] and Li et al. [9]. Then,
we checked if the issue was actually fixed. The results of our analysis
show that all selected issues are potential TD issues (i.e., they match the
used definitions). Moreover, only seven issues were not actually fixed.

There is also a threat associated with the method for filtering out
issues that disappeared due to the file deletion, since it is doubtful
whether developers actually aimed at fixing the technical debt. This
may lead to the erroneous deletion of some issues that the developers
did fix. Moreover, we cannot understand the developer’s intent by ana-
lyzing source code. Filtering out such issues is a safe way to conducting
11
our study. In the case of file renaming, SonarQube can still track the
issues in the renamed file (if the issues still exist in the system).

Another threat pertains to how we analyze the evolution of projects.
Due to the amount of computational effort, we limited the data col-
lection to 2000 commits per project, which affected five of them. The
incomplete analysis of some of the projects may have led to missing
aspects of TD evolution and involved developers. This threat is partially
mitigated as, the majority of issues are likely to be fixed within one
year [1], and the data collected per project spans at least one year and
almost four years in average.

Moreover, although we considered four different factors (i.e., se-
niority, file count, commit count and commit size) for each developer,
there are still other factors related to the likelihood of a developer
self-fixing TD, such as the commit content and code comments. It is
however, rather difficult to consider all of these factors in one study;
thus we could not fully mitigate this threat.

Furthermore, mining git repositories presents potential risks. We
restricted our study to the main branch only, as the investigation
focuses on technical debt that has been repaid in the final product.
However, different team strategies may affect how the main branch is
used. The main threat in this approach is that we may be missing debt
items indirectly relevant to the final product, e.g., feature branches that
had debt introduced and repaid locally before merging into the main
branch. Related threats also include, for example, that fixing commits
might be suppressed in parent commits (i.e., squashing), or the commit
might be a pull request from a third party that is attributed wrongly.
Although off-branches are out of the scope of the study, merging
commits from other branches has the potential to obscure the actual
author of the repayment depending on team strategies (e.g., defining
who squashes commits and when). This threat can be challenging to
mitigate without contacting the development team. To partially address
it, we inspected a random sample of 20 (non-merge) commits from each
project (approx. 1%) to check whether the commit author appears to
have also authored the code (e.g., through commit comments or forked
repository). This inspection suggest that the authors of the verified
commits are the actual code authors.

Other related threats could be the influence of pair or mob program-
ming practices and code review on how technical debt is managed.
Such quality improvement practices sometimes are not introduced in
main branches but in short-lived branches. Specifically, these practices
can reduce the amount of introduced debt or increase the amount of
repaid debt. We looked for evidence of such practices in the documen-
tation and website of the projects and mainly identified code review
as a common practice, although we cannot know how it affected TD
management (e.g., how much extra effort was dedicated to it).

External validity concerns threats to the generalizability of our
findings. The main threats stem from our study design, which considers
the evolution of 20 Python and 16 Java projects from the Apache
Software Foundation. Despite the credibility of the Apache Foundation
and the diversity of its Python and Java projects, our results may
not fully represent the entire population of non-trivial Python and
Java projects. In principle, our results can be generalized to large and
complex Python and Java projects in ecosystems similar to Apache.
Furthermore, the set of rules considered in this study is not exhaustive.
In fact, there is no complete set of issues related to TD that may affect
Python or Java source code.

Reliability concerns the degree to which conducting the study
depends on the involved researchers. To address these threats, three
researchers were involved in the data collection and analysis. More-
over, samples of the analysis output from different steps were manually
inspected for irregularities and for consistency with the proposed study
design. The results showed no irregularity and all the output from
different steps were consistent with the proposed study design. Further-
more, the first and second authors classified the rules independently
into the five TD categories, using the description of the rules and the

definition of the categories. To assess the disagreements numerically,

Information and Software Technology 143 (2022) 106738J. Tan et al.
Table 9
Self-fixing rates for individual rules.

Language IDa Definition SRb FRc Issues Pd

Python C438 Assigning to function call which does not return 1.00 1.00 1 1
Python C25 Redundant pairs of parentheses should be removed 1.00 0.13 8 2
Python F368 Not enough arguments for format string 1.00 1.00 1 1
Python F412 Multiple values passed for parameter in function call 1.00 1.00 1 1
Python C43 Related ‘‘if/else if’’ statements should not have the same condition 1.00 1.00 1 1
Java F775 Package declaration should match source file directory 1.00 1.00 1557 4
Python F393 Using variable before assignment 0.80 0.56 9 6
Python F360 Undefined name 0.75 0.53 1675 16
Java C422 Methods and field names should not be the same or differ only by capitalization 0.73 0.30 275 14
Python F432 Mixed tabs/spaces indentation 0.72 0.98 54 3
Python C13 Jump statements should not be followed by other statements 0.71 0.83 29 6
Java F423 Anonymous inner classes containing only one method should become lambdas 0.67 0.40 718 12
Python F49 Variables should not be self-assigned 0.67 0.27 11 5
Java C717 Factory method injection should be used in ‘‘@Configuration’’ classes 0.67 0.50 6 1
Java F677 Encryption algorithms should be used with secure mode and padding scheme 0.67 0.64 28 5
Python F51 Python parser failure 0.65 1.00 31 9
Python F328 Redefined function/class/method 0.60 0.78 127 11
Python C7 Methods and field names should not differ only by capitalization 0.58 0.41 29 3
Java F288 Asserts should not be used to check the parameters of a public method 0.58 0.18 846 7
Java C285 Try-with-resources should be used 0.56 0.56 224 14
Python F363 Method should have ‘‘self’’ as first argument 0.52 0.53 116 5
Python S24 Control flow statements ‘‘if’’. ‘‘for’’. ‘‘while’’. ‘‘try’’ and ‘‘with’’ should not be nested too deeply 0.51 0.41 499 14
Python F281 Syntax error 0.50 0.64 817 19
Python C45 Nested blocks of code should not be left empty 0.50 0.55 51 11
Python S41 Collapsible ‘‘if’’ statements should be merged 0.49 0.54 226 15
Java C632 Constructors should not be used to instantiate ‘‘String’’, ‘‘BigInteger’’, ‘‘BigDecimal’’ and primitive-wrapper classes 0.48 0.78 321 13
Python C16 Sections of code should not be ‘‘commented out’’ 0.47 0.73 566 18
Python C42 Function names should comply with a naming convention 0.47 0.46 321 15
Python F21 The ‘‘print’’ statement should not be used 0.47 0.68 1478 18
Python C38 Statements should be on separate lines 0.47 0.50 1282 7
Python F418 Too many positional arguments for function call 0.46 0.24 110 6
Python C36 A field should not duplicate the name of its containing class 0.46 0.46 28 6
Java T425 Tests should not be ignored 0.46 0.26 360 11
Java S573 Two branches in a conditional structure should not have exactly the same implementation 0.44 0.50 214 15
Java F476 Raw types should not be used 0.44 0.51 8871 16
Python F403 Too few arguments 0.43 0.93 57 9
Java C486 Unused ‘‘private’’ classes should be removed 0.42 0.67 36 13
Python F276 Access of nonexistent member 0.42 0.58 1871 19
Python S29 Cognitive Complexity of functions should not be too high 0.41 0.50 1353 19
Java F289 Resources should be closed 0.41 0.49 385 15
Java S779 Cognitive Complexity of methods should not be too high 0.40 0.45 4703 16
Python S390 Method hidden by attribute of super class 0.40 0.80 25 3
Java C431 Sections of code should not be commented out 0.40 0.64 5444 16
Python F394 Undefined variable 0.40 0.62 4361 18
Java C369 Constant names should comply with a naming convention 0.39 0.43 1441 14
Java C784 Synchronized classes Vector, Hashtable, Stack and StringBuffer should not be used 0.38 0.54 551 16
Java C437 switch statements should have ‘‘default’’ clauses 0.37 0.26 596 14
Python S26 Two branches in a conditional structure should not have exactly the same implementation 0.37 0.65 195 15
Java C389 Standard outputs should not be used directly to log anything 0.37 0.28 2735 16
Java F453 ThreadLocal variables should be cleaned up when no longer used 0.37 0.41 140 14
Java C799 Unused ‘‘private’’ methods should be removed 0.37 0.60 472 15
Java F750 Local variables should not shadow class fields 0.37 0.48 1404 16
Java C386 Nested blocks of code should not be left empty 0.36 0.61 522 15
Java C681 Unused ‘‘private’’ fields should be removed 0.36 0.68 793 16
Java S337 String literals should not be duplicated 0.35 0.48 3343 16
Java S837 Source files should not have any duplicated blocks 0.35 0.46 3121 16
Python F424 NotImplemented raised - should raise NotImplementedError 0.35 0.96 74 4
Python D57 Source files should have a sufficient density of comment lines 0.35 0.52 2004 20
Python F274 Calling of not callable 0.35 0.72 115 7
Python C46 Functions. methods and lambdas should not have too many parameters 0.35 0.75 729 12
Java C693 Unused method parameters should be removed 0.35 0.55 2988 16
Python S40 Functions should not contain too many return statements 0.34 0.39 344 15
Python F355 Method has no argument 0.33 0.50 36 7
Python F411 Bad first argument given to super 0.33 0.63 24 7
Java C596 entrySet() should be iterated when both the key and value are needed 0.33 0.36 161 14
Java T434 Thread.sleep should not be used in tests 0.33 0.13 1357 16
Java D730 Deprecated elements should have both the annotation and the Javadoc tag 0.32 0.58 1214 16
Java F323 Class names should not shadow interfaces or superclasses 0.32 0.26 157 11
Python S58 Source files should not have any duplicated blocks 0.31 0.63 604 17
Java C753 Assertion arguments should be passed in the correct order 0.31 0.40 1597 15
Java C624 Empty arrays and collections should be returned instead of null 0.30 0.34 506 16
Java F405 Generic exceptions should never be thrown 0.30 0.44 4695 16
Java C333 String function use should be optimized for single characters 0.30 0.41 235 16

(continued on next page)
12

Information and Software Technology 143 (2022) 106738J. Tan et al.

a

b

c

d

w
(
p

v
m
P
a
c
t
o
a

7

r
s
o
S
p
a

e
t
e
J

e

Table 9 (continued).
Language IDa Definition SRb FRc Issues Pd

Java C754 Utility classes should not have public constructors 0.29 0.23 1177 16
Java S671 Collapsible ‘‘if’’ statements should be merged 0.29 0.51 1343 16
Python D14 Docstrings should be defined 0.28 0.54 13109 20
Python S20 Functions should not be too complex 0.28 0.53 328 13
Java F666 Methods should not be empty 0.27 0.29 3367 16
Java F542 Generic wildcard types should not be used in return parameters 0.27 0.47 1306 15
Python C50 Lines should not be too long 0.26 0.85 16168 19
Java C752 Unused type parameters should be removed 0.25 0.78 892 13
Python C23 \ should only be used as an escape character outside of raw strings 0.25 0.86 1423 8
Java T740 Tests should include assertions 0.24 0.27 2578 16
Python F414 Passing unexpected keyword argument in function call 0.23 0.85 46 5
Python C15 Identical expressions should not be used on both sides of a binary operator 0.23 0.84 31 3
Python F369 Too many arguments for format string 0.23 0.94 33 4
Java D601 @Override should be used on overriding and implementing methods 0.22 0.66 1419 16
Python T56 Lines should have sufficient coverage by tests 0.21 0.37 2683 20
Python S47 Files should not have too many lines of code 0.20 0.57 157 9
Java F828 Boolean expressions should not be gratuitous 0.19 0.59 472 15
Python F439 Raising only allowed for classes. instances or strings 0.18 0.10 110 3
Java C341 Static fields should not be updated in constructors 0.18 0.51 43 9
Java F651 Printf-style format strings should be used correctly 0.18 0.45 1391 15
Python F389 Access to member before its definition 0.18 0.63 62 5
Java C447 Unused assignments should be removed 0.17 0.70 2448 15
Java F819 Overrides should match their parent class methods in synchronization 0.14 0.29 73 11
Java F607 Exceptions should be either logged or rethrown but not both 0.13 0.10 515 10
Java C595 Preconditions and logging arguments should not require evaluation 0.13 0.45 919 15
Java F464 Fields in a ‘‘Serializable’’ class should either be transient or serializable 0.10 0.55 1083 16
Java C758 static members should be accessed statically 0.10 0.55 164 12
Java F391 readResolve methods should be inheritable 0.05 0.61 33 3

(C= Code Debt, S= Design Debt, D= Documentation Debt, F= Defect Debt, T= Test Debt).
ID number of the rule and Debt Type.
Self-fixing Rate: the ratio is the number of self-fixed issues divided by the number of all fixed issues.
Fixing Rate: the ratio is the number of fixed issues divided by the number of total issues.
The number of projects that contain the issues.
e estimated the inter-rater agreement using Krippendorff’s alpha [52]
𝛼 = 0.74).18 Finally, most steps were automated by scripts which are
ublicly available together with the collected dataset.
Confounding factors are variables that may affect the dependent

ariables without the knowledge of the researchers. In our study, the
ain limitations that we expect pertain to the differences between
ython and Java. The most prominent factors are related to the char-
cteristics of the projects. Although language features can affect the
omplexity of the project, and thus affect the final dataset and findings,
he complexity of the source code can also be influenced by the type
f project and developers’ experience, which may also not be uniform
mong Java and Python projects.

. Associated dataset and replication

We created an online repository19 with instructions and scripts to
eplicate the data collection and support the analyses performed in our
tudy. We note that the data collection takes a long time. The analysis
f the approx. 44K commits from the 36 Python and Java projects by
onarQube took approx. three months and a half of work using two
ersonal computers, one with an Intel Core i7-5500U and 8 GB of RAM
nd another with an Intel i7-8550U and 32 GB of RAM.

In short, the replication package helps with setting up the necessary
nvironment (i.e., tools and configuration) through a Vagrant script
o bootstrap a virtual machine and automate most of the setup. The
nvironment includes SonarQube 7.0, with a PostgreSQL database, and
upyter,20 which is used to support the data collection.

18 Krippendorff’s inspection of the tradeoffs between statistical techniques
stablishes that it is customary to require 𝛼 ≥ 0.80. However, where tentative

conclusions are still acceptable, 𝛼 ≥ 0.67 is the lowest conceivable limit [53].
19 https://github.com/jieshanshan/ist-si-sftd
20
13

https://jupyter.org/
8. Conclusions and future work

This paper reports on an empirical study that investigated the
phenomenon of self-fixed technical debt. We analyzed the evolution of
TD in consecutive 17K commits of 20 Python projects and 27K commits
of 16 Java projects from the Apache Software Foundation. Moreover,
we detected 54K Python TD issues and 71K Java TD issues based on
49 Python rules and 52 Java rules of blocker, critical or major severity
levels, as defined by SonarQube.

We found that about half of fixed TD issues were repaid by the
same developers who introduced them. Moreover, the projects that
are larger and have more commits and technical debt issues tend to
have a relatively lower likelihood of TD issues being self-fixed. We
also observed that there is no significant difference in the survival time
between self-fixed and non-self-fixed issues.

Looking at the types of TD, our findings suggest that Defect Debt
and Code Debt are more likely to be self-fixed than other debt types.
The results indicate that developers mostly pay back technical debt that
was introduced by them when it is related to lower code level issues
(e.g., compared to Design Debt and Documentation Debt).

Finally, regarding developer-related factors, the results indicate that
those who are more dedicated to or knowledgeable of the project
(e.g., by contributing more commits) may drive the overall self-fixing
up. Moreover, the longer the developers are involved in the project, the
less often they self-fix TD.

In the future, we plan to extend this study by investigating more
factors related to the survival time and the likelihood of TD issues being
self-fixed, such as commit frequency at project and developer levels,
and the commit content. We also plan to develop a tool based on the
self-fixed rate and survival time to help developers to prioritize TD
remediation, and provide insights to software development teams to

better assign software maintenance tasks among different developers.

https://github.com/jieshanshan/ist-si-sftd
https://jupyter.org/

Information and Software Technology 143 (2022) 106738J. Tan et al.
Acknowledgments

This work was supported by ITEA3 and RVO under grant agreement
No. 17038 VISDOM (https://visdom-project.github.io/website/).

Appendix. Self-fixing rates for individual rules

See Table 9.

References

[1] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, A. Ampatzoglou, How do
developers fix issues and pay back technical debt in the Apache ecosystem? in:
Proceedings of the IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering, SANER ’18, IEEE, Campobasso, Italy, 2018, pp.
153–163, http://dx.doi.org/10.1109/SANER.2018.8330205.

[2] E.D.S. Maldonado, R. Abdalkareem, E. Shihab, A. Serebrenik, An empirical study
on the removal of self-admitted technical debt, in: Proceedings of the 33th IEEE
International Conference on Software Maintenance and Evolution, ICSME ’17,
IEEE, Shanghai, China, 2017, pp. 238–248, http://dx.doi.org/10.1109/ICSME.
2017.8.

[3] I. Steinmacher, C. Treude, M.A. Gerosa, Let me in: Guidelines for the successful
onboarding of newcomers to open source projects, IEEE Softw. 36 (4) (2019)
41–49, http://dx.doi.org/10.1109/MS.2018.110162131.

[4] F. Rahman, P. Devanbu, Ownership, experience and defects: a fine-grained
study of authorship, in: Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, IEEE, Honolulu, HI, USA, 2011, pp. 491–500,
http://dx.doi.org/10.1145/1985793.1985860.

[5] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, I. Stamelos, Who is producing
more technical debt? A personalized assessment of TD principal, in: Proceedings
of the XP2017 Scientific Workshops, ACM, Cologne, Germany, 2017, pp. 1–8,
http://dx.doi.org/10.1145/3120459.3120464.

[6] R. Alfayez, P. Behnamghader, K. Srisopha, B. Boehm, An exploratory study on the
influence of developers in technical debt, in: Proceedings of the First IEEE/ACM
International Conference on Technical Debt, TechDebt ’18, IEEE, Gothenburg,
Sweden, 2018, pp. 1–10, http://dx.doi.org/10.1145/3194164.3194165.

[7] J. Tan, D. Feitosa, P. Avgeriou, An empirical study on self-fixed technical debt,
in: Proceedings of the 3rd International Conference on Technical Debt, TechDebt
’20, ACM, Seoul, Republic of Korea, 2020, pp. 11–20, http://dx.doi.org/10.1145/
3387906.3388621.

[8] N. Alves, L.F. Ribeiro, V. Caires, T. Mendes, R. Spínola, Towards an ontology of
terms on technical debt, in: Proceedings of the 6th International Workshop on
Managing Technical Debt, MTD ’14, IEEE, Victoria, BC, Canada, 2014, pp. 1–7,
http://dx.doi.org/10.1109/MTD.2014.9.

[9] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (C) (2015) 193–220, http://dx.doi.org/10.
1016/j.jss.2014.12.027.

[10] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of bad smells in
object-oriented code, in: Proceedings of the 7th International Conference on
the Quality of Information and Communications Technology, QUATIC ’10, IEEE,
Porto, Portugal, 2010, pp. 106–115, http://dx.doi.org/10.1109/QUATIC.2010.16.

[11] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M.D. Penta, A. De Lucia, D.
Poshyvanyk, When and why your code starts to smell bad (and whether the
smells go away), IEEE Trans. Softw. Eng. 43 (11) (2017) 1063–1088, http:
//dx.doi.org/10.1109/TSE.2017.2653105.

[12] F. Palomba, G. Bavota, M.D. Penta, F. Fasano, R. Oliveto, A.D. Lucia, On the
diffuseness and the impact on maintainability of code smells: A large scale
empirical investigation, Empir. Softw. Eng. 23 (3) (2018) 1188–1221, http:
//dx.doi.org/10.1007/s10664-017-9535-z.

[13] D.I.K. Sjøberg, A. Yamashita, B.C.D. Anda, A. Mockus, T. Dybå, Quantifying the
effect of code smells on maintenance effort, IEEE Trans. Softw. Eng. 39 (8) (2013)
1144–1156, http://dx.doi.org/10.1109/TSE.2012.89.

[14] A. Potdar, E. Shihab, An exploratory study on self-admitted technical debt, in:
Proceedings of the 30th IEEE International Conference on Software Maintenance
and Evolution, ICSME ’14, IEEE, Victoria, BC, Canada, 2014, pp. 91–100, http:
//dx.doi.org/10.1109/ICSME.2014.31.

[15] G. Bavota, B. Russo, A large-scale empirical study on self-admitted technical
debt, in: Proceedings of the IEEE/ACM 13th Working Conference on Mining
Software Repositories, MSR ’16, IEEE, Austin, TX, USA, 2016, pp. 315–326,
http://dx.doi.org/10.1145/2901739.2901742.

[16] F. Wen, C. Nagy, M. Lanza, G. Bavota, An empirical study of quick remedy
commits, in: Proceedings of the 28th International Conference on Program
Comprehension, ICPC ’20, ACM, Seoul, Republic of Korea, 2020, pp. 60–71,
http://dx.doi.org/10.1145/3387904.3389266.

[17] Z. Codabux, B. Williams, Managing technical debt: An industrial case study, in:
Proceedings of the 4th International Workshop on Managing Technical Debt,
MTD ’13, IEEE, San Francisco, CA, USA, 2013, pp. 8–15, http://dx.doi.org/10.
1109/MTD.2013.6608672.
14
[18] Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, G. Yin, Does the role matter? An
investigation of the code quality of casual contributors in GitHub, in: Proceedings
of the 23rd Asia-Pacific Software Engineering Conference, APSEC ’16, IEEE,
Hamilton, New Zealand, 2016, pp. 49–56, http://dx.doi.org/10.1109/APSEC.
2016.018.

[19] F. Gilson, M. Morales-Trujillo, M. Mathews, How junior developers deal with
their technical debt? in: Proceedings of the 3rd International Conference on
Technical Debt, TechDebt ’20, ACM, Seoul, Republic of Korea, 2020, pp. 51–61,
http://dx.doi.org/10.1145/3387906.3388624.

[20] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, I. Gorton, Measure it? manage it?
ignore it? software practitioners and technical debt, in: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE ’15, ACM,
Bergamo, Italy, 2015, pp. 50–60, http://dx.doi.org/10.1145/2786805.2786848.

[21] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, Wiley Blackwell, 2012, http://dx.doi.org/
10.1002/9781118181034.

[22] R. Marinescu, Assessing technical debt by identifying design flaws in software
systems, IBM J. Res. Dev. 56 (5) (2012) 9:1–9:13, http://dx.doi.org/10.1147/
JRD.2012.2204512.

[23] G.A. Campbell, P.P. Papapetrou, SonarQube in Action, first ed., Manning
Publications Co., Greenwich, CT, USA, 2013.

[24] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, G. Pinto, Are static
analysis violations really fixed?: A closer look at realistic usage of SonarQube, in:
Proceedings of the 27th International Conference on Program Comprehension,
ICPC ’19, IEEE Press, Montreal, Quebec, Canada, 2019, pp. 209–219, http:
//dx.doi.org/10.1109/ICPC.2019.00040.

[25] V. Lenarduzzi, N. Saarimaki, D. Taibi, On the diffuseness of code technical debt in
Java projects of the apache ecosystem, in: Proceedings of the Second IEEE/ACM
International Conference on Technical Debt, TechDebt ’19, IEEE, Montreal, QC,
Canada, 2019, pp. 98–107, http://dx.doi.org/10.1109/TechDebt.2019.00028.

[26] M.R. Dale, C. Izurieta, Impacts of design pattern decay on system quality, in:
Proceedings of the Eighth ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, ACM, Torino, Italy, 2014,
pp. 37:1–37:4, http://dx.doi.org/10.1145/2652524.2652560.

[27] F.A. Fontana, R. Roveda, M. Zanoni, Tool support for evaluating architectural
debt of an existing system: An experience report, in: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC ’16, ACM, Pisa, Italy, 2016,
pp. 1347–1349, http://dx.doi.org/10.1145/2851613.2851963.

[28] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German, D. Damian,
The promises and perils of mining github, in: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR ’14, ACM, Hyderabad, India,
2014, pp. 92–101, http://dx.doi.org/10.1145/2597073.2597074.

[29] J. Tan, D. Feitosa, P. Avgeriou, M. Lungu, Evolution of technical debt remedia-
tion in Python: A case study on the apache software ecosystem, J. Softw.-Evol.
Process (2020) http://dx.doi.org/10.1002/smr.2319.

[30] C.E. McCulloch, J.M. Neuhaus, Generalized linear mixed models, Encycl. Biostat.
4 (2005).

[31] J. Eyolfson, L. Tan, P. Lam, Correlations between bugginess and time-based
commit characteristics, Empir. Softw. Eng. 19 (4) (2014) 1009–1039, http:
//dx.doi.org/10.1007/s10664-013-9245-0.

[32] M. Iammarino, F. Zampetti, L. Aversano, M. Di Penta, An empirical study on
the co-occurrence between refactoring actions and self-admitted technical debt
removal, J. Syst. Softw. 178 (2021) 110976.

[33] F.E. Harrell Jr., M.F.E. Harrell Jr., Package ‘hmisc’, 2019, pp. 235–236,
CRAN2018 2019.

[34] D. Bates, D. Sarkar, M.D. Bates, L. Matrix, The lme4 package, 2007, p. 74, R
Package Version 2 (1).

[35] R.A. Armstrong, When to use the B onferroni correction, Ophthalmic Physiol.
Opt. 34 (5) (2014) 502–508.

[36] N. Cliff, Ordinal Methods for Behavioral Data Analysis, Psychology Press, 2014.
[37] J. Romano, J.D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for

ordinal level data: Should we really be using t-test and Cohen’sd for evaluating
group differences on the NSSE and other surveys. In: Annual Meeting of the
Florida Association of Institutional Research, Vol. 177, 2006.

[38] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, An empirical
comparison of model validation techniques for defect prediction models, IEEE
Trans. Softw. Eng. 43 (1) (2016) 1–18.

[39] A.J. Scott, M. Knott, A cluster analysis method for grouping means in the analysis
of variance, Biometrics (1974) 507–512.

[40] E.L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations,
J. Amer. Statist. Assoc. 53 (282) (1958) 457–481.

[41] R.A. Fisher, On the interpretation of 𝜒 2 from contingency tables, and the
calculation of P, J. R. Stat. Soc. 85 (1) (1922) 87–94.

[42] L. Tratt, Dynamically typed languages, in: M.V. Zelkowitz (Ed.), Advances in
Computers, Vol. 77, 2009, pp. 149–184.

[43] B. Wang, L. Chen, W. Ma, Z. Chen, B. Xu, An empirical study on the impact
of Python dynamic features on change-proneness, in: Proceedings of the 27th
International Conference on Software Engineering and Knowledge Engineering,
SEKE ’15, KSI Research Inc., Pittsburgh, USA, 2015, pp. 134–139.

https://visdom-project.github.io/website/
http://dx.doi.org/10.1109/SANER.2018.8330205
http://dx.doi.org/10.1109/ICSME.2017.8
http://dx.doi.org/10.1109/ICSME.2017.8
http://dx.doi.org/10.1109/ICSME.2017.8
http://dx.doi.org/10.1109/MS.2018.110162131
http://dx.doi.org/10.1145/1985793.1985860
http://dx.doi.org/10.1145/3120459.3120464
http://dx.doi.org/10.1145/3194164.3194165
http://dx.doi.org/10.1145/3387906.3388621
http://dx.doi.org/10.1145/3387906.3388621
http://dx.doi.org/10.1145/3387906.3388621
http://dx.doi.org/10.1109/MTD.2014.9
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1109/QUATIC.2010.16
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/ICSME.2014.31
http://dx.doi.org/10.1109/ICSME.2014.31
http://dx.doi.org/10.1109/ICSME.2014.31
http://dx.doi.org/10.1145/2901739.2901742
http://dx.doi.org/10.1145/3387904.3389266
http://dx.doi.org/10.1109/MTD.2013.6608672
http://dx.doi.org/10.1109/MTD.2013.6608672
http://dx.doi.org/10.1109/MTD.2013.6608672
http://dx.doi.org/10.1109/APSEC.2016.018
http://dx.doi.org/10.1109/APSEC.2016.018
http://dx.doi.org/10.1109/APSEC.2016.018
http://dx.doi.org/10.1145/3387906.3388624
http://dx.doi.org/10.1145/2786805.2786848
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1147/JRD.2012.2204512
http://dx.doi.org/10.1147/JRD.2012.2204512
http://dx.doi.org/10.1147/JRD.2012.2204512
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb23
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb23
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb23
http://dx.doi.org/10.1109/ICPC.2019.00040
http://dx.doi.org/10.1109/ICPC.2019.00040
http://dx.doi.org/10.1109/ICPC.2019.00040
http://dx.doi.org/10.1109/TechDebt.2019.00028
http://dx.doi.org/10.1145/2652524.2652560
http://dx.doi.org/10.1145/2851613.2851963
http://dx.doi.org/10.1145/2597073.2597074
http://dx.doi.org/10.1002/smr.2319
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb30
http://dx.doi.org/10.1007/s10664-013-9245-0
http://dx.doi.org/10.1007/s10664-013-9245-0
http://dx.doi.org/10.1007/s10664-013-9245-0
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb36
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb39
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb39
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb39
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb40
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb40
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb40
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb42
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb42
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb42
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb43

Information and Software Technology 143 (2022) 106738J. Tan et al.
[44] B. Ray, D. Posnett, V. Filkov, P. Devanbu, A large scale study of programming
languages and code quality in github, Commun. ACM (2014) 155–165, http:
//dx.doi.org/10.1145/3126905.

[45] Z. Chen, W. Ma, W. Lin, L. Chen, Y. Li, B. Xu, A study on the changes of dynamic
feature code when fixing bugs: Towards the benefits and costs of Python dynamic
features, Sci. China Inf. Sci. 61 (2018).

[46] T. Besker, A. Martini, J. Bosch, The pricey bill of technical debt: When and by
whom will it be paid? in: Proceedings of the 33th IEEE International Conference
on Software Maintenance and Evolution, ICSME ’17, IEEE, Shanghai, China,
2017, pp. 13–23, http://dx.doi.org/10.1109/ICSME.2017.42.

[47] J.H. Zar, Significance testing of the spearman rank correlation coefficient, J.
Amer. Statist. Assoc. 67 (339) (1972) 578–580.

[48] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, D. Binkley, Are test smells really
harmful? An empirical study, Empir. Softw. Eng. 20 (4) (2015) 1052–1094,
http://dx.doi.org/10.1007/s10664-014-9313-0.
15
[49] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, A. De Lucia, On the diffusion
of test smells in automatically generated test code: An empirical study, in:
Proceedings of the 9th International Workshop on Search-Based Software Testing,
SBST ’16, ACM, Austin, TX, USA, 2016, pp. 5–14, http://dx.doi.org/10.1109/
SBST.2016.010.

[50] F. Shull, J. Singer, D.I. Sjøberg, Guide to Advanced Empirical Software
Engineering, Springer, 2007.

[51] W.G. Cochran, Sampling Techniques, John Wiley & Sons, 2007.
[52] K. Krippendorff, Computing Krippendorff’s alpha-reliability, 2011, pp. 1–12,

Departmental Papers (ASC).
[53] K. Krippendorff, Content Analysis: An Introduction to its Methodology, Sage

Publications, 2018.

http://dx.doi.org/10.1145/3126905
http://dx.doi.org/10.1145/3126905
http://dx.doi.org/10.1145/3126905
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb45
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb45
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb45
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb45
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb45
http://dx.doi.org/10.1109/ICSME.2017.42
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb47
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb47
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb47
http://dx.doi.org/10.1007/s10664-014-9313-0
http://dx.doi.org/10.1109/SBST.2016.010
http://dx.doi.org/10.1109/SBST.2016.010
http://dx.doi.org/10.1109/SBST.2016.010
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb52
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb52
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb52
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb53
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb53
http://refhub.elsevier.com/S0950-5849(21)00188-9/sb53

	Does it matter who pays back Technical Debt? An empirical study of self-fixed TD
	Introduction
	Related work
	Study design
	Objective and research questions
	Case selection
	Variables and data collection
	Data analysis

	Results
	How much technical debt is self-fixed in open source projects?
	Which type of technical debt is more likely to be self-fixed?
	How long does self-fixed technical debt survive during the evolution of a system?
	How does the number of developers and the frequency of their modifications relate with the likelihood of TD issues to be self-fixed?
	Who (self) fixes technical debt?

	Discussion
	Interpretation of results
	The likelihood of TD to be self-fixed

	Differences between python and java
	Types of technical debt and survival time
	Human factors

	Implications for researchers and practitioners
	Implications for researchers
	Implications for practitioners

	Threats to validity
	Associated dataset and replication
	Conclusions and future work
	Acknowledgments
	Appendix. Self-fixing rates for individual rules
	References

