4 research outputs found

    Machine learning based data pre-processing for the purpose of medical data mining and decision support

    Get PDF
    Building an accurate and reliable model for prediction for different application domains, is one of the most significant challenges in knowledge discovery and data mining. Sometimes, improved data quality is itself the goal of the analysis, usually to improve processes in a production database and the designing of decision support. As medicine moves forward there is a need for sophisticated decision support systems that make use of data mining to support more orthodox knowledge engineering and Health Informatics practice. However, the real-life medical data rarely complies with the requirements of various data mining tools. It is often inconsistent, noisy, containing redundant attributes, in an unsuitable format, containing missing values and imbalanced with regards to the outcome class label.Many real-life data sets are incomplete, with missing values. In medical data mining the problem with missing values has become a challenging issue. In many clinical trials, the medical report pro-forma allow some attributes to be left blank, because they are inappropriate for some class of illness or the person providing the information feels that it is not appropriate to record the values for some attributes. The research reported in this thesis has explored the use of machine learning techniques as missing value imputation methods. The thesis also proposed a new way of imputing missing value by supervised learning. A classifier was used to learn the data patterns from a complete data sub-set and the model was later used to predict the missing values for the full dataset. The proposed machine learning based missing value imputation was applied on the thesis data and the results are compared with traditional Mean/Mode imputation. Experimental results show that all the machine learning methods which we explored outperformed the statistical method (Mean/Mode).The class imbalance problem has been found to hinder the performance of learning systems. In fact, most of the medical datasets are found to be highly imbalance in their class label. The solution to this problem is to reduce the gap between the minority class samples and the majority class samples. Over-sampling can be applied to increase the number of minority class sample to balance the data. The alternative to over-sampling is under-sampling where the size of majority class sample is reduced. The thesis proposed one cluster based under-sampling technique to reduce the gap between the majority and minority samples. Different under-sampling and over-sampling techniques were explored as ways to balance the data. The experimental results show that for the thesis data the new proposed modified cluster based under-sampling technique performed better than other class balancing techniques.In further research it is found that the class imbalance problem not only affects the classification performance but also has an adverse effect on feature selection. The thesis proposed a new framework for feature selection for class imbalanced datasets. The research found that, using the proposed framework the classifier needs less attributes to show high accuracy, and more attributes are needed if the data is highly imbalanced.The research described in the thesis contains the flowing four novel main contributions.a) Improved data mining methodology for mining medical datab) Machine learning based missing value imputation methodc) Cluster Based semi-supervised class balancing methodd) Feature selection framework for class imbalance datasetsThe performance analysis and comparative study show that the use of proposed method of missing value imputation, class balancing and feature selection framework can provide an effective approach to data preparation for building medical decision support

    Autoencoder for clinical data analysis and classification : data imputation, dimensional reduction, and pattern recognition

    Get PDF
    Over the last decade, research has focused on machine learning and data mining to develop frameworks that can improve data analysis and output performance; to build accurate decision support systems that benefit from real-life datasets. This leads to the field of clinical data analysis, which has attracted a significant amount of interest in the computing, information systems, and medical fields. To create and develop models by machine learning algorithms, there is a need for a particular type of data for the existing algorithms to build an efficient model. Clinical datasets pose several issues that can affect the classification of the dataset: missing values, high dimensionality, and class imbalance. In order to build a framework for mining the data, it is necessary first to preprocess data, by eliminating patients’ records that have too many missing values, imputing missing values, addressing high dimensionality, and classifying the data for decision support.This thesis investigates a real clinical dataset to solve their challenges. Autoencoder is employed as a tool that can compress data mining methodology, by extracting features and classifying data in one model. The first step in data mining methodology is to impute missing values, so several imputation methods are analysed and employed. Then high dimensionality is demonstrated and used to discard irrelevant and redundant features, in order to improve prediction accuracy and reduce computational complexity. Class imbalance is manipulated to investigate the effect on feature selection algorithms and classification algorithms.The first stage of analysis is to investigate the role of the missing values. Results found that techniques based on class separation will outperform other techniques in predictive ability. The next stage is to investigate the high dimensionality and a class imbalance. However it was found a small set of features that can improve the classification performance, the balancing class does not affect the performance as much as imbalance class

    Medical Data Analysis Method For Epilepsy

    Get PDF
    Applying data mining techniques on medical databases which contain un-structured and semi-structured data is a challenging task. It is not only due to the complexity of such databases but also due to the characteristics of the medical domain. This thesis describes how multiple layers of data mining techniques have been applied to a Human Brain Image Database system. It starts with data preparation which paves the way for conventional data analysis techniques to be applied to the data. A similarity based patient retrieval tool has been designed and developed to assist in treatment planning and outcome estimation for epileptic patients. Finally connected scatter-plot visualization tool has been designed and implemented in order to assist the medical experts to see the relationship between attributes and visually compare a new patient\u27s similarity scores against patients that have been previously operated on in the hospital
    corecore