214 research outputs found

    Roles,Subjects and Aspects: How Do They Relate?

    Full text link

    Speculative Staging for Interpreter Optimization

    Full text link
    Interpreters have a bad reputation for having lower performance than just-in-time compilers. We present a new way of building high performance interpreters that is particularly effective for executing dynamically typed programming languages. The key idea is to combine speculative staging of optimized interpreter instructions with a novel technique of incrementally and iteratively concerting them at run-time. This paper introduces the concepts behind deriving optimized instructions from existing interpreter instructions---incrementally peeling off layers of complexity. When compiling the interpreter, these optimized derivatives will be compiled along with the original interpreter instructions. Therefore, our technique is portable by construction since it leverages the existing compiler's backend. At run-time we use instruction substitution from the interpreter's original and expensive instructions to optimized instruction derivatives to speed up execution. Our technique unites high performance with the simplicity and portability of interpreters---we report that our optimization makes the CPython interpreter up to more than four times faster, where our interpreter closes the gap between and sometimes even outperforms PyPy's just-in-time compiler.Comment: 16 pages, 4 figures, 3 tables. Uses CPython 3.2.3 and PyPy 1.

    CentiJ: An RMI Code Generator

    Get PDF
    The CentiJ system synthesizes Java source code that funnels invocations through an RMI (Remote Method Invocation) based transport layer for distributed computation. The technique generates bridge pattern code (i.e., interfaces and proxies) that automate the creation of virtual proxies for message forwarding. We examine the tradeoffs between bridge implementations based on manual static delegation, automatic static delegation, and dynamic proxy classes. Advantages of the CentiJ technique include improved performance, type safety, transparency, predictability, flexibility and reliability. We then look at various methods for solving the disambiguation problem that arises when delegates have conflicting method signatures. Disambiguation can be automatic, semi-automatic or manual. CentiJ can automatically create a class that alters the interface to the bridge (using the adapter pattern)

    Pretenuring for Java

    Get PDF
    Pretenuring is a technique for reducing copying costs in garbage collectors. When pretenuring, the allocator places long-lived objects into regions that the garbage collector will rarely, if ever, collect. We extend previous work on profiling-driven pretenuring as follows. (1) We develop a collector-neutral approach to obtaining object lifetime profile information. We show that our collection of Java programs exhibits a very high degree of homogeneity of object lifetimes at each allocation site. This result is robust with respect to different inputs, and is similar to previous work on ML, but is in contrast to C programs, which require dynamic call chain context information to extract homogeneous lifetimes. Call-site homogeneity considerably simplifies the implementation of pretenuring and makes it more efficient. (2) Our pretenuring advice is neutral with respect to the collector algorithm, and we use it to improve two quite different garbage collectors: a traditional generational collector and an older-first collector. The system is also novel because it classifies and allocates objects into 3 categories: we allocate immortal objects into a permanent region that the collector will never consider, long-lived objects into a region in which the collector placed survivors of the most recent collection, and shortlived objects into the nursery, i.e., the default region. (3) We evaluate pretenuring on Java programs. Our simulation results show that pretenuring significantly reduces collector copying for generational and older-first collectors. 1
    • …
    corecore