507 research outputs found

    Efficient data representation for XML in peer-based systems

    Get PDF
    Purpose - New directions in the provision of end-user computing experiences mean that the best way to share data between small mobile computing devices needs to be determined. Partitioning large structures so that they can be shared efficiently provides a basis for data-intensive applications on such platforms. The partitioned structure can be compressed using dictionary-based approaches and then directly queried without firstly decompressing the whole structure. Design/methodology/approach - The paper describes an architecture for partitioning XML into structural and dictionary elements and the subsequent manipulation of the dictionary elements to make the best use of available space. Findings - The results indicate that considerable savings are available by removing duplicate dictionaries. The paper also identifies the most effective strategy for defining dictionary scope. Research limitations/implications - This evaluation is based on a range of benchmark XML structures and the approach to minimising dictionary size shows benefit in the majority of these. Where structures are small and regular, the benefits of efficient dictionary representation are lost. The authors' future research now focuses on heuristics for further partitioning of structural elements. Practical implications - Mobile applications that need access to large data collections will benefit from the findings of this research. Traditional client/server architectures are not suited to dealing with high volume demands from a multitude of small mobile devices. Peer data sharing provides a more scalable solution and the experiments that the paper describes demonstrate the most effective way of sharing data in this context. Social implications - Many services are available via smartphone devices but users are wary of exploiting the full potential because of the need to conserve battery power. The approach mitigates this challenge and consequently expands the potential for users to benefit from mobile information systems. This will have impact in areas such as advertising, entertainment and education but will depend on the acceptability of file sharing being extended from the desktop to the mobile environment. Originality/value - The original work characterises the most effective way of sharing large data sets between small mobile devices. This will save battery power on devices such as smartphones, thus providing benefits to users of such devices

    An extension of SPARQL for expressing qualitative preferences

    Full text link
    In this paper we present SPREFQL, an extension of the SPARQL language that allows appending a PREFER clause that expresses "soft" preferences over the query results obtained by the main body of the query. The extension does not add expressivity and any SPREFQL query can be transformed to an equivalent standard SPARQL query. However, clearly separating preferences from the "hard" patterns and filters in the WHERE clause gives queries where the intention of the client is more cleanly expressed, an advantage for both human readability and machine optimization. In the paper we formally define the syntax and the semantics of the extension and we also provide empirical evidence that optimizations specific to SPREFQL improve run-time efficiency by comparison to the usually applied optimizations on the equivalent standard SPARQL query.Comment: Accepted to the 2017 International Semantic Web Conference, Vienna, October 201

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Power efficiency through tuple ranking in wireless sensor network monitoring

    Get PDF
    In this paper, we present an innovative framework for efficiently monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a novel top-k query processing algorithm we developed, in conjunction with the concept of in-network views, in order to minimize the cost of query execution. For ease of exposition, consider a set of sensors acquiring data from their environment at a given time instance. The generated information can conceptually be thought as a horizontally fragmented base relation R. Furthermore, the results to a user-defined query Q, registered at some sink point, can conceptually be thought as a view V . Maintaining consistency between V and R is very expensive in terms of communication and energy. Thus, KSpot focuses on a subset V′ (⊆ V ) that unveils only the k highest-ranked answers at the sink, for some user defined parameter k. To illustrate the efficiency of our framework, we have implemented a real system in nesC, which combines the traditional advantages of declarative acquisition frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world testing and experimentation with traces from University of California-Berkeley, the University of Washington and Intel Research Berkeley, show that KSpot provides an up to 66% of energy savings compared to TinyDB, minimizes both the size and number of packets transmitted over the network (up to 77%), and prolongs the longevity of a WSN deployment to new scales

    The performance of updating xml in traditional databases

    Get PDF
    • …
    corecore