320 research outputs found

    PALPAS - PAsswordLess PAssword Synchronization

    Full text link
    Tools that synchronize passwords over several user devices typically store the encrypted passwords in a central online database. For encryption, a low-entropy, password-based key is used. Such a database may be subject to unauthorized access which can lead to the disclosure of all passwords by an offline brute-force attack. In this paper, we present PALPAS, a secure and user-friendly tool that synchronizes passwords between user devices without storing information about them centrally. The idea of PALPAS is to generate a password from a high entropy secret shared by all devices and a random salt value for each service. Only the salt values are stored on a server but not the secret. The salt enables the user devices to generate the same password but is statistically independent of the password. In order for PALPAS to generate passwords according to different password policies, we also present a mechanism that automatically retrieves and processes the password requirements of services. PALPAS users need to only memorize a single password and the setup of PALPAS on a further device demands only a one-time transfer of few static data.Comment: An extended abstract of this work appears in the proceedings of ARES 201

    Review of Contemporary Literature on Machine Learning based Malware Analysis and Detection Strategies

    Get PDF
    Abstract: malicious software also known as malware are the critical security threat experienced by the current ear of internet and computer system users. The malwares can morph to access or control the system level operations in multiple dimensions. The traditional malware detection strategies detects by signatures, which are not capable to notify the unknown malwares. The machine learning models learns from the behavioral patterns of the existing malwares and attempts to notify the malwares with similar behavioral patterns, hence these strategies often succeeds to notify even about unknown malwares. This manuscript explored the detailed review of machine learning based malware detection strategies found in contemporary literature

    A Call for Standardization and Validation of Text Style Transfer Evaluation

    Full text link
    Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.Comment: Accepted to Findings of ACL 202
    • …
    corecore