8 research outputs found

    Learned Semantic Multi-Sensor Depth Map Fusion

    Full text link
    Volumetric depth map fusion based on truncated signed distance functions has become a standard method and is used in many 3D reconstruction pipelines. In this paper, we are generalizing this classic method in multiple ways: 1) Semantics: Semantic information enriches the scene representation and is incorporated into the fusion process. 2) Multi-Sensor: Depth information can originate from different sensors or algorithms with very different noise and outlier statistics which are considered during data fusion. 3) Scene denoising and completion: Sensors can fail to recover depth for certain materials and light conditions, or data is missing due to occlusions. Our method denoises the geometry, closes holes and computes a watertight surface for every semantic class. 4) Learning: We propose a neural network reconstruction method that unifies all these properties within a single powerful framework. Our method learns sensor or algorithm properties jointly with semantic depth fusion and scene completion and can also be used as an expert system, e.g. to unify the strengths of various photometric stereo algorithms. Our approach is the first to unify all these properties. Experimental evaluations on both synthetic and real data sets demonstrate clear improvements.Comment: 11 pages, 7 figures, 2 tables, accepted for the 2nd Workshop on 3D Reconstruction in the Wild (3DRW2019) in conjunction with ICCV201

    Um estudo comparativo das abordagens de detecção e reconhecimento de texto para cenários de computação restrita

    Get PDF
    Orientadores: Ricardo da Silva Torres, Allan da Silva PintoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Textos são elementos fundamentais para uma efetiva comunicação em nosso cotidiano. A mobilidade de pessoas e veículos em ambientes urbanos e a busca por um produto de interesse em uma prateleira de supermercado são exemplos de atividades em que o entendimento dos elementos textuais presentes no ambiente são essenciais para a execução da tarefa. Recentemente, diversos avanços na área de visão computacional têm sido reportados na literatura, com o desenvolvimento de algoritmos e métodos que objetivam reconhecer objetos e textos em cenas. Entretanto, a detecção e reconhecimento de textos são problemas considerados em aberto devido a diversos fatores que atuam como fontes de variabilidades durante a geração e captura de textos em cenas, o que podem impactar as taxas de detecção e reconhecimento de maneira significativa. Exemplo destes fatores incluem diferentes formas dos elementos textuais (e.g., circular ou em linha curva), estilos e tamanhos da fonte, textura, cor, variação de brilho e contraste, entre outros. Além disso, os recentes métodos considerados estado-da-arte, baseados em aprendizagem profunda, demandam altos custos de processamento computacional, o que dificulta a utilização de tais métodos em cenários de computação restritiva. Esta dissertação apresenta um estudo comparativo de técnicas de detecção e reconhecimento de texto, considerando tanto os métodos baseados em aprendizado profundo quanto os métodos que utilizam algoritmos clássicos de aprendizado de máquina. Esta dissertação também apresenta um método de fusão de caixas delimitadoras, baseado em programação genética (GP), desenvolvido para atuar tanto como uma etapa de pós-processamento, posterior a etapa de detecção, quanto para explorar a complementariedade dos algoritmos de detecção de texto investigados nesta dissertação. De acordo com o estudo comparativo apresentado neste trabalho, os métodos baseados em aprendizagem profunda são mais eficazes e menos eficientes, em comparação com os métodos clássicos da literatura e considerando as métricas adotadas. Além disso, o algoritmo de fusão proposto foi capaz de aprender informações complementares entre os métodos investigados nesta dissertação, o que resultou em uma melhora das taxas de precisão e revocação. Os experimentos foram conduzidos considerando os problemas de detecção de textos horizontais, verticais e de orientação arbitráriaAbstract: Texts are fundamental elements for effective communication in our daily lives. The mobility of people and vehicles in urban environments and the search for a product of interest on a supermarket shelf are examples of activities in which the understanding of the textual elements present in the environment is essential to succeed in such tasks. Recently, several advances in computer vision have been reported in the literature, with the development of algorithms and methods that aim to recognize objects and texts in scenes. However, text detection and recognition are still open problems due to several factors that act as sources of variability during scene text generation and capture, which can significantly impact detection and recognition rates of current algorithms. Examples of these factors include different shapes of textual elements (e.g., circular or curved), font styles and sizes, texture, color, brightness and contrast variation, among others. Besides, recent state-of-the-art methods based on deep learning demand high computational processing costs, which difficult their use in restricted computing scenarios. This dissertation presents a comparative study of text detection and recognition techniques, considering methods based on deep learning and methods that use classical machine learning algorithms. This dissertation also presents an algorithm for fusing bounding boxes, based on genetic programming (GP), developed to act as a post-processing step for a single text detector and to explore the complementarity of text detection algorithms investigated in this dissertation. According to the comparative study presented in this work, the methods based on deep learning are more effective and less efficient, in comparison to classic methods for text detection investigated in this work, considering the adopted metrics. Furthermore, the proposed GP-based fusion algorithm was able to learn complementary information from the methods investigated in this dissertation, which resulted in an improvement of precision and recall rates. The experiments were conducted considering text detection problems involving horizontal, vertical and arbitrary orientationsMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Parsing Motion and Composing Behavior for Semi-Autonomous Manipulation

    Get PDF
    Robots are becoming an ever bigger part of our day to day life. They take up simple tasks in households, like vacuum cleaning and lawn mowing. They ensure a steady and reliable process at many work places in large scale manufacturing, like the automotive and electronics industry. Furthermore, robots are becoming more and more socially accepted, for instance as autonomous drivers. They even start to engage in special and elderly care, aiming to fill a void created by a rapidly aging population. Additionally, the increasing complexity and capability of robotic systems allows to solve ever more complicated tasks in increasingly difficult scenarios and environments. Soon, encountering and interacting with robots will be considered as natural as interacting with other humans. However, when it comes to defining and understanding the behavior of robots, experts are still necessary. Robots usually follow predefined routines which are programmed and tuned by people with years of experience. Unintended behavior is traced back to a certain part of the source code which can be modified using a specific programming language. Most of the people that will interact with robotic servants or coworkers in the future, will not have the necessary skill set to instruct robots in such detail. This need for an expert represents a significant bottleneck to the deployment of robots as our everyday companion in households and at work. This thesis presents several novel approaches aiming at facilitating the interaction between non-expert humans and robots in terms of intuitive instruction and simple understanding of the robot capabilities with respect to a given task. Chapter 3 introduces a novel method that segments unlabeled demonstrations into sequence of movement primitives while simultaneously learning a movement primitive library. This method allows the non-expert to teach an entire task rather than every single primitive. Movement primitives represent a simple, atomic and commonly parameterized motion. The presented method segments each demonstration by identifying similar patterns across all demonstrations and treating them as samples drawn from a learned probabilistic representation of a movement primitive. The method is formulated as an expectation-maximization approach and was evaluated in several tasks,including a chair assembly and segmenting table tennis demonstrations. In Chapter 4 the previously segmented demonstrations and the learned primitive library are used to induce a formal grammar for movements. Formal grammars are a well established concept in formal language theory and have been applied in several fields, reaching from linguistics, over compiler architecture to robotics. The simplest class of grammars, regular grammars, correspond in their probabilistic form to Hidden Markov Models. However, the intuitive, hierarchical representation of transitions as a set of rules makes it easier for non-experts to comprehend the possible behaviors the grammar implies. A sequence of movements can now be considered a sentence produced by the learned grammar. The production of each sentence can be illustrated by a tree structure, allowing an easy understanding of the involved rules. Probabilistic context-free grammars are a superset of regular grammars and, hence, are more expressive and exceed the capabilities of Hidden Markov Models. While the induction of probabilistic context-free grammars is considered a difficult, unsolved problem for natural languages, the observed sequences of movement primitives show much simpler structures, making the induction more feasible. The method was successfully evaluated on several tasks, such as a pick-and-place task in a tic-tac-toe setting or a handover task in a collaborative tool box assembly. Chapter 5 introduces the concept of reinforcement learning into the domain of formal grammars. Given an objective, we apply a natural policy gradient approach in order to learn the grammar parameters that produces sequences of primitives that solve that objective. This allows the autonomous improvement of robot behavior. For instance, a cleaning up task can be optimized for efficiency while avoiding self collisions. The parameters of the grammar are the probabilities of each production. Therefore, probability constraints have to be maintained while learning the parameters. The applied natural policy gradient method ensures reasonably small parameter updates, such that the grammar probabilities change gradually. We derive the natural policy gradient method for formal grammars and evaluate the method on several tasks. Together, the individual contributions presented in this thesis form an imitation learning pipeline that facilitates the instruction, interaction and collaboration with robots. Starting from unlabeled demonstrations, an underlying movement primitive library is learned while simultaneously segmenting the given demonstrations into sequences of primitives. These sequences are than used to induce a formal grammar. The structure of the grammar and the produced parse trees form a comprehensible representation of the robot capabilities with respect to the demonstrated task. Finally, a reinforcement learning approach allows the autonomous optimization of the grammar given an objective

    Applied machine learning for personalised early intervention in autism

    Full text link
    This thesis is the first to address the problems of early intervention in Autism Spectrum Disorder through the lens of machine learning and data analytics. The key contribution is the establishment of large datasets in this domain for the first time together with a systematic data-based approach to extract knowledge relevant to Autism
    corecore