7 research outputs found

    OnCreate and the virtual teammate: an analysis of online creative processes and remote collaboration

    Get PDF
    This paper explores research undertaken by a consortium of 10 universities from across Europe as part of an EU Erasmus Strategic Partnership project called OnCreate. Recent research and experiences prove the importance of the design and implementation of online courses that are learner-centred, include collaboration and integrate rich use of media in authentic environments. The OnCreate project explores the specific challenges of creative processes in such environments. The first research phase comprises a comparative qualitative analysis of collaboration practices in design-related study programmes at the ten participating universities. A key outcome of this research was in identifying the shortcomings of the hierarchical role models of established Learning Management Systems (such as Moodle or Blackboard) and the tendency towards evolving 'mash-up' environments to support creative online collaboration

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    An executable formal semantics of PHP with applications to program analysis

    Get PDF
    Nowadays, many important activities in our lives involve the web. However, the software and protocols on which web applications are based were not designed with the appropriate level of security in mind. Many web applications have reached a level of complexity for which testing, code reviews and human inspection are no longer sufficient quality-assurance guarantees. Tools that employ static analysis techniques are needed in order to explore all possible execution paths through an application and guarantee the absence of undesirable behaviours. To make sure that an analysis captures the properties of interest, and to navigate the trade-offs between efficiency and precision, it is necessary to base the design and the development of static analysis tools on a firm understanding of the language to be analysed. When this underlying knowledge is missing or erroneous, tools can’t be trusted no matter what advanced techniques they use to perform their task. In this Thesis, we introduce KPHP, the first executable formal semantics of PHP, one of the most popular languages for server-side web programming. Then, we demonstrate its practical relevance by developing two verification tools, of increasing complexity, on top of it - a simple verifier based on symbolic execution and LTL model checking and a general purpose, fully configurable and extensible static analyser based on Abstract Interpretation. Our LTL-based tool leverages the existing symbolic execution and model checking support offered by K, our semantics framework of choice, and constitutes a first proof-of-concept of the usefulness of our semantics. Our abstract interpreter, on the other hand, represents a more significant and novel contribution to the field of static analysis of dynamic scripting languages (PHP in particular). Although our tool is still a prototype and therefore not well suited for handling large real-world codebases, we demonstrate how our semantics-based, principled approach to the development of verification tools has lead to the design of static analyses that outperform existing tools and approaches, both in terms of supported language features, precision, and breadth of possible applications.Open Acces

    Formal Specification and Verification for Automated Production Systems

    Get PDF
    Complex industrial control software often drives safety- and mission-critical systems, like automated production plants or control units embedded into devices in automotive systems. Such controllers have in common that they are reactive systems, i.e., that they periodically read sensor stimuli and cyclically execute the same program to produce actuator signals. The correctness of software for automated production is rarely verified using formal techniques. Although, due to the Industrial Revolution 4.0 (IR4.0), the impact and importance of software have become an important role in industrial automation. What is used instead in industrial practice today is testing and simulation, where individual test cases are used to validate an automated production system. Three reasons why formal methods are not popular are: (a) It is difficult to adequately formulate the desired temporal properties. (b) There is a lack of specification languages for reactive systems that are both sufficiently expressive and comprehensible for practitioners. (c) Due to the lack of an environment model the obtained results are imprecise. Nonetheless, formal methods for automated production systems are well studied academically---mainly on the verification of safety properties via model checking. In this doctoral thesis we present the concept of (1) generalized test tables (GTTs), a new specification language for functional properties, and their extension (2) relational test tables (RTTs) for relational properties. The concept includes the syntactical notion, designed for the intuition of engineers, and the semantics, which are based on game theory. We use RTTs for a novel confidential property on reactive systems, the provably forgetting of information. Moreover, for regression verification, an important relational property, we are able to achieve performance improvements by (3) creating a decomposing rule which splits large proofs into small sub-task. We implemented the verification procedures and evaluated them against realistic case studies, e.g., the Pick-and-Place-Unit from the Technical University of Munich. The presented contribution follows the idea of lowering the obstacle of verifying the dependability of reactive systems in general, and automated production systems in particular for the engineer either by introducing a new specification language (GTTs), by exploiting existing programs for the specification (RTTs, regression verification), or by improving the verification performance

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore