170 research outputs found

    Cerberus-BMC: A Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C

    Get PDF
    C remains central to our infrastructure, making verification of C code an essential and much-researched topic, but the semantics of C is remarkably complex, and important aspects of it are still unsettled, leaving programmers and verification tool builders on shaky ground. This paper describes a tool, Cerberus-BMC, that for the first time provides a principled reference semantics that simultaneously supports (1) a choice of concurrency memory model (including substantial fragments of the C11, RC11, and Linux kernel memory models), (2) a modern memory object model, and (3) a well-validated thread-local semantics for a large fragment of the language. The tool should be useful for C programmers, compiler writers, verification tool builders, and members of the C/C++ standards committees

    Compass: {S}trong and Compositional Library Specifications in Relaxed Memory Separation Logic

    Get PDF

    ImageEye: Batch Image Processing Using Program Synthesis

    Full text link
    This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within the image. For example, our method can selectively blur or crop specific objects that have a certain property. To facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL) that combines pre-trained neural networks for image classification with other language constructs that enable symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of these tasks

    Repairing and mechanising the JavaScript relaxed memory model

    Get PDF
    © 2020 ACM. Modern JavaScript includes the SharedArrayBuffer feature, which provides access to true shared memory concurrency. SharedArrayBuffers are simple linear buffers of bytes, and the JavaScript specification defines an axiomatic relaxed memory model to describe their behaviour. While this model is heavily based on the C/C++11 model, it diverges in some key areas. JavaScript chooses to give a well-defined semantics to data-races, unlike the "undefined behaviour" of C/C++11. Moreover, the JavaScript model is mixed-size. This means that its accesses are not to discrete locations, but to (possibly overlapping) ranges of bytes. We show that the model, in violation of the design intention, does not support a compilation scheme to ARMv8 which is used in practice. We propose a correction, which also incorporates a previously proposed fix for a failure of the model to provide Sequential Consistency of Data-Race-Free programs (SC-DRF), an important correctness condition. We use model checking, in Alloy, to generate small counter-examples for these deficiencies, and investigate our correction. To accomplish this, we also develop a mixed-size extension to the existing ARMv8 axiomatic model. Guided by our Alloy experimentation, we mechanise (in Coq) the JavaScript model (corrected and uncorrected), our ARMv8 model, and, for the corrected JavaScript model, a "model-internal" SC-DRF proof and a compilation scheme correctness proof to ARMv8. In addition, we investigate a non-mixed-size subset of the corrected JavaScript model, and give proofs of compilation correctness for this subset to x86-TSO, Power, RISC-V, ARMv7, and (again) ARMv8, via the Intermediate Memory Model (IMM). As a result of our work, the JavaScript standards body (ECMA TC39) will include fixes for both issues in an upcoming edition of the specification

    Differential cost analysis with simultaneous potentials and anti-potentials

    Get PDF
    We present a novel approach to differential cost analysis that, given a program revision, attempts to statically bound the difference in resource usage, or cost, between the two program versions. Differential cost analysis is particularly interesting because of the many compelling applications for it, such as detecting resource-use regressions at code-review time or proving the absence of certain side-channel vulnerabilities. One prior approach to differential cost analysis is to apply relational reasoning that conceptually constructs a product program on which one can over-approximate the difference in costs between the two program versions. However, a significant challenge in any relational approach is effectively aligning the program versions to get precise results. In this paper, our key insight is that we can avoid the need for and the limitations of program alignment if, instead, we bound the difference of two cost-bound summaries rather than directly bounding the concrete cost difference. In particular, our method computes a threshold value for the maximal difference in cost between two program versions simultaneously using two kinds of cost-bound summaries---a potential function that evaluates to an upper bound for the cost incurred in the first program and an anti-potential function that evaluates to a lower bound for the cost incurred in the second. Our method has a number of desirable properties: it can be fully automated, it allows optimizing the threshold value on relative cost, it is suitable for programs that are not syntactically similar, and it supports non-determinism. We have evaluated an implementation of our approach on a number of program pairs collected from the literature, and we find that our method computes tight threshold values on relative cost in most example

    Differential cost analysis with simultaneous potentials and anti-potentials

    Get PDF
    We present a novel approach to differential cost analysis that, given a program revision, attempts to statically bound the difference in resource usage, or cost, between the two program versions. Differential cost analysis is particularly interesting because of the many compelling applications for it, such as detecting resource-use regressions at code-review time or proving the absence of certain side-channel vulnerabilities. One prior approach to differential cost analysis is to apply relational reasoning that conceptually constructs a product program on which one can over-approximate the difference in costs between the two program versions. However, a significant challenge in any relational approach is effectively aligning the program versions to get precise results. In this paper, our key insight is that we can avoid the need for and the limitations of program alignment if, instead, we bound the difference of two cost-bound summaries rather than directly bounding the concrete cost difference. In particular, our method computes a threshold value for the maximal difference in cost between two program versions simultaneously using two kinds of cost-bound summaries---a potential function that evaluates to an upper bound for the cost incurred in the first program and an anti-potential function that evaluates to a lower bound for the cost incurred in the second. Our method has a number of desirable properties: it can be fully automated, it allows optimizing the threshold value on relative cost, it is suitable for programs that are not syntactically similar, and it supports non-determinism. We have evaluated an implementation of our approach on a number of program pairs collected from the literature, and we find that our method computes tight threshold values on relative cost in most examples
    corecore