81 research outputs found

    Understanding and Improving the Culture of Hackathons: Think Global Hack Local

    Get PDF
    Hackathons bring developers, artists and designers together around a shared challenge: ideate, plan and create an application in a highly constrained time frame. A way to socialize, solve problems, and strengthen soft and hard skills, hackathons have grown tremendously in popularity in the last half decade. Despite this growth, it has been noted that females do not participate in hackathons with the same frequency as males. Some theorize that the hackathon culture is intimidating, does not appeal to women, or that it acts to amplify pre-existing cultural biases in computing. In this paper we introduce an alternative format for hackathons to address these issues. Think Global Hack Local (TGHL) is a non-competitive, community-based hackathon that connects non-profit organizations with student developers. Students donate a weekend to solve problems that these organizations otherwise lack the resources to solve. To date, there have been two TGHL hackathons, and we have observed many interesting divergences within the culture of TGHL in comparison to other hackathons. Response has been positive, and nearly all of them indicate that they would do it again. By adopting some of these ideas, we believe that hackathons can become an environment that is more inclusive and fun for all

    Annual Report, 2013-2014

    Get PDF
    Beginning in 2004/2005- issued in online format onl

    Computational Thinking, Between Papert and Wing

    Get PDF
    International audienceThe pervasiveness of Computer Science (CS) in today’s digital society and the extensive use of computational methods in other sciences call for its introduction in the school curriculum. Hence, Computer Science Education is becoming more and more relevant. In CS K-12 education, computational thinking (CT) is one of the abused buzzwords: different stakeholders (media, educators, politicians) give it different meanings, some more oriented to CS, others more linked to its interdisciplinary value. The expression was introduced by two leading researchers, Jeannette Wing (in 2006) and Seymour Papert (much early, in 1980), each of them stressing different aspects of a common theme. This paper will use a historical approach to review, discuss, and put in context these first two educational and epistemological approaches to CT. We will relate them to today’s context and evaluate what aspects are still relevant for CS K-12 education. Of the two, particular interest is devoted to “Papert’s CT,” which is the lesser-known and the lesser-studied. We will conclude that “Wing’s CT” and “Papert’s CT,” when correctly understood, are both relevant to today’s computer science education. From Wing, we should retain computer science’s centrality, CT being the (scientific and cultural) substratum of the technical competencies. Under this interpretation, CT is a lens and a set of categories for understanding the algorithmic fabric of today’s world. From Papert, we should retain the constructionist idea that only a social and affective involvement of students into the technical content will make programming an interdisciplinary tool for learning (also) other disciplines. We will also discuss the often quoted (and often unverified) claim that CT automatically “transfers” to other broad 21st century skills. Our analysis will be relevant for educators and scholars to recognize and avoid misconceptions and build on the two core roots of CT

    A Human-Centric System for Symbolic Reasoning About Code

    Get PDF
    While testing and tracing on specific input values are useful starting points for students to understand program behavior, ultimately students need to be able to reason rigorously and logically about the correctness of their code on all inputs without having to run the code. Symbolic reasoning is reasoning abstractly about code using arbitrary symbolic input values, as opposed to specific concrete inputs. The overarching goal of this research is to help students learn symbolic reasoning, beginning with code containing simple assertions as a foundation and proceeding to code involving data abstractions and loop invariants. Toward achieving this goal, this research has employed multiple experiments across five years at three institutions: a large, public university, an HBCU (Historically Black Colleges and Universities), and an HSI (Hispanic Serving Institution). A total of 862 students participated across all variations of the study. Interactive, online tools can enhance student learning because they can provide targeted help that would be prohibitively expensive without automation. The research experiments employ two such symbolic reasoning tools that had been developed earlier and a newly designed human-centric reasoning system (HCRS). The HCRS is a first step in building a generalized tutor that achieves a level of resolution necessary to identify difficulties and suggest appropriate interventions. The experiments show the value of tools in pinpointing and classifying difficulties in learning symbolic reasoning, as well as in learning design-by-contract assertions and applying them to develop loop invariants for code involving objects. Statistically significant results include the following. Students are able to learn symbolic reasoning with the aid of instruction and an online tool. Motivation improves student perception and attitude towards symbolic reasoning. Tool usage improves student performance on symbolic reasoning, their explanations of the larger purpose of code segments, and self-efficacy for all subpopulations

    To Heck With Ethics: Thinking About Public Issues With a Framework for CS Students

    Get PDF
    This paper proposes that the ethics class in the CS curriculum incorporate the Lawrence Lessig model of regulation as an analytical tool for social issues. Lessig’s use of the notion of architecture, the rules and boundaries of the sometimes artificial world within which social issues play out, is particularly resonant with computing professionals. The CS curriculum guidelines include only ethical frameworks as the tool for our students to engage with societal issues. The regulation framework shows how the market, law, social norms, and architecture can all be applied toward understanding social issues

    Annual Report, 2014-2015

    Get PDF
    • …
    corecore