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Abstract. In this paper, we combine static code analysis and symbolic
execution to bypass Intel’s Control-Flow Enforcement Technology (CET)
by exploiting function pointer hijacking. We present Untangle, an open-
source tool that implements and automates the discovery of global func-
tion pointers in exported library functions and their call sites. Then, it
determines the constraints that need to be satisfied to reach those point-
ers. Our approach manages naive built-in types and complex parameters
like structure pointers. We demonstrate the effectiveness of Untangle
on 8 of the most used open source C libraries, identifying 57 unique
global function pointers, reachable through 1488 different exported func-
tions. Untangle can find and verify the correctness of the constraints
for 484 global function pointer calls, which can be used as attack vectors
for control-flow hijacking. Finally, we discuss current and future defense
mechanisms against control-flow hijacking using global function pointers.

Keywords: Binary Exploitation · Control-Flow Integrity · Control-Flow
Hijacking · Static Analysis · Symbolic Execution

1 Introduction

Binary exploitation is a significant problem and threat due to memory corrup-
tion vulnerabilities [36] in programs written using memory-unsafe languages like
C. Despite this flaw, C is still widely used for its reliability, portability, and per-
formance. Most memory corruption exploits aim to disrupt a program’s control
flow. Recent defense proposals primarily focus on preserving the control flow,
to prevent memory corruption vulnerabilities from being exploited to redirect
it on an unintended path. The main idea behind control-flow preservation is to
perform checks to ensure that only allowed execution paths are taken so that any
deviation from them would be recognized as malicious and stopped. An example
of a state-of-the-art control-flow hijacking defense mechanism is Intel’s Control-
Flow Enforcement Technology (CET) [33], which was designed to protect
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both forward edges (function calls and jumps) and back edges (function returns)
in the Control-Flow Graph (CFG) of a program. Defense mechanisms like
CET make it significantly harder for an attacker to gain arbitrary code execu-
tion, as they drastically reduce the possible attack surface. With such defense
mechanisms in place, an attacker cannot directly tamper with the return address
of a function but must target other control variables like function pointers,
which can be found in different memory sections of a program or library and
constitute a possible attack surface.

This work focuses on global function pointers defined in C libraries. Global
function pointers are easy to identify and find in process memory, and finding
such an attack vector in a widespread library makes the approach generic, en-
abling the exploitation of binaries having the library as a dependency. Finding
global function pointers in C libraries would simplify exploit writing in CET-
enabled scenarios and would be helpful to C library developers to detect the
presence of such attack vectors. To better understand how an attacker can ex-
ploit function pointers, consider a library that exports a function containing a
call to a global function pointer defined within the library. This exported func-
tion is then used by a program using the library. If this program presents an
arbitrary write vulnerability (i.e., a vulnerability that allows the attacker to
write any value to any memory location), it can be used to overwrite the global
function pointer and redirect the control flow of the program once a call to it is
reached through the exported library function. There are a few complications to
this kind of attack. First of all, global function pointers must be found inside a
library. Even if the source code of the target library is available, one would need
to manually analyze it to find all possible global function pointers, interesting
call sites, and all the conditions leading the execution to them. Doing all this
by hand, potentially for several different libraries, is a feasible but highly time-
consuming and demanding task. Our work proposes an approach based on static
analysis and symbolic execution [25] to automate this whole process given the
source code of a C library. Moreover, we identify and solve all the constraints
that need to be satisfied to reach global function pointer calls at runtime.

We present Untangle1, an open-source tool that implements the proposed
approach to aid binary exploitation through global function pointer hijacking. It
is important to highlight that Untangle is also helpful from a defense per-
spective since it helps C library developers to discover the identified attack
surface and library users to detect affected libraries. Untangle performs its
task through four main components: the Global Pointers Extractor, the Instru-
menter, the Parser and the Executor. The Global Pointers Extractor performs
source code analysis on the target library to find global function pointers and
their call sites. The Instrumenter instruments the source code of the target li-
brary to prepare it for symbolic execution. The Parser extracts information on
structure types definitions and function signatures to improve the symbolic exe-
cution process. The Executor performs symbolic execution on the instrumented
library binaries and employs a custom memory model designed to ease handling

1 https://github.com/untangle-tool/untangle
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complex function arguments. We evaluate Untangle on several open-source
C libraries ( i.e., libgnutls, libasound, libxml2, libfuse, libcurl, libnss,
libpcre and libbsd). Untangle identifies 64 unique global function pointers
(57 of which are reachable through exported functions) and 1488 exported func-
tions that lead to their calls, finding and verifying the constraints’ correctness to
satisfy those calls in 484 cases. In summary, the contributions are the following:

– A methodology to identify global function pointers, their calls sites reachable
through exported library functions, and how to reach them.

– Untangle, an automatic tool that implements this methodology end-to-
end. It takes the source code of a library as input and produces as output all
the function pointers found inside the library, which are reachable through
exported functions and concrete parameter values that satisfy the conditions
that allow it to reach them.

– An ad-hoc symbolic execution memory model (implemented in Untangle)
that deals with struct pointers passed as function parameters.

2 Background

Static Code Analysis. Static code analysis is the practice of analyzing a pro-
gram without executing it, and is a widely adopted technique for vulnerability
research. It can be performed at the source code level (given the source code of
a program or a library) or at the binary level (given the compiled program or
library). In our work, we perform static source code analysis to identify global
function pointers in library code. To perform this task, we use CodeQL [2], a
static analysis framework developed by GitHub, that provides a formal query
language to specify the targets of the static analysis process.
Symbolic Execution with angr. Symbolic execution is a dynamic program
analysis technique in which the program to be analyzed is driven through its
execution by a specialized interpreter, known as symbolic execution engine. The
engine feeds the program with symbolic inputs, rather than concrete inputs ob-
tained by the user or the environment. Whenever the analyzed program needs
to evaluate a branch condition involving symbolic data, the engine creates two
expressions constraining the symbolic data: one that satisfies the condition and
one that does not. Then, it duplicates the current state of the program, and two
initially identical states are advanced in parallel on the two different sides of the
branch, keeping track of the constraints on symbolic variables that caused the
state duplication. A critical aspect of a symbolic execution engine is its symbolic
memory model, which defines the policies for managing memory accesses. Be-
cause of its Python-based interface, flexibility, and modular plugin system, we
chose angr [1, 35, 37] as a symbolic execution engine. angr’s memory model,
already analyzed in previous works [12], is fully symbolic, i.e., it emulates every
memory operation by concretizing memory addresses whenever it is needed.

When dealing with a symbolic address, at first angr evaluates how large the
range of values it can assume is. In the case of a single possible value (depend-
ing on the constraints present in the current state), the address is concretized
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and the load/store is performed at the concrete address. However, in the case of
multiple possible values, the behavior differs between load and store operations.
For a store operation, a symbolic address is always concretized to the maximum
possible value satisfying its constraints. This can be useful if the objective of
symbolic execution is to find memory corruption bugs in the analyzed program.
For instance, if an unconstrained 64-bit symbolic pointer is dereferenced for a
store of size 8, its value could be concretized to 0xfffffffffffffff8. For a
load operation, if the range of possible values exceeds a fixed internal thresh-
old, the symbolic address is concretized to an arbitrary value returned by the
solver. Otherwise, if the range is small enough, an If-Then-Else expression is
generated and the address remains symbolic. The issue with the first case is
that unpredictable concrete addresses could be generated, which will likely be
colliding with the addresses of other existing objects. These issues can impact
the chance of successfully traversing the call chain needed to reach the calls to
function pointers we are interested in during symbolic execution. Complex data
types, such as pointers to structure, are an especially problematic case: angr has
no knowledge about struct sizes, and this can cause instances where addresses
of different struct pointers are concretized to contiguous values. This is likely to
cause memory overlaps and generate invalid results.

2.1 Exploitation Techniques and Defenses

Return-Oriented Programming (ROP) [13, 16, 28, 29]. It is a code-reuse
technique that allows the execution of an arbitrary sequence of instructions in
a program without injecting any code. This technique uses a “ROP-chain”: a
chain of short sequences of instructions, called “gadgets”, that end with a return
instruction (thus the name of the technique). ROP gadgets can be found in
the code section of the target binary or any shared library loaded by it and thus
visible in its address space. By chaining multiple gadgets together, each executing
one or more instructions before returning, an attacker can create an arbitrary
sequence of machine instructions. Given the right gadgets, ROP is also Turing-
complete [21] and can execute arbitrary code. The only limits to this technique
are the length of the initial ROP-chain, limited by the number of bytes that can
be written on the stack past the saved return address, and the gadgets available
for use, which depend on the specific program and the libraries it uses. ROP
defeats defense mechanisms such as Write Xor Execute (W ⊕X) since all the
gadgets involved in the ROP-chain are located in executable memory pages. Code
reuse techniques also include Jump-Oriented Programming (JOP) [11] and
Call-Oriented Programming (COP) [30]. JOP is a code reuse technique that
builds and chains gadgets that end with an indirect branch instruction rather
than a return instruction. This eliminates reliance on the stack and return-like
instructions (e.g., a stack pop followed by a jump to the popped value). COP is
a similar code reuse technique that uses gadgets that end in a call instruction.

Defense mechanisms directly affect the impact of code-reuse techniques. Ad-
dress Space Layout Randomization (ASLR) [9, 32] randomly arranges the
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address space of a process before starting its execution: the base address of
different memory regions (such as the program itself, library code, stack, and
heap) changes with every new execution of the same program. ASLR can ran-
domize the position of a program in memory only if the program is a Position-
Independent Executable (PIE), that is, a program that can properly run
regardless of its position in memory. All the memory accesses of a PIE are
defined using relative offsets rather than absolute addresses so that the base
address where the program is loaded in memory can be arbitrarily chosen and
randomly generated to be different for each execution. This mechanism strongly
impacts the previously discussed exploitation techniques: a ROP-chain cannot
be built without knowing the exact address of each gadget. ASLR is, however,
only effective as long as a potential attacker cannot leak the address of an in-
teresting memory area (e.g., a section of the program binary itself, a loaded
library). If the exact address of any piece of code and data contained within
it can be leaked through vulnerabilities of a program, an attacker would then
be able to compute the exact address of any piece of data contained within it,
as offsets inside the binary are fixed. Recent defense solutions are directly tar-
geted at defeating ROP: some examples are kBouncer [27], ROPdefender [20] and
ROPecker [18]. While targeted towards ROP, however, neither of these solutions
can detect and defeat other code-reuse attacks. It has been shown in previous
works that these defenses have some shortcomings and can be bypassed with
low effort [15, 31]. Other proposals target the preservation of the control flow
of a program rather than the mitigation of a specific exploitation technique.
Control-Flow Integrity (CFI) [8, 10, 14, 26] is a security policy dictating
that software execution must only follow paths of its CFG, which is determined
ahead of time through source-code analysis, binary analysis or execution pro-
filing. CFI paved the way for a series of defenses against control-flow hijacking
attacks in hardware and software solutions.

Intel’s Control-Flow Enforcement Technology (CET) is one of the most
recent and advanced CFI enforcement defenses, providing a CPU instruction set
architecture extension that allows the software to easily set up hardware defenses
against ROP, JOP and COP style attacks. CET has two main features: 1 the
use of a Shadow Stack [19] to provide saved return address protection, pre-
venting ROP; 2 Indirect Branch Tracking (IBT) [27] to prevent the misuse
of indirect branch instructions, typical of JOP/COP attacks. CET is available
on all Intel Core CPUs starting from the 11th generation, and AMD recently
announced CET support from its “Series 5000” processors onward. However, op-
erating systems’ support towards CET is still partial. Because of its accuracy
in protecting both forward and back edges in a CFG, full-CET support in both
kernel and user space would make code reuse techniques relying on overwriting
the saved return address on the stack (ROP) impossible, and the ones relying on
indirect control transfer instructions (JOP, COP) harder, as control-flow would
need to be redirected to legitimate targets, identified by endbranch instructions.

Function Pointer Hijacking. If an attacker wants to redirect the control flow
of a program but cannot tamper with the saved return address on the stack
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because there are protection mechanisms such as CET in place, they must target
other kinds of control data, such as function pointers. Common reasons for
function pointer usage in C library code are providing the user with runtime
hooks for particular function invocations, implementing function callbacks, and
delivering notifications for asynchronous runtime events. To gain arbitrary code
execution through a function pointer in a CET-enabled environment, an attacker
needs to consider two main possible scenarios. In the first scenario, when only
the shadow stack is active, the attacker can overwrite the function pointer with
any address pointing to a memory section containing executable code. In the
second scenario, when IBT is active (regardless of shadow stack usage), the
attacker necessarily needs to overwrite the function pointer with the address of
an endbranch instruction. This could be the start of an interesting function, a
case of a switch statement compiled using a jump table, or similar. In case the
target is a function, the ability to control the parameters supplied to the function
could also be necessary (e.g., targeting the system() function provided by the
standard C library, one would need to pass the command to run as a parameter),
and depends on the specific case at hand. We focus on hijacking global function
pointers in C libraries as a possible exploitation entry point, considering that
given the right conditions, this technique can be used to circumvent Intel CET.

3 Related Work

Non-control data attacks [17, 22] are state-of-the-art binary exploitation tech-
niques, and are a viable alternative to “traditional” control-flow hijacking attacks.
They aim at redirecting the program’s control flow without tampering with con-
trol data, acting only on non-control data, such as variables used by the program
to make control decisions. Data-oriented attacks are thus capable of changing the
control flow of a program by bypassing defense mechanisms that preserve control-
flow integrity. Sophisticated non-control data attack techniques and tools that
help automate exploitation have been proposed in recent years. Data-Oriented
Programming (DOP) [23] is a technique to construct expressive non-control
data exploits. It allows an attacker to perform arbitrary computations in pro-
gram memory by chaining the execution of short sequences of instructions, called
DOP gadgets. It is a powerful technique, with the downside that the gadget
chains must be crafted by hand. Block-Oriented Programming (BOP) [24]
is a further improvement of data-oriented attacks: it uses basic blocks as gad-
gets and leverages symbolic execution to automatically find the constraints on
variables and memory-resident data needed to redirect the control flow. BOP
attacks are specifically aimed at creating a chain of basic blocks that does not
trigger CFI preservation mechanisms, and since they do not overwrite the saved
return address, they can bypass shadow stacks too. The advantage of BOP, with
respect to DOP, is that the gadget chain-building process is automated. These
techniques, however, have their limitations: they are complex and only work in
particular situations. Global function pointer hijacking requires less effort and
is a viable alternative to perform binary exploitation in specific settings.



Untangle 7

Discussion. To the best of our knowledge, no existing work explores the au-
tomation of both global function pointer identification and hijacking in library
code. Most of the existing work and research focuses on subsequent exploitation
steps instead. In particular, the BOP Compiler (BOPC) [24], could benefit from
our work: one of the requirements for the tool to work correctly is an entry
point, i.e., a point from which the tool starts its analysis and constructs the
basic block chain. A function pointer that can be overwritten with an arbitrary
address would be a good starting point for this analysis.

4 Threat Model and Problem Statement

Our exploitation scenario considers a program running on a machine employing
state-of-the-art control-flow hijacking defenses, such as fully enabled Intel CET.
Moreover, the program is also protected through stack canaries, W ⊕X mem-
ory protection policies, and ASLR. We assume that the program uses functions
exported by a C library (statically linked or dynamically loaded at runtime)
that contain, or can lead to, calls to global function pointers defined within the
library itself. We assume that the program presents a known memory corrup-
tion vulnerability that can lead to an arbitrary memory write, also known as
“write-what-where” primitive, which gives an attacker the ability to write any
value to any writable address. In the case of a dynamic library, we also assume
that the attacker can discover, for example, thanks to an information leak, the
base address at which the target was loaded under ASLR. These assumptions
are realistic and practical since they are in line with the ones of the mechanisms
that aim at preventing arbitrary memory reads and writes from being exploited.
Motivation and Research Goal. One of the fundamental steps while writing
an exploit that aims at gaining arbitrary code execution is to gain control of
the instruction pointer. This is usually achieved by overwriting the saved return
address of a function on the stack, by overwriting a function pointer contained in
an object on the stack or on the heap (e.g., a vtable pointer), or by overwriting
global function pointers (e.g., in shared libraries). If CFI enforcement mecha-
nisms like Intel CET are in place, the first approach cannot be applied because
of the shadow stack. The second approach strongly depends on the specific appli-
cation the attacker wants to exploit, while the last approach is more general and
can be applied to any application using the same shared libraries. Being able to
find global function pointers in libraries would simplify exploit writing for such
applications. For this reason, our goal is to find 1 global function pointers calls
in the source code of a target library; 2 the conditions to reach such calls, giving
us the ability to gain arbitrary code execution. Commonly used C libraries can
be composed of hundreds or even thousands of source code files, while the total
number of lines of code can vary from a few thousand to several hundred thou-
sand. Manually searching for global function pointers and all locations where
they are called is feasible but not trivial: analyzing a large code base would
require considerable time and effort. Even if we could find all function point-
ers and calls manually, it is challenging to identify the conditions over function
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parameters and other global variables that would lead the program to the execu-
tion of such calls. In fact, some libraries contain functions that are hundreds of
source code lines long. Manually keeping track of all the conditions needed to be
satisfied to reach a specific code section at runtime would be demanding, time-
consuming, and error-prone. Therefore, automating the identification of global
function pointer calls is necessary. This would make the whole process faster,
more practical, and more reliable, and would provide library developers with an
effective way to identify and reduce the attack surface in their code.

5 Untangle

Untangle uses a combination of static analysis, library source code instru-
mentation, and symbolic execution to provide precise information on how to
reach global function pointer calls starting from exported functions of a given
C library. This includes information on the constraints on function parameters
and global variables that need to be satisfied to reach these calls. The workflow
of Untangle includes several components: the Global Pointers Extractor, the
Instrumenter, the Parser and the Executor, which contains a custom memory
model for symbolic execution. The Global Pointers Extractor creates a CodeQL
database for the library from its source. CodeQL’s query language allows spec-
ifying precisely the targets of the static analysis: in our case, the targets are
global function pointers, their call sites, and library functions that can reach
them, along with their signatures. After the creation of the database, the Global
Pointers Extractor performs queries to identify these targets. The Instrumenter
then places a call to a uniquely generated target function immediately before
each identified global function pointer call, and builds a new, instrumented ver-
sion of the library. The Parser performs two different tasks: struct parsing and
function signature parsing. The results of both these tasks are passed to the
Executor component: the information on function signatures is used by the sym-
bolic execution engine, while the information on structures is used by the custom
memory model. The Executor uses the instrumented library binaries to evaluate
the reachability of identified global function pointer calls, treating the functions
inserted by the Instrumenter as targets to reach. The actual symbolic execution
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Fig. 1: Architecture overview of Untangle.
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is performed by angr. We use angr because its modular design allows us to easily
add new functionality or modify existing behavior. In fact, the Executor uses a
Symbolic Memory Model for angr, developed with its plugin system, specifically
designed to ease the handling of complex structure pointer parameters. The Ex-
ecutor also has a built-in Automatic Result Validation Mechanism, that we use
to test the correctness of the results of the symbolic execution phase. For an
overview of the architecture of our tool, refer to Figure 1.

Global Pointers Extractor. This component performs the static analysis of
the source code of the library, which is provided as an input to Untangle. As
previously mentioned, we use CodeQL for the static analysis, as it allows us to
accurately specify the targets of the analysis through its formal query language.

First, the Global Pointers Extractor builds a CodeQL database along with
the original library. Then, it runs two queries2 on the database. The first query
performs three simultaneous operations: 1 detection of all existing global func-
tion pointer variables; 2 identification of all the call sites for each detected
variable; 3 discovery of potential entry points to reach the call sites. The last
operation involves traversing CodeQL’s call graph, starting from any function
containing one or more call sites, going backward from callee to caller, and listing
all non-static library functions encountered. We can check whether an iden-
tified library function is exported by looking at the exported symbols of the
library binaries. The second query detects structure definitions, the fields they
are composed of, and their offsets inside the structure. The results of this query
are passed to the Parser, which will use them to create and manage internal
objects representing structure pointers.

Instrumenter. The purpose of the Instrumenter is to provide targets for the
symbolic execution phase through source code instrumentation. This phase must
preserve the original functionality of the library to allow the symbolic execution
phase to provide reliable results. For this purpose, the Instrumenter inserts a call
to a uniquely named dummy target function right before each global function
pointer call found by the Global Pointers Extractor. This new call has only one
artificial side effect that prevents it from being optimized away by the compiler.
The instrumented library source code is then re-compiled, and the resulting bi-
naries contain exported symbols referencing the newly inserted target functions.
This allows providing angr with precise indications on the target addresses.

Parser and Executor. Untangle can find constraints on parameters of ex-
ported functions and global variables that need to be satisfied to reach identified
global function pointer call sites and then evaluate them to find suitable concrete
values. The Parser extracts the number and types of parameters from the signa-
ture of each function that needs to be symbolically executed, creating symbolic
bit-vectors of the appropriate size. For struct pointer parameters, the Parser
also creates the needed StructPointer objects as previously discussed. The
Symbolic Memory Model uses these objects to handle symbolic memory loads
and stores to structure pointers during the symbolic execution. To allow the iden-

2 https://github.com/untangle-tool/untangle/blob/main/untangle/analyzer.py#L82

https://github.com/untangle-tool/untangle/blob/main/untangle/analyzer.py#L82
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tification and evaluation of interesting global variables, the Executor transforms
writable data sections of the library binary (.bss and .data) to symbolic bit-
vectors to verify later whether any memory regions belonging to these sections
were involved in any constraints. This also allows the detection of constraints on
the global function pointers themselves. However, these constraints depend on
the specific library being tested and need to be evaluated case by case.

Symbolic Memory Model. Angr’s default address concretization strategy
can cause memory overlaps since it is unaware of variable types and sizes.
Therefore, it cannot reserve specific regions of memory for symbolic pointers.
A prime example is pointers to struct types. To correctly handle struct point-
ers, Untangle extends angr’s memory model implementing ad-hoc logic. This
logic is summarized in Figure 2. Function arguments that are pointers to known
struct types, extracted through CodeQL, are recursively parsed into an internal
StructPointer object, which holds fields’ offsets, sizes, and symbolic bit-vectors.
During symbolic execution, Untangle keeps track of StructPointer objects to
handle load/store memory operations involving their addresses. The first load-
/store operation through the symbolic bit-vector of a tracked StructPointer
p concretizes its value to an address determined by a simple bump allocator.
At this address, Untangle reserves a chunk of symbolic memory of the needed
size to hold the content of the underlying struct that p is tracking. Then, Un-
tangle stores the symbolic bit-vectors for any nested StructPointer field of p
at the correct offset in the chunk. Any subsequent load/store operation to the
now-concrete address is then forwarded to angr’s default handler. Using this
approach recursively, Untangle can also handle nested struct pointers.

Automatic Result Validation Mechanism. Untangle is equipped with
an automatic result validation mechanism. Validation is performed by compiling
and running a test C program that uses the solution found through symbolic
execution to appropriately set up a function call to the tested library function.
This is not a simple task, and depending on the library, the test program would
need to be significantly complex to compile correctly. Using a library function
means importing the correct header files, creating variables of the appropriate
type and value (which can, in turn, require additional headers for the type defini-
tions), and linking the right library binary after compilation. Doing this requires
multiple steps that change based on the specific library and cannot be easily
done programmatically. We have implemented a simpler automatic verification
method that involves the use of libdl [5] to dynamically load instrumented
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Table 1: List of tested libraries and number of global function pointers found in
each library by Untangle.

Library Estimated lines of
source code

Unique global
function pointers

Reachable function
pointers

libgnutls v3.6.16 422 804 15 14
libasound v1.2.4 94 288 3 2
libxml2 v2.9.10 353 481 8 6
libfuse v3.11 21 568 1 1
libcurl v7.84 152 921 5 5
libnss v2.31 10 568 21 18
libpcre v8.39 107 530 3 3
libbsd v0.11.3 11 316 8 8
Total 1 174 476 64 57

libraries at runtime and The GNU Debugger (GDB) to monitor whether
identified call sites are reached through automatically inserted breakpoints. The
goal of this built-in Automatic Validation Mechanism is to avoid false positive
results: if execution reaches a breakpoint set at the target call site while run-
ning under GDB, the solution must inevitably be correct (it could be trivial,
but correct). Therefore, an incorrect solution will never pass validation. This
mechanism can, however, yield false negatives: functions for which Untangle
found a solution but through which the global function pointer call site is not
reached during automatic validation. These are more complex to handle and
require manual testing to be identified. Automatic validation consists of the fol-
lowing steps performed after a symbolic execution run that found a satisfiable
solution: 1 Generate and compile a C program that loads the tested library
using libdl and calls the target function using parameter values taken from the
solution; 2 Run the compiled program under GDB, setting a breakpoint on the
target function corresponding to the global function pointer call site that needs
to be reached; 3 Check whether the breakpoint is reached or not.

6 Experimental Validation

In order to test Untangle we performed full library execution tests on multiple
C libraries commonly used on GNU/Linux systems. The main focus of our tests
was the symbolic execution phase: the success rate of symbolic execution (i.e.,
what percentage of runs can find and return a solution), the validity of found
solutions, and the number of system resources needed to find them. We collected
statistics about the quantity and validity of symbolic execution results, then
about performance in terms of execution time and memory usage.
Dataset. We selected top-ranked free, open-source C libraries listed under the
“libs” section of the Debian package Popularity Contest [3], using the latest
version provided by Debian 11 packages. We checked the presence of global func-
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Table 2: Number of unique call sites, exported functions, and unique paths to
global function pointer calls for each tested library.

Library Unique call sites Exported
functions

Unique paths to call
sites

libgnutls v3.6.16 1 338 827 29 817
libasound v1.2.4 383 243 7 739
libxml2 v2.9.10 2 125 225 254 096
libfuse v3.11 110 110 110
libcurl v7.84 271 48 11 238
libnss v2.31 34 15 74
libpcre v8.39 13 12 36
libbsd v0.11.3 8 8 8
Total 4 282 1 488 303 118

tion pointers using CodeQL and analyzed them with Untangle. We manually
compiled and checked around 50 libraries, found 8 of them (listed in Table 1),
to contain interesting function pointers, and we tested them.
Experimental Setup. As shown in Table 2, the number of unique code paths
starting from exported library functions and leading to a global function pointer
call can be quite large. Hence, we did not test every single path, as the amount
of time needed for such kind of analysis would have been prohibitive, but rather
focused on analyzing the reachability of any global function pointer call starting
from every single exported function. The machine used for testing is equipped
with a 64-bit Intel Core i9-10900 CPU (base core clock speed of 2.80GHz), 32GiB
of RAM, and runs Debian 11 GNU/Linux v5.10. Libraries were therefore com-
piled for Linux x86-64 using The GNU C Compiler (GCC) version 10.2.1,
the standard compiler for Debian GNU/Linux systems. Where possible and per-
mitted by library configuration scripts, the optimization option chosen was -O2,
and the use of advanced CPU-specific instruction sets (e.g., AVX2, SSE4) was
disabled to avoid issues with PyVEX [7, 34], the Python library used by angr for
translation of machine instructions. Since angr does not offer multi-threading
support, all performed symbolic execution runs consist of single-threaded pro-
cesses. Each symbolic execution run was limited to 15 minutes and 16GiB of
RAM usage (Resident Set Size). Runs exceeding any of the two limits were
halted while still collecting resource usage information for statistical purposes.

6.1 Symbolic Execution Results

The static analysis results found by Untangle are listed in Table 1 and Table 2.
The first table shows the number of unique global function pointers found in each
library: we ruled out the ones that were not reachable through manual analysis.
The output of the static analysis contains a list of all global function pointers
identified and every library function that can reach a call to one of them. Table 2
presents the number of exported functions able to reach a global function pointer
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Table 3: Symbolic execution results and validation of successful runs.

Library Tested functions
Symbolic execution solution Validation result

Found Not Found Pass Fail
libgnutls 827 460 (55.6%) 367 (44.4%) 272 (32.9%) 188 (22.7%)
libasound 243 153 (63.0%) 90 (37.0%) 91 (37.4%) 62 (25.5%)
libxml2 225 139 (61.8%) 86 (38.2%) 60 (26.7%) 79 (35.1%)
libfuse 110 59 (53.6%) 51 (46.4%) 15 (13.6%) 44 (40.0%)
libcurl 48 40 (83.3%) 8 (16.7%) 30 (62.5%) 10 (20.8%)
libnss 15 9 (60.0%) 6 (40.0%) 2 (13.3%) 7 (46.7%)
libpcre 12 9 (75.0%) 3 (25.0%) 6 (50.0%) 3 (25.0%)
libbsd 8 8 (100%) 0 8 (100%) 0
Overall 1488 877 (58.9%) 611 (41.1%) 484 (32.5%) 393 (26.4%)

call. Functions that are not exported cannot be called from a program that uses
the library, so they are not interesting for our tests: while testing, we check in the
compiled library binary if a function is exported or not and perform symbolic
execution only on exported functions. As shown in Table 3, we found a solution
for 58.9% (877) of the 1488 total exported library functions analyzed.

As explained in Section 5, Untangle has a built-in validation mechanism,
which is necessary to understand which of the solutions found through symbolic
execution are correct. Validation results are also summarized in Table 3: out of
the 877 solutions found, 484 of those (55.2% of the found solutions, 32.5% of
the total tests) were proven to be valid using the Automatic Validation Method
described before. We can also notice the result of what we explained in Section 2:
instances, where pointers to primitive types need to be passed as function argu-
ments, can be concretized by angr to invalid memory addresses, which can make
automatic validation fail. Due to this reason, even if Untangle was able to find
a solution that did not pass validation, there is a chance that such an instance
is a false negative. Untangle will report the solution, but manual testing is
needed to understand additional and possibly more complex constraints that
were not automatically identified. Finally, looking at runs that did not result in
a found solution, we can break down the reason into four categories (shown in
Table 4): Unreachable, Timeout, Memory, Engine Error.

Unreachable refers to a completed symbolic execution, but the engine de-
termined that none of the identified call sites is reachable. Apart from angr’s
limitations we discussed in Section 2, this can happen because the constraints
leading to call sites are impossible to satisfy. Timeout refers to a run halted after
exceeding 15 minutes. Memory refers to a run halted after exceeding 16GiB of
used memory. Engine error refers to a run halted because of an internal error
of the symbolic execution engine. This happens for multiple reasons, the most
common of which are constraints that become too complex (e.g., causing the
solver to exceed Python’s maximum call stack size) or bugs in the engine code.
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Table 4: Break-down of unsuccessful symbolic execution runs

Library Tested
functions

Solution
not found

Reason
Unreachable Timeout Memory Engine error

libgnutls 827 367 (44.4%) 26 (3.1%) 24 (2.9%) 233 (28.2%) 84 (10.2%)
libasound 243 90 (37.0%) 27 (11.1%) 23 (9.5%) 11 (4.5%) 29 (11.9%)
libxml2 225 86 (38.2%) 10 (4.4%) 12 (5.3%) 41 (18.2%) 23 (10.2%)
libfuse 110 51 (46.4%) 7 (6.4%) 9 (8.2%) 1 (0.9%) 34 (30.9%)
libcurl 48 8 (16.7%) 0 3 (6.2%) 0 5 (10.4%)
libnss 15 6 (40.0%) 0 1 (6.7%) 5 (33.3%) 0
libpcre 12 3 (25.0%) 3 (25.0%) 0 0 0
libbsd 8 0 0 0 0 0
Total 1 488 611 (41.1%) 70 (4.7%) 72 (4.84%) 291 (19.6%) 175 (11.8%)

As we can see from Table 4, the first category is the least common. The most
common failure reason is running out of memory. 16GiB is a reasonable amount
of RAM; exceeding it indicates accumulating too many symbolic states along
the way, which ultimately results in slower running times.

6.2 Performance Evaluation

The execution time and the memory usage for symbolic execution, as well as the
overall time spent analyzing a given library, are important metrics to measure
Untangle’s performance. As previously mentioned, we limited each symbolic
execution run to 15 minutes and 16 GiB of RAM, and each run exceeding either
one of these limits was halted. However, we still collected statistics on halted runs
and included them in the computation of the results shown in Table 5. The tests
we performed took 1 minute and 36 seconds (on average) for each function that
was symbolically executed, and the average memory usage was 4373 MiB. Most
of the libraries we analyzed have a much lower average memory usage than the
overall average memory usage. Three of the libraries (libgnutls, libxml2, and
libnss) have a high average memory usage. This could be due to the complexity
of the functions that were symbolically executed: the length of the function, the
number of control decisions the function takes, and the number of other functions
called inside the analyzed function are all factors that can influence the memory
usage of the symbolic execution engine.

7 Impact and Defenses

Impact. In the previous section, we have shown that Untangle can effectively
find global function pointers in library code and can also provide reliable infor-
mation on how to reach a call to one of those pointers. Our work has shown
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Table 5: Resource usage statistics collected by Untangle.

Library Tested
functions

Runtime Average
memory usageTotal Average

libgnutls 827 20h 21m 1m 29s 5 252 MiB
libasound 243 7h 52m 1m 56s 856 MiB
libxml2 225 7h 29m 2m 00s 4 889 MiB
libfuse 110 2h 53m 1m 34s 591 MiB
libcurl 48 52m 50s 1m 06s 862 MiB
libnss 15 31m 15s 2m 05s 5 746 MiB
libpcre 12 36s 3s 290 MiB
libbsd 8 8s 1s 318 MiB
Overall 1 488 40h 1m 36s 4 373 MiB

how an attacker can identify global function pointers in library code, which are
attack vectors even with Intel CET enabled. To highlight the relevance of the
problem addressed in our work, we searched for all Ubuntu 22.04 LTS packages
using the libraries we tested. The results of this search are collected in Table 6.
The total number of unique packages depending on one or more of the libraries
we tested is 1820. The list of all packages installed by default on Ubuntu 22.04
LTS contains 157 of these packages. This means that 8.54% of the default pack-
ages on Ubuntu 22.04 LTS (which are 1854 by default) have one or more of the
libraries we tested as a dependency. A vulnerability allowing arbitrary writes in
one of these packages would allow global function pointer hijacking and enable
exploitation in CET-enabled scenarios.

A real-world example of such vulnerability is the heap overflow described in
CVE-2021-435273 and CVE-2021-435294, affecting Network Security Ser-
vices (NSS) versions prior to 3.73. This vulnerability affects email clients and
PDF viewers that use NSS for signature verification, such as Mozilla Thunder-
bird, LibreOffice, Evolution, and Evince. NSS is one of the libraries in which we
found global function pointer calls during our tests. For this reason, exploiting
the heap overflow vulnerability (in any of the programs mentioned above) to per-
form an arbitrary memory write would enable an attacker to achieve instruction
pointer control even in CET-enabled scenarios.

Defenses. As previously mentioned, the static code analysis process imple-
mented in Untangle can help library developers to find global function pointers
in their code that can be reached through exported functions. With this informa-
tion, they can employ appropriate measures to prevent global function pointers
from being used as attack vectors for control-flow hijacking exploits.

3 https://nvd.nist.gov/vuln/detail/CVE-2021-43527
4 https://nvd.nist.gov/vuln/detail/CVE-2021-43529

https://nvd.nist.gov/vuln/detail/CVE-2021-43527
https://nvd.nist.gov/vuln/detail/CVE-2021-43529
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Table 6: Number of Ubuntu packages depending on the libraries we used in our
tests. The number between parentheses is the number of unique packages (since
some of them can have more than one of these libraries as a dependency).

Library libgnutls libasound libxml2 libfuse libcurl libnss libpcre libbsd Total
# of packages 252 323 699 31 180 63 209 264 2021 (1820)

This paper demonstrated the relevance of securing function pointers to avoid
control-flow hijacking attacks in settings where CFI defenses are in place. Indirect
call protection mechanisms already exist in LLVM: Indirect Function Call Checks
(IFCC) checks the original function pointer’s signature against the signature of
the function that is actually called through the function pointer. Unfortunately,
this mitigation is still not adopted among the major Linux distributions as the
most used among them (Ubuntu, Debian, Arch, Fedora) use GCC as the de-
fault compiler in their build systems. Consequently, until this countermeasure
becomes widespread, the results of Untangle can still be used for exploita-
tion and underline the relevance of indirect call protection mechanisms. Some
defense proposals are currently being developed with this goal. FineIBT [4] is
a software defense proposal for the Linux kernel that builds over CET, adding
special instrumentation to the generated binary to enforce the verification of
hashes on function prologues whenever these are indirectly called. The hashes
are computed over function, and function pointer prototypes at compile-time
and checked at run-time whenever an indirect call happens.

8 Limitations and Future Work

The main limitations of Untangle come from the tool used for static analysis
of source code: CodeQL. As mentioned in Section 5, CodeQL performs its anal-
ysis at the source code level, and it does not provide any information about the
location of specific instructions or basic blocks in the resulting compiled bina-
ries. First, while it speeds up the search for global function pointer call sites in
library source code with respect to manual inspection, Untangle is not always
able to identify all of the possible call sites. Instances where a call happens indi-
rectly (and not through the global function pointer identifier) are not detected:
for example, global function pointers might be copied into local variables, which
are then used to perform the actual call later in the code, perhaps in a differ-
ent function. Detecting and correctly handling such cases would require tracking
variables’ assignments and copies throughout the entire code base. CodeQL of-
fers a mechanism to do this through taint analysis but would still be unable
to cover all instances. An example is when the address contained in a function
pointer is copied using inline assembly, which CodeQL cannot handle. Another
limitation of Untangle is the way instrumentation is performed. Depending on
how the library is written, it is not always possible to place a function call before
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the identified function pointer call without changing the original semantics of the
program. In fact, in specific situations where complex macros are involved, we
cannot apply our instrumentation method as-is: the only way to analyze such
cases is to manually expand every instance of the macro before instrumenting
it (which was the case with gnutls in our tests). The information provided by
CodeQL makes the location of global function pointer call sites only identifiable
at the source code level. Extracting call site locations in the compiled library bi-
naries would remove the need to perform instrumentation of the source code and
allow for it to be performed at a later compilation stage. Frameworks like the
LLVM Compiler Infrastructure [6] that provide introspection and instru-
mentation ability at the Intermediate Representation (IR) level or even at
the machine code level could be leveraged to directly instrument the generated
code. Additionally, being able to keep track of the offset within the .text sec-
tion of the generated call instruction for each interesting global function pointer
call site, one could provide those directly to angr as a target for symbolic ex-
ecution. Because of its design, Untangle needs the library’s source code to
analyze. An improvement possibility that could be explored is the extension of
our approach to binaries with no source code available. Frameworks such as Jo-
ern [38], which enable static analysis of binary executables, could be leveraged
along with heuristics to identify which call sites to consider as global function
pointer calls. Searching for all the indirect calls in a binary and evaluating if
they can be hijacked could be an extension of what Untangle already does and
could be interesting to investigate. However, this task is challenging as it would
be computationally expensive to perform through symbolic execution.

9 Conclusions

This work provides an automated methodology for finding global function point-
ers whose calls are reachable through exported C library functions, along with
all the constraints that need to be satisfied to reach them. The approach we
present employs static analysis of the source code of a target library to iden-
tify global function pointer calls and interesting exported functions, combined
with symbolic execution to find constraints on function parameters and global
variables that need to be satisfied to reach such calls. We present Untangle, a
tool that implements this approach to assist manual binary exploitation through
function pointer hijacking. Untangle relies on an ad-hoc symbolic execution
memory model that makes it possible to deal with complex objects, such as
pointers to structures, passed as function parameters. The results from the tests
run on Untangle show that global function pointers can be found in com-
monly used C libraries and that, under the right conditions, it is possible to
reach calls to them starting from exported library functions. Even with Intel
CET enabled, such variables offer a possibility to gain arbitrary code execution
if they are overwritten with the address of a carefully chosen legitimate target.
Therefore, Untangle provides a reasonable and practical exploitation aid for
function pointer hijacking.
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