40 research outputs found

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    PALS: Distributed Gradient Clocking on Chip

    Full text link
    Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or asynchronous. We present a solution and its implementation that lies between these extremes. Based on a distributed gradient clock synchronization algorithm, we show a novel design providing modules with local clocks, the frequency bounds of which are almost as good as those of free-running oscillators, yet neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters obtained from a 15nm ASIC simulation running at 2GHz yield mathematical worst-case bounds of 20ps on the phase offset for a 32×3232 \times 32 node grid network

    Near Data Processing for Efficient and Trusted Systems

    Full text link
    We live in a world which constantly produces data at a rate which only increases with time. Conventional processor architectures fail to process this abundant data in an efficient manner as they expend significant energy in instruction processing and moving data over deep memory hierarchies. Furthermore, to process large amounts of data in a cost effective manner, there is increased demand for remote computation. While cloud service providers have come up with innovative solutions to cater to this increased demand, the security concerns users feel for their data remains a strong impediment to their wide scale adoption. An exciting technique in our repertoire to deal with these challenges is near-data processing. Near-data processing (NDP) is a data-centric paradigm which moves computation to where data resides. This dissertation exploits NDP to both process the data deluge we face efficiently and design low-overhead secure hardware designs. To this end, we first propose Compute Caches, a novel NDP technique. Simple augmentations to underlying SRAM design enable caches to perform commonly used operations. In-place computation in caches not only avoids excessive data movement over memory hierarchy, but also significantly reduces instruction processing energy as independent sub-units inside caches perform computation in parallel. Compute Caches significantly improve the performance and reduce energy expended for a suite of data intensive applications. Second, this dissertation identifies security advantages of NDP. While memory bus side channel has received much attention, a low-overhead hardware design which defends against it remains elusive. We observe that smart memory, memory with compute capability, can dramatically simplify this problem. To exploit this observation, we propose InvisiMem which uses the logic layer in the smart memory to implement cryptographic primitives, which aid in addressing memory bus side channel efficiently. Our solutions obviate the need for expensive constructs like Oblivious RAM (ORAM) and Merkle trees, and have one to two orders of magnitude lower overheads for performance, space, energy, and memory bandwidth, compared to prior solutions. This dissertation also addresses a related vulnerability of page fault side channel in which the Operating System (OS) induces page faults to learn application's address trace and deduces application secrets from it. To tackle it, we propose Sanctuary which obfuscates page fault channel while allowing the OS to manage memory as a resource. To do so, we design a novel construct, Oblivious Page Management (OPAM) which is derived from ORAM but is customized for page management context. We employ near-memory page moves to reduce OPAM overhead and also propose a novel memory partition to reduce OPAM transactions required. For a suite of cloud applications which process sensitive data we show that page fault channel can be tackled at reasonable overheads.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144139/1/shaizeen_1.pd

    Hearing Loss

    Get PDF
    Authored by 17 international researchers and research teams, the book provides up-to-date insights on topics in five different research areas related to normal hearing and deafness. Techniques for assessment of hearing and the appropriateness of the Mongolian gerbil as a model for age-dependent hearing loss in humans are presented. Parental attitudes to childhood deafness and role of early intervention for better treatment of hearing loss are also discussed. Comprehensive details are provided on the role of different environmental insults including injuries in causing deafness. Additionally, many genes involved in hearing loss are reviewed and the genetics of recessively inherited moderate to severe and progressive deafness is covered for the first time. The book also details established and evolving therapies for treatment of deafness

    Human Personality Is Associated with Geographical Environment in Mainland China

    Get PDF
    Recent psychological research shown that the places where we live are linked to our personality traits. Geographical aggregation of personalities has been observed in many individualistic nations; notably, the mountainousness is an essential component in understanding regional variances in personality. Could mountainousness therefore also explain the clustering of personality-types in collectivist countries like China? Using a nationwide survey (29,838 participants) in Mainland China, we investigated the relationship between the Big Five personality traits and mountainousness indicators at the provincial level. Multilevel modelling showed significant negative associations between the elevation coefficient of variation (Elevation CV) and the Big Five personality traits, whereas mean elevation (Elevation Mean) and the standard deviation in elevation (Elevation STD) were positively associated with human personalities. Subsequent machine learning analyses showed that, for example, Elevation Mean outperformed other mountainousness indicators regarding correlations with neuroticism, while Elevation CV performed best relative to openness models. Our results mirror some previous findings, such as the positive association between openness and Elevation STD, while also revealing cultural differences, such as the social desirability of people living in China’s mountainous areas

    Establishing an evidence-based framework for involving patients in research about chronic kidney disease

    Get PDF
    Involving consumers (defined as patients and informal caregivers/family members) in research as more than ‘subjects’ is now globally advocated to improve the relevance, importance, and quality of research. Growing evidence in the general population and some specific disease groups continues to demonstrate the benefits of consumer involvement in research. Despite this, consumer involvement in research in chronic kidney disease (CKD) remains scarce as researchers are uncertain about approaches and often lack resources to undertake it. Patients with CKD and their families face unique challenges that may hinder their ability or willingness to be involved in research. Scant conducting, reporting and publishing of consumer involvement activities in this population limits the relevance of research to consumers and the evidence for best practice remains in its infancy. This thesis aims to summarise the existing evidence, generate new evidence to address gaps in best practice and synthesise the data to develop a practical evidence-based framework for the meaningful, impactful and sustained involvement of consumers in CKD research. The first part of this thesis (chapters 2-5) provides a comprehensive overview of the literature for consumer involvement in research and shared decision-making in published CKD research. It develops a conceptual understanding of the benefits, challenges and gaps of consumer involvement in this population, based on the literature and perspectives from consumers and health professionals. The second part of this thesis (chapters 5, 6, 7) contains applied empiric studies demonstrating and evaluating consumer involvement in research and decision-making in real world settings. The final chapter integrates the key findings and recommendations to provide a practical framework for researchers to guide best practice in involving consumers in all types of research in CK

    Algorithms in computer-aided design of VLSI circuits.

    Get PDF
    With the increased complexity of Very Large Scale Integrated (VLSI) circuits,Computer Aided Design (CAD) plays an even more important role. Top-downdesign methodology and layout of VLSI are reviewed. Moreover, previouslypublished algorithms in CAD of VLSI design are outlined.In certain applications, Reed-Muller (RM) forms when implemented withAND/XOR or OR/XNOR logic have shown some attractive advantages overthe standard Boolean logic based on AND/OR logic. The RM forms implementedwith OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM),is the Dual form of traditional RM implemented with AND /XOR.Map folding and transformation techniques are presented for the conversionbetween standard Boolean and DFRM expansions of any polarity. Bidirectionalmulti-segment computer based conversion algorithms are also proposedfor large functions based on the concept of Boolean polarity for canonicalproduct-of-sums Boolean functions. Furthermore, another two tabular basedconversion algorithms, serial and parallel tabular techniques, are presented forthe conversion of large functions between standard Boolean and DFRM expansionsof any polarity. The algorithms were tested for examples of up to 25variables using the MCNC and IWLS'93 benchmarks.Any n-variable Boolean function can be expressed by a Fixed PolarityReed-Muller (FPRM) form. In order to have a compact Multi-level MPRM(MMPRM) expansion, a method called on-set table method is developed.The method derives MMPRM expansions directly from FPRM expansions.If searching all polarities of FPRM expansions, the MMPRM expansions withthe least number of literals can be obtained. As a result, it is possible to findthe best polarity expansion among 2n FPRM expansions instead of searching2n2n-1 MPRM expansions within reasonable time for large functions. Furthermore,it uses on-set coefficients only and hence reduces the usage of memorydramatically.Currently, XOR and XNOR gates can be implemented into Look-Up Tables(LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGAplacement is categorised to be NP-complete. Efficient placement algorithmsare very important to CAD design tools. Two algorithms based on GeneticAlgorithm (GA) and GA with Simulated Annealing (SA) are presented for theplacement of symmetrical FPGA. Both of algorithms could achieve comparableresults to those obtained by Versatile Placement and Routing (VPR) toolsin terms of the number of routing channel tracks

    Modelling energy efficiency for computation

    Get PDF
    In the last decade, efficient use of energy has become a topic of global significance, touching almost every area of modern life, including computing. From mobile to desktop to server, energy efficiency concerns are now ubiquitous. However, approaches to the energy problem are often piecemeal and focus on only one area for improvement. I argue that the strands of the energy problem are inextricably entangled and cannot be solved in isolation. I offer a high-level view of the problem and, building from it, explore a selection of subproblems within the field. I approach these with various levels of formality, and demonstrate techniques to make improvements on all levels.Clare College Domestic Research Scholarshi
    corecore