

A U T O E N C O D E R F O R C L I N I C A L D A T A A N A L Y S I S A N D

C L A S S I F I C A T I O N : D A T A I M P U T A T I O N , D I M E N S I O N A L

R E D U C T I O N , A N D P A T T E R N R E C O G N I T I O N

Being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

Department of Computer Science

By

Mohammad Al Khaldy BSc, MSc.

July 2017

i

ABSTRACT

Over the last decade, research has focused on machine learning and data mining to

develop frameworks that can improve data analysis and output performance; to build

accurate decision support systems that benefit from real-life datasets. This leads to the

field of clinical data analysis, which has attracted a significant amount of interest in the

computing, information systems, and medical fields. To create and develop models by

machine learning algorithms, there is a need for a particular type of data for the existing

algorithms to build an efficient model. Clinical datasets pose several issues that can affect

the classification of the dataset: missing values, high dimensionality, and class imbalance.

In order to build a framework for mining the data, it is necessary first to preprocess data,

by eliminating patients’ records that have too many missing values, imputing missing

values, addressing high dimensionality, and classifying the data for decision support.

This thesis investigates a real clinical dataset to solve their challenges. Autoencoder is

employed as a tool that can compress data mining methodology, by extracting features

and classifying data in one model. The first step in data mining methodology is to impute

missing values, so several imputation methods are analysed and employed. Then high

dimensionality is demonstrated and used to discard irrelevant and redundant features, in

order to improve prediction accuracy and reduce computational complexity. Class

imbalance is manipulated to investigate the effect on feature selection algorithms and

classification algorithms.

The first stage of analysis is to investigate the role of the missing values. Results found

that techniques based on class separation will outperform other techniques in predictive

ability. The next stage is to investigate the high dimensionality and a class imbalance.

However it was found a small set of features that can improve the classification

performance, the balancing class does not affect the performance as much as imbalance

class.

ii

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to my teachers, colleagues, and

friends. Without them, the results presented in this thesis could not have been

accomplished.

First and foremost I would like to express my deepest gratitude to those who supported

me during the course of the PhD. I am especially thankful to Dr Chandra Kambhampati

for his tireless support as my supervisor, his guidance and constructive criticism during

the course of this research. Chandra has supported me academically through the rough

road to finishing this thesis and without his persistent help this thesis would not have been

possible.

I am also very grateful to Professor Ping Jiang who passed away during my study, I would

like to acknowledge his support, enthusiastic encouragement and insightful advice, which

helped me greatly.

I would like to thank Professor Yiannis Papadopoulos and Dr Yongqiang Cheng, my

panel members, for their constructive criticisms and insightful advice, which contributed

to the improvement of the overall project.

I would also like to thank all the staff members in the Department of Computer Science.

I would like to acknowledge and extend my heartfelt gratitude to my fellow colleagues,

who made the PhD experience more bearable through their support and friendship in good

and bad times. I say thank you- Dr Sohag Kabir, Dr Lisa Moore, Dr Youcef Gheraiba, Dr

Lamis Al-Qoran, Tareq Aljaber, John Stamford, Robert Munnoch, Brian Peach, Seyed

Sadegh Zadeh, Dongfei Xue, Sahar Archi, Syed Kazmi, Steven Balding, Lucie Leveque,

Walid Tuari and Luis Torrao.

Finally, I would like to give my deepest thanks to my dear father Ali, and my beloved

mother Tamam. This thesis is dedicated to my lovely wife Garam and my sons

(Almothana, Taym, and Abdulrahman), for all their love and support, I would like to

thank them for their patience and support throughout this journey, both emotionally and

mentally. Also I would like to give my deepest thanks to my brothers, my sisters, and

other relatives for their continued support and encouragement throughout my study and

for teaching me many useful lessons for life.

iii

DECLARATION

Parts of the work reported in this thesis were published in the following research papers:

1- Al khaldy, M., and Kambhampati, C. 2016. Performance Analysis of Various

Missing Value Imputation Methods on Heart Failure Dataset. SAI Intelligent

Systems Conference. London, UK: Springer.

2- Al Khaldy, M., Kambhampati, C., Cleland, J., Clark, A. 2017. Selecting Relevant

Features in a Heart Failure Dataset to Improve Outcome Prediction.

*Submitted to International Journal of Automation and Computing.

3- Al Khaldy, M. and Kambhampati, C. 2017. Resampling Imbalanced Class and the

Effectiveness of Feature Selection Methods for Heart Failure Dataset.

*Accepted by: The International Arab Conference on Information Technology

(ACIT’2017), Tunisia, 2017.

iv

LIST OF ABBREVIATIONS

ANN: Autoencoder Neural Network.

BP: Backpropagation.

CDSS: Clinical Decision Support System.

Cfs: Correlation-based Feature Selection.

CMCI: Concept Most Common Imputation.

CPOE: Computer-based physician order entry.

CRISP-DM: CRoss Industry Standard Process for Data Mining.

DML: Deep Machine Learning

DSS: Decision Support Systems.

EuroRec: European Institute for Electronic Health Records.

EMI: Expectation Maximization.

EMR: Electronic Medical Records.

FN: false negative.

FP: false positive.

ICA: Independent Component Analysis.

KDD: Knowledge Discovery in Database.

KNNI: K Nearest Neighbour Imputation.

KPCA: Kernel Principal Component Analysis.

LDA: Linear Discriminant Analysis.

LR: Likelihood ratios.

MAR: Missing at Random

MCAR: Missing Completely at Random.

MCI: Most Common Imputation.

MI: Multiple Imputation.

v

ML: Machine Learning.

MNAR: Missing Not at Random.

MSE: Mean Squared Error.

NPV: Negative Predictive Value.

PCA: Principal Component Analysis.

PPV: Positive Predictive Value.

PRAISE1: Prospective Randomized Amlodipine Survival Evaluation.

RBM: Restricted Boltzmann Machine.

REPTree: Reduced Error Pruning Tree.

RF: Random Forest.

ROC: Receiver Operating Characteristic.

SBS: sequential backward selection.

SFS: sequential forward selection.

SHFM: Seattle Heart failure model.

SVD: Single Value Decomposition.

SVM: Support Vector Machine.

TN: true negative.

TP: true positive.

vi

NOTATIONS

𝑥𝑖,𝑗 Each data object, each data element.

𝜇𝑖𝑗 Mean of each variable.

𝜎𝑖𝑗 Standard deviation of each variable.

𝜎𝑖𝑗
2 Variance of each variable.

𝑛 Number of dataset attributes.

𝑁 Number of samples.

𝑃(.) Probability.

𝐹 Features (input features)

𝑓𝑖 Feature 𝑖; 𝑖 = 1,2, … 𝑛

𝑌 Output space/response variable/target

𝑆 Subsets

𝑆𝑖 Subset 𝑖

𝑔 Maps from 𝐹 to 𝑌

𝑇 Training

𝑃 Probability

𝑟 Vector

𝑣 Values

𝐶 Class label

𝑟𝑧𝑖 Average of correlation (variable to concept)

𝑟𝑖𝑖 Average of correlation (variable to variable

𝜒2 Chi-squared

𝑂 Observed instances

𝐸 Expected instance

𝑅(𝑖) Pearson’s correlation

𝐻 Nearest Hit

𝑀 Nearest Miss

𝑅 Random sample

𝑊 Weight of attribute

𝐻(𝑇) Entropy of training set

𝐼𝐺(𝐹) Information gain for feature F

𝑑(𝑥, 𝑦) Distance between (𝑥, 𝑦)

𝑤 Weight.

𝑏 Bias

vii

TABLE OF CONTENTS

ABSTRACT .. i

ACKNOWLEDMENT ... ii

DECLARATION ... iii

LIST OF ABBREVIATIONS ... iv

NOTATIONS .. vi

LIST OF FIGURES ... x

LIST OF TABLES .. xii

Contents
 Introduction .. 1

1.1 Background ... 1

1.2 Motivation and Scope ... 3

1.2.1 Research dataset .. 5

1.2.2 Clinical data challenges ... 6

1.3 Research Questions .. 8

1.4 Aim and Objectives ... 9

1.5 Thesis Structure .. 10

 Literature Review on Clinical Data Mining .. 12

2.1 Introduction .. 12

2.2 Knowledge Discovery and Data Mining .. 13

2.2.1 Data mining methodologies. ... 15

2.2.2 Medical data mining ... 18

2.2.3 Data mining techniques .. 22

2.3 Missing Values and Imputation Techniques ... 23

2.3.1 Single imputation: ... 24

2.3.2 Multiple imputations MI: .. 26

2.3.3 Machine learning (ML) .. 27

2.4 High Dimensionality .. 27

2.4.1 Feature selection... 28

2.4.2 Feature extraction ... 30

2.5 Pattern Recognition .. 31

2.5.1 Patterns Measures .. 32

2.6 Classification ... 33

2.6.1 Classification methods .. 35

2.7 Machine Learning Process .. 42

2.7.1 Machine learning models .. 43

viii

2.7.2 Training methods .. 44

2.8 Neural Networks ... 46

2.8.1 Autoencoder Neural Network ... 48

2.8.2 Feedforward backpropagation learning process .. 49

2.8.3 Conjugate Gradient Backpropagation ... 50

2.8.4 Stacked autoencoder .. 50

2.8.5 Restricted Boltzmann Machine (RBM) .. 51

2.8.6 Stacked RBM ... 52

2.9 Summary ... 52

 Effect of Imputation on Classification .. 54

3.1 Introduction .. 54

3.2 Missing values imputation .. 55

3.2.1 Most Common Imputation (MCI) .. 56

3.2.2 Concept Most Common Imputation (CMCI) ... 57

3.2.3 Expectation maximisation imputation (EM) ... 57

3.2.4 K-Nearest Neighbour Imputation (KNNI) .. 58

3.2.5 K-mean imputation ... 59

3.2.6 Support Vector Machine (SVM) imputation ... 60

3.3 Experiments and Results ... 60

3.3.1 Chronic Heart Failure Dataset ... 60

3.3.2 Evaluation of Classification Performance ... 61

3.3.3 Analysis of Results.. 64

3.3.4 Numeric complexity imputation algorithms ... 65

3.4 Conclusion ... 69

 Dimensionality Reduction - feature selection ... 70

4.1 Introduction .. 70

4.2 Feature Selection Problem .. 71

4.3 Materials and Methods ... 73

4.3.1 Data pre-processing .. 73

4.3.2 Feature Selection Methods ... 73

4.3.3 Numeric complexity of feature selection algorithms ... 81

4.4 Analysis Results ... 82

4.4.1 The common features selected .. 89

4.5 Conclusion ... 91

 Effect of Class Imbalance on Feature Selection and Classification 93

5.1 Introduction .. 93

5.2 Class Imbalance ... 93

ix

5.3 Evaluation Measures ... 96

5.4 Class Balancing Techniques ... 97

5.5 Analysis Results ... 98

5.5.1 Feature selection with balanced data ... 102

5.6 Training Datasets on Balance Data ... 103

5.7 Conclusion ... 108

 Autoencoder Framework for Dimensionality Reduction and Classification .. 110

6.1 Introduction .. 110

6.2 Artificial Neural Network (ANN).. 111

6.2.1 Activation Functions.. 112

6.2.2 The Perceptron Function Space .. 112

6.3 Multilayer Neural Network (MLP) ... 113

6.3.1 Feed-forward architecture .. 113

6.3.2 Learning process ... 114

6.4 Deep Neural Networks .. 115

6.4.1 Autoencoder Architecture .. 116

6.4.2 Autoencoder Parameters .. 119

6.4.3 Autoencoder Algorithm .. 122

6.5 Analysis Results ... 124

6.5.1 One Hidden Layer .. 124

6.5.2 Two Hidden Layers .. 127

6.5.3 Three Hidden Layers ... 130

6.5.4 Autoencoder with class balance ... 131

6.6 Conclusion ... 133

 Conclusion and Future Research .. 135

7.1 Introduction .. 135

7.2 Contributions of the research ... 136

7.3 Scope for future research ... 139

BIBLIOGRAPHY .. 141

Appendix I: Variables of the Hull LifeLab Dataset. .. 165

Appendix II: Statistics on the Research dataset for heart failure from HYMS. 167

Appendix III: Performance Results of Applying Several Hidden Layers for Autoencoder. 169

x

LIST OF FIGURES

Figure 2-1 KDD, key steps in an iterative and interactive process ... 14

Figure 2-2 CRISP-DM Methodology ... 16

Figure 2-3 SEMMA Methodology (Original from SAS Institute) .. 18

Figure 2-4 Types of Data Mining Techniques .. 22

Figure 2-5 Example to Building a Decision Tree ... 36

Figure 2-6 Example of Random Forest ... 37

Figure 2-7 KNN algorithm example ... 39

Figure 2-8 SVM algorithm example ... 41

Figure 2-9 Single neuron architecture ... 46

Figure 2-10 Model of a Single Neuron, see (Haykin [2009]) ... 47

Figure 2-11 The Architecture of Autoencoder with One Hidden Layer 48

Figure 2-12 Deep Learning, One hidden layer... 50

Figure 2-13 Deep Learning, Three hidden layer .. 51

Figure 3-1 Process of Imputation of Missing Values in a Dataset .. 56

Figure 3-2 Support Vector Machine. .. 60

Figure 3-3 ROC curve example. ... 63

Figure 3-4 The line Charts that Shows the Outcomes of Imputation Methods Using RF method

for Classification, (a) Accuracy, (b) Sensitivity, and (c) Specificity .. 67

Figure 3-5 The Complexity Time of Different Classification Algorithms Used to Classify the

Dataset Imputed By Different Imputation Methods.. 68

Figure 4-1 Pearson's Correlation between Features with High Positive Correlation in the Thesis

Dataset. ... 77

Figure 4-2 Relief algorithm .. 77

Figure 4-3 The Wrapper Method for Feature Selection .. 79

Figure 4-4 Hill-Climbing Search Algorithm. .. 79

Figure 4-5 Algorithm Iterative Dimensionality Reduction for SVM .. 80

Figure 4-6 Feature selection process (Dash & Liu, 1997) .. 81

Figure 4-7 The Accuracy Obtained by Ranking Feature Selection Methods for Different

Numbers of Features Used .. 84

Figure 4-8. Performance measures using three different classification methods; (a) Specificity

(b) Sensitivity... 88

Figure 4-9 Box plot whiskers for different feature ranking methods in feature selection 89

Figure 5-1 Oversampling increases the minority class by copying instances. Under-sampling

removes instances from the majority class ... 96

Figure 5-2 The trade-off between Sensitivity and Specificity .. 97

Figure 6-1 Neuron architecture ... 111

Figure 6-2 Activation function types .. 113

Figure 6-3 Feedforward neural network ... 114

Figure 6-4 Autoencoder Architecture ... 117

Figure 6-5 Pseudo Code to Programming Autoencoder Model .. 123

Figure 6-6 ROC curve for Autoencoder with 30 neurons in One Hidden Layer 127

Figure 6-7 ROC curve for the two Hidden Layers , (a) Hidden Layers [30,40] ,(b) Hidden

Layers [35,30] ... 130

file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497839990
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497839995
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497839998
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840001
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840002
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840003
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840006
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840006
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840007
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840007
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840008
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840008
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840010
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840013
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840015
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840015
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840016
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840017
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840017
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840020
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840025
file://///net/dfs/home/478313/Desktop/Thesis%20Alkhaldy/VIVA/6%2011%202017/AL%20KHALDY%20Thesis%2006-11-2017%20(Computer%20Science).docx%23_Toc497840025

xi

LIST OF TABLES

Table 1-1: The Hull-Life-Lab Dataset Distribution of the Classes ... 8

Table 2-2 Classification methods pros and cons ... 41

Table 3-1: Confusion Matrix .. 62

Table 3-2: Performance Measures for Several Imputation Methods Implemented on Heart

Failure Dataset, Using Different Classification Methods ... 66

Table 4-1: The truth table of 𝒀 = 𝒇𝟏 ⊕ 𝒇𝟐 where 𝒇𝟒 = (𝒇𝟐) and 𝒇𝟓 = (𝒇𝟑) 72

Table 4-2: Categorization of Feature Selection Methods ... 73

Table 4-3: The number of features that gain the best performance in the feature selection

methods ... 82

Table 4-4: Classification Performance for Selected Number of Features from Different Feature

Selection Methods using RF Algorithm.. 86

Table 4-5: The Order List of the First 22 Features from All Features Selection Methods 87

Table 4-6: The Most Common Features and the Number of Methods 90

Table 4-7: Performance result of different classification methods for 14 features with common

variables that appear in four methods and more ... 91

Table 4-8: Performance result of different classification methods for 25 features with common

variables that appear in three methods and more .. 91

Table 5-1: Target Classes Distribution on Hull-LifeLab .. 94

Table 5-2: Accuracy, Specificity, Sensitivity, and PPV Results in Implementing Random Forest

Classification for Several Feature Selection Methods on Different Numbers of Subsets

compared with class imbalance, and balanced classes using resampling and spread subsampling

for the subsets from chapter 3 ... 100

Table 5-3: Accuracy, SPEC, SEN, and PPV Results in Implementing J48 Learning Algorithm

for Several Feature Selection Methods on Different Numbers of Subsets, compared with

imbalanced classes and balanced classes using resampling and spread subsampling methods for

the subsets from Chapter 3 .. 101

Table 5-4: Classification of balanced classes using Random Forest after resampling data 104

Table 5-5: Classification of balanced classes using J48 after resampling data 105

Table 5-6: The Order List of Selecting 22 Features from Balanced Data Using Several Feature

Selection Methods ... 106

Table 5-7: Classification Outputs using RF method for training datasets on the balanced data 107

Table 6-1: Encoder Parameters ... 117

Table 6-2: Decoder Parameters ... 118

Table 6-3: Autoencoder Parameters to Build the Network ... 121

Table 6-4: Performance Results of the Autoencoder in one Hidden Layer 125

Table 6-5: Likelihood Rates and Their Interpretations ... 126

Table 6-6: Likelihood Results for the Autoencoder with One Hidden Layer 127

Table 6-7: Performance Outcomes using Autoencoder with Two Hidden Layers 129

Table 6-8: Likelihood Results for Autoencoder with two Hidden Layers 130

Table 6-9: Performance Results for Autoencoder with Three Hidden Layer 131

Table 6-10: Performance Results for Autoencoder with Balanced data 132

Table 6-11: Performance results for Autoencoder training on balance data network 133

1

 Introduction

1.1 Background

A huge volume of data has been collected over many years from patients in hospitals and

clinics (Li et al, 2005). The availability of such large datasets should allow for the

development of decision support systems, which will improve efficiency in healthcare.

These systems are often developed by extracting knowledge through the manipulation of

data and its analysis. Decision support systems can be used not only to increase the

efficiency in providing health care but also to improve and design personalised care

through the development of predictive models (Moore, 2015). Such systems have to

produce both consistent and accurate results, and this is done through the use of a

systematic methodology which aims to reduce inconsistencies while increasing both the

efficiency of computation and the accuracy of prediction. This has a number of stages

including cleaning of data where data corruptions are identified and removed, and the

identification of the relationships in order to identify the predictive model.

Data mining is an analysis process that analyses large quantities of data to identify

patterns by finding correlations between variables (Batra et al, 2013; Hand et al, 2001;

Potamias & Moustakis, 2001). This is done through the use of a variety of analytical tools,

such as statistical and machine learning tools. Although statistical tools are simple and

have less computational complexity, these tools are unable to manipulate all kinds of data

without some prior knowledge about the data distributions and its characteristics. In

contrast, machine learning tools are not simple to use but require no a priori knowledge

of the data (its distributions or its characteristics) and act like black boxes. Machine

learning tools are used in data mining to obtain information from a large dataset by

learning the system. Machine learning algorithms can be supervised or unsupervised

learning. In supervised learning, the training sets with the input and outputs are presented,

then the goal is to map inputs to outputs by applying some rules. In unsupervised learning,

2

the labels (or outputs) are not known to the algorithm, and learning is done by the

exploration of the data, and groups of patterns are extracted from it.

There are many frameworks for mining data that are available e.g CRISP-DM (Chapman

et al, 2000), SEMMA (Cerrito, 2006) etc. These have been modified for clinical

applications, resulting in both new frameworks and workflows (Potamias & Moustakis,

2001). These frameworks need to be comprehensive and able to deal with real datasets,

which often contain missing values (both random and systematic), badly distributed and

unbalanced. Thus the frameworks and workflows have to deal with datasets which pose

challenges in obtaining outcomes. As a result, most frameworks consist of four or more

interlocking stages (see Chapter 2) and these often consist of (a) pre-processing stage (b)

reduction of dimensions, (c) extraction of knowledge and (d) development. In the first

stage where data is pre-processed the dataset is analysed for defects and missing values.

This stage plays a crucial role in improving a framework’s performance and achieving

accurate prediction. Then a model is developed to find the relationships and to select

important attributes which reduce the dimensions. From the relations between data,

knowledge will be extracted. The last step is to develop the model after evaluation, i.e.

the testing of the designed model. These steps support the framework model to classify

or cluster data in an effective manner.

Clinical data often poses a number of challenges such as missing values, high

dimensionality, and class imbalance. Whatever the framework that is used, the data

mining strategies must overcome these challenges seamlessly and predict class labels

more accurately. With a framework, there are many techniques which can be used at each

stage, in order to address these challenges. The key aspect here is that as the stages are

interlocked, methods are used in different stages. Missing values can be addressed by

removing data points, imputing missing values through the use of means, or employing

machine learning models. Removing data points that have missing values leads to loss of

3

information within the data. The use of means to impute missing values is often not

reliable (see chapter 3), as it introduces a bias in the data. Dimensionality reduction is

performed to handle high dimensionality, by reducing the number of features in order to

reduce computational complexity and make the dataset more understandable. Care should

be taken, that in the process of reducing the dimensions, structural relationships within

the data are not destroyed; that means no important features or data points will be deleted.

Feature extraction and feature selection are two methods of dimensionality reduction.

Feature extraction extracts significant features by finding derived values that are

informative and not redundant, while feature selection, using a relevance metric,

eliminates redundant and irrelevant features and keeps relevant features.

Classification and clustering can be used to evaluate the framework and to predict the

class label. Classification uses supervised learning to classify data, whereas clustering is

essentially an unsupervised process. There are many classification and clustering

techniques used to build a model, such as neural networks and various variations of

networked learning systems. More recently, there has been an interest in Deep Machine

Learning (DML) methodologies. These provide a mechanism to extract more information

from the data. Often these do not need a reduction in dimensions before learning, as they

extract the relevant dimensions whilst producing the correct relationships. Thus, it is

feasible that such learning paradigms will reduce the number of steps within a

methodology. An example of this is autoencoder (see chapter 6).

1.2 Motivation and Scope

The wealth of electronic data available has made it difficult to collect, analyse and mining

data from Electronic Health Records (EHRs). This makes it challenging for clinicians to

capture a patient’s entire clinical history. Analysis of large datasets is required to build an

effective diagnosis strategy (Tripoliti et al, 2017). There are various possible solutions to

4

increase healthcare quality by the development of electronic medical records (EMR),

computer-based physician order entry (CPOE), and clinical decision support system

(CDSS) (Rajiv Wadhwa et al, 2008). Various frameworks exist to analyse and design

models for disease management and diagnosis (Cleland, 1999).

Chronic heart failure is the most important issue in the medical field; it is the leading

cause of death all over the world in the past decade (Shouman et al, 2012). The prevalence

of death caused by heart disease is reported by the American Heart Association. The

report mentions that in 190 countries, 17.3 million patients per year die of heart disease,

by 2030 the number will increase to 23.6 million (Sharma et al, 2016).

The data mining methods are discovering relationships using mining tools to obtain a new

knowledge from the quantity of data. Data mining assists clinicians in both decision

support systems and in creating a framework for medical diagnosis, for example in

detecting a particular disease through a small number of features. Thus healthcare can be

fitted to the specific needs of patients with the following set of aims:

 To develop predictive models that will help in the planning of care.

 Improve treatments by discovering new knowledge and useful information.

The effective use of data mining methods for rapid clinical decision making requires the

availability of high-quality clinical data (Lu & Su, 2010). In this thesis, the data is

obtained from a cardiology clinic at the Hull Royal Infirmary Hospital (see next section

1.2.1). This data has a number of issues which create a problem for developing prediction

algorithms and applicable classification. Therefore the motivation for the thesis is to

develop a methodology for mining clinical data using an autoencoder model; also to

investigate the clinical data challenges to improve the performance of classification

algorithms.

5

1.2.1 Research dataset

Hull LifeLab is a large information-rich clinical dataset consisting of patients with

possible heart failure referred to a cardiology outpatient clinic. The dataset is from a clinic

which served a community of about 550,000 people in Kingston-Upon-Hull and East

Riding of Yorkshire between 2000 and 2012. All referred patients were invited to

participate in the study and 98% gave informed consent for their information to be

retained and used for research purposes (Moore, 2015). Consenting patients received a

comprehensive clinical assessment and those found to have heart failure were followed

up with further outpatient assessments at regular intervals (typically every 4-6 months).

The dataset is composed of 463 continuous and categorical variables and 2,032 patient

records including quality of life. This thesis considers 61 important variables associated

with blood chemistry. The reason for considering blood chemistry is that the other

variables are either well understood or are essentially categorical, whose values are

subjective and dependent on the interpretation of the patients’ record by either the nurse

or a clinician (Cleland et al, 2016). These additional variables are also prone to having

missing data greater than 20%.

The reasons that there are missing values in the dataset are missing data and outliers

during data recording or entry due to incorrect measures and mixed variable types

(Weitschek et al, 2013). In addition, in cases where clinical data are collected as part of a

clinical trial, the medical report pro forma allows certain variables to be left blank. This

is usually due to the ailment being treated or perhaps the patient may not wish to disclose

certain information, such as whether he or she is a smoker (Zhang et al, 2012).

 Of the dataset, 1944 patient records were analysed, as the remainder had variables where

more than 20% of values were missing (Acuna & Rodriguez, 2004). These 1944 patient

records were collected at four different time points: 3, 6, 12 and 18 months. After 18

months, 1459 patients had no record of death and had attended an outpatient clinic and

6

were therefore classed as alive. The remainder were classed as dead (485) as there was a

record of death present for each one of those patients. The classes will be referred to as

the alive and dead classes in the following chapters.

The Hull LifeLab is a confidential dataset, which is being constantly updated. More

details about the variables and their characteristics can be found in appendices I and II.

1.2.2 Clinical data challenges

As discussed earlier, real datasets have some challenges that need to be addressed before

analysis. The challenges are missing values, high dimensionality, and class imbalance.

- Missing values

 Missing values come from the different systematic ways that the clinical data are

collected, and the transfer of data between systems; they constitute an important issue

in medical data mining (Rahman & Davis, 2013). Missing values are categorised into

three types: (a) missing completely at random (MCAR) (b) missing at random (MAR),

and (c) missing not at random (MNAR); more details are given in Chapter 2.

Several strategies can be used to impute missing values: (a) removing the record, (b)

mean/median, (c) imputation. Removing records that have missing values causes loss

of the structure of the dataset and reduces the number of records, which may in

consequence be insufficient to analyse data accurately. Finding the mean and median is

a simple method, but takes no account of the consistency and the structure of the data.

Imputation methods are based on data mining techniques, for example Most Common

Imputation (MCI), and Concept Most Common Imputation (CMCI), K-nearest

neighbour imputation (KNNI) (Batista & Monard, 2002), SVMI (Mallinson &

Gammerman, 2003), Expectation Maximization imputation (EMI) (Barzi & Woodward,

2004), and K-mean imputation (Li et al, 2004).

- High dimensionality

7

Another challenge of clinical data is its high dimensionality. Clinical datasets often

present too many features. Some features are redundant and irrelevant, whereas others

are relevant. Dimensionality reduction will reduce computation complexity, and affect

the achievement of data mining tools. High dimensionality must be addressed in the pre-

processing phase of knowledge discovery so that features of low relevance are not sent

to the learning process. Dimensions can be reduced by selecting features or by

extracting features. Feature selection is a mechanism that eliminates irrelevant and

redundant features. Feature extraction is a mechanism that reduces the number of

features by identifying informative features, for example, principal component analysis

(PCA) (Li et al, 2006), and independent component analysis (ICA) (Hoyer & Hyvärinen,

2000). Feature selection is categorized into three types: (a) ranking methods, by sorting

the features adopted in the algorithm used, for example ReliefF (Guyon & Elisseeff,

2003), or chi-square (Zheng et al, 2004), (b) the Wrapper method, by evaluation of the

feature during the learning algorithm (Cohen & Hirsh, 1994), and (c) the embedded

method, by employing a classification algorithm (Zhang et al, 2015).

- Class imbalance

Clinical datasets often suffer from class imbalance. In a binary class, the class imbalance

is that the number of data points of one class is greater than the other. The majority class

is the class with the larger number of samples, whereas the minority class is the class

with fewer samples, see Table 1-1 for the thesis dataset, which shows a class imbalance.

The learning algorithm maps inputs to desired output; if there is an imbalance between

samples for each class; then the minority class will get less chance to be trained. Thus

the result of performance will be affected (Menardi & Torelli, 2014). Resampling is a

simple strategy to deal with class imbalance, by increasing the minority sample or

decreasing the majority sample, known as over-sampling and under-sampling,

respectively (Cao et al, 2016).

8

Table 1-1: The Hull-Life-Lab Dataset Distribution of the Classes

- Classification

The last step of knowledge discovery is classification, the result of which controls the

decision support. Methods of classification of clinical data are affected by the above

challenges. The models designed to classify data suppose that the data is complete has

a low number of features and is balanced. The framework for mining real-life data

should anticipate data with difficulties, by pre-processing of this data to be acceptable

to the classification method used. Numerous classification methods can be used to

evaluate the performance of the learning process, for example, random forest (RF),

J48/C4.5, neural network and REPTree. A classification method can be evaluated and

the results compared by criteria measures using a confusion matrix.

1.3 Research Questions

There is a wide range of research issues which are addressed in this thesis. These can

be summarised at a high level as the following set of overarching questions:

1- How can pre-processing improve the outcomes of clinical data mining?

2- What combinations of techniques are useful for imputing missing value,

selecting features, and classification?

3- Can we employ an efficient method which reduces the number of data mining

steps?

The key objective of the thesis is to find out a suitable approach that can be used to

improve the prediction of clinical data classification; so that this can be used in

No. of features 61

No. of samples 1944

Target output Mortality

Class Alive Dead

Frequency 1459 485

9

decision support systems. The dataset used in this work is the Heart failure dataset

provided by Hull York Medical School (HYMS). This data contains a set of issues

such as missing values, high dimensionality, class imbalance and non-normal

distribution. Data mining tools face challenges while working with data having these

problems. This issue has not gone unnoticed, researchers have tried to solve these

issues in this kind of dataset. Even though many researchers have worked on heart

failure data, very few have reported about the dataset problems, and they did not solve

all the problems of this data. The quality of data is the main criterion for designing an

efficient decision support system. In this research, the clinical data issues are taken

into consideration and found. As well, the methods used have been justified to by

addressing all limitations of these methods and discussing how to improve these

methods to enhance the outcomes of the prediction models. We used autoencoder to

extract features that are most relevant to build a framework for classify data. This

model can be used to decrease the data mining steps without loss of accuracy. The

autoencoder method as a deep learning model has not previously been used for clinical

datasets.

1.4 Aim and Objectives

The problem to be solved in this thesis is a clinical dataset, where we can employ data

mining methodology. The aim is to investigate the issues in the clinical dataset and to

implement machine learning techniques to solve these problems. Specifically, the

main goal of this thesis is to define the data mining process and reduce the steps of

the data mining methodologies by employing an autoencoder model, along with

investigating the challenges of clinical data described in the previous section,

including missing values, high dimensionality, and class imbalance. Three major

steps are needed to solve the challenges of the clinical data, which form the key

objectives of the thesis:

10

1- Investigating the missing values problem, by studying this issue and imputing the

missing values using different imputation techniques.

2- Investigating feature selection methods to reduce high dimensionality by using

data mining tools. Thus involves

a. Finding the significant features from the heart failure dataset, which are

the relevant features.

b. Analysing the effect of class imbalance on classification performance and

the output feature selection methods.

3- Developing and evaluating an autoencoder model to compress the data mining

methodology by extracting features and classifying the heart failure dataset.

The main contribution of this thesis is improving the prediction performance for the heart

failure dataset classification. Thus, we increase the accuracy of classification of data that

has missing data 78% to more than 85% for the imputed dataset. Similarly, the accuracy

of prediction has been increased to more than 88% using a small number of features rather

than using all features of the dataset. Although the most techniques used are not novel

and have been used before; our study analysis has been explaining the reasons for

algorithms techniques that work better than others. As well as, interlinked between

methods used for imputations and the methods used for feature selection and class

imbalanced.

1.5 Thesis Structure

In Chapter 2 data mining methodologies are discussed. These methodologies set a well-

structured framework in order to answer the questions posed above. The first stage is pre-

processing, which can solve and impute missing values. Then, dimensionality is reduced

by eliminating redundant and irrelevant features using feature selection or feature

11

extracting. Next, classification methods used to evaluate the model. This methodology

has high computational complexity and would be compressed to reduce the complexity.

Having fixed the methodology and workflow, in Chapter 3, the various imputation

methods are discussed. Missing values pose a crucial issue for using data mining

algorithms and affect their performance, as imputation is the first step of data mining.

Missing values affect the feature selection and extraction, since features with missing

values may be not nominated because there is not enough information.

In later chapters, issues around selection of features (dimension reduction) (Chapter 4),

Class Imbalance (Chapter 5) are discussed in detail. The focus in these chapters is not

only on the overall performance but also issues around the complexity of the methods.

This then leads to Chapter 6 where, based on the results from the previous chapters, an

autoencoder is designed. The results are then compared with the other methodologies in

terms of performance as well as computational complexity.

12

 Literature Review on Clinical Data Mining

2.1 Introduction

Data mining plays a crucial role nowadays in analysing and testing real-life datasets

(Kausar et al, 2016; Sharma et al, 2016). Clinical data is an example of interesting real

data due to the importance of this data to improve decision support systems in the medical

field. However, to achieve the aim of implementing data mining algorithms, the data have

to be prepared and edited to overcome some shortcomings such as missing data, high

dimensionality, and class imbalance.

Several methodologies are used in data mining such as CRISP (Europe, 2017) and

SEMMA (SAS-Institute, 2017), which are stages used to develop a framework for mining

a large data volume. The methodologies start by understanding and pre-processing the

dataset before manipulating the data to obtain knowledge. Pre-processing data starts with

cleaning the dataset by deleting the data points that have too many missing values. Then

missing values are imputed by implementing a suitable technique. One of the most

appropriate techniques is imputation by calculating missing values through machine

learning tools. The imputed dataset will be ready to extract latent information from raw

data by dimensionality reduction. Features can be reduced by using a feature selection

technique that selects the most relevant features and eliminates other features, which will

reduce the complexity and identify the significant features. Classification is one of the

most important processes in data mining, which helps to build decision support systems

and prediction systems. Although these methodologies have many steps, we will follow

the CRISP methodology in the thesis, and then reduce these steps using a neural network

model.

An autoencoder is a neural network in which the outputs are almost equal to the inputs,

where there is more than one hidden layer between the input and output layers. It is a deep

architecture for transfer learning and other tasks. In addition, autoencoder can learn more

13

complicated relations between visible and hidden units. This model can be used to

compress the data mining stages, by extracting features and classifying data in one model.

This chapter discusses data mining methodologies, and the stages of obtaining the

knowledge that helps in decision making. Also it explores data mining tools that can be

implemented on clinical data to impute missing values and reduce dimensionality, and

the classification techniques used to classify the dataset. Then the chapter will

demonstrate neural network models, and how such a model can be employed on a clinical

dataset.

2.2 Knowledge Discovery and Data Mining

Knowledge Discovery in Database (KDD) is a process for obtaining knowledge from a

large dataset, by following an arranged sequence of steps (Poultney et al, 2006). The

derived knowledge must represent in some respect the interpreted data and their relations

(Ma et al, 2015). KDD describes the mechanism that can be applied to the result of data

mining (Lobur et al, 2011). Thus, data mining is used to generate effective information

acquisition by using different kinds of algorithms implemented on datasets (Hinton et al,

2006; Lobur et al, 2011). The knowledge discovery process includes data warehousing,

cleaning, pre-processing and transformation; whereas data mining includes model

selection, evaluation, and interpretation; for example, data mining classifies data and

identifies patterns. Knowledge discovery refers to the comprehensive process of

discovering useful knowledge, while data mining is the use of tools in particular steps in

this process to extract information (Lobur et al, 2008). To define knowledge from pattern

extraction, the KDD process steps involve understanding the domain and data, data

preparation and association (Lavrač, 1999).

An easy approach would be to collect the data and run clustering, classification, model

identification or evaluation algorithms (Poolsawad et al, 2014b). However, a dataset is

14

not easy to use before pre-processing steps, because data often come with problems like

a large number of variables, missing values, and class imbalance. Thus, extracting

information will not give satisfactory results. Clinical data is an example of the data that

have problems that affect the use of data mining tools and their output (Balakrishnan et

al, 2008). Thus, the challenges faced in mining the clinical data require a pre-processing

stage for data mining algorithms to addres the data issues.

The first step in knowledge discovery is the selection of relevant prior knowledge to

specify the application domain and goals of the application, as illustrated in figure 2-1.

Next, the target data are selected and filtered by data cleaning. After that is a step called

data reduction, which entails finding useful features using feature selection or extraction.

The next step is to choose the mining algorithms such as decision trees, Support Vector

Machine (SVM), Neural Network, etc. The mining algorithm is implemented to search

for interesting patterns. Finally, the result is analysed by transformation, visualisation, or

removing redundancy.

Tr
an

sf
o

rm
e

d
 D

at
a

Knowledge

Target Data

P
re

-p
ro

ce
ss

e
d

d
at

a

P
at

te
rn

s

Raw

Data

Figure 2-1 KDD, key steps in an iterative and interactive process

15

There are various approaches in data mining to generate information from the dataset,

including classification, clustering, and regression (Bellazzi & Zupan, 2008).

Classification is used when the output is presented with the input data, known as

supervised learning. Clustering is a learning process, where there is no output data

present, and the data are organised into similar groups; this is known as unsupervised

learning. Regression is a supervised learning, but the outputs are not discrete, but

continuous. Description and prediction are the two tasks of data mining (Bellazzi &

Zupan, 2008). Description aims to find human-interpretable patterns and associations,

after considering the data as a whole, whilst prediction seeks to predict some outcome of

interest. Currently, a major aim of data mining is to discover association among variables

that may be useful in future decision support (Mullins et al, 2006).

2.2.1 Data mining methodologies.

The knowledge discovery process involves interactive and iterative steps with many

decisions made by the user (Fayyad et al, 1996), as shown in figure 2-1. Data mining

methodologies can be categorized into the following:

2.2.1.1 CRISP-DM

CRoss Industry Standard Process for Data Mining (CRISP-DM) is widely used as a data

mining model. As we see in figure 2-2, the model consists of six phases: Business

Understanding, Data Understanding, Data Preparation, Modelling, Evaluation, and

Development (Chapman et al, 2000). CRISP is a process defining the model in data

mining to provide a framework for carrying out projects, independent of the industry

sector and the technology used (Wirth & Hipp, 2000). The model aims to make large data

mining projects less costly, more reliable, more repeatable, more manageable, and faster.

16

Figure 2-2 CRISP-DM Methodology

CRISP-DM consists of four levels: phases, generic tasks, specialised tasks, and process

instances (Catley et al, 2009). At the top level, there are a small number of phases, each

of which consists of several tasks in the second level. The second level is called generic

because it is intended to be general enough to cover all possible data mining situations.

To cover both the whole process of data mining and all possible applications, the generic

tasks are designed to be as complete and stable as possible. The model’s stability means

it may be valid for yet unforeseen developments, like new modelling techniques. The

specialized tasks in the third level describe the actions in the generic tasks to be carried

out in specific situations. For example, at the second level, there is a generic task called

build model. Build a response model in the third level is a task which contains specific

activities for the problem and the data mining tools (Catley et al, 2009).

 A specific sequence of discrete steps represents the description of phases and tasks. In

practice, many of the tasks can be performed in a different order; for example, it may be

necessary to backtrack to the previous task or repeat certain actions. Through the data

Data

Preparation

Testing and

Evaluation

Business

Understanding

Data

Understanding

Model

Building
Development

17

mining process, CRISP-DM will not possess all the possible routes because it would

require an overly complex model with low expected benefits. The fourth level, the process

instance, is where the actions, decisions, and results of an actual data mining engagement

are recorded. The process instances are organised according to the tasks defined at the

higher levels , but they represent what actually happened in a particular engagement,

rather than what happens in general (Rahman & Davis, 2013). CRISP is widely used to

solve clinical data mining problems.

2.2.1.2 SEMMA

Derived from the statistical analysis software institute (Matignon, 2007), SEMMA consists

of five steps, as shown in figure 2-3.

a) Sample: the process starts with data sampling, i.e. selecting the data set for modelling.

b) Explore: discovering and anticipating the relationships between variables.

c) Modify: the methods to select, create and transform variables, in preparation for data

modelling.

d) Model: depending on prepared variables, applying various modelling (Data Mining)

techniques to create models that can provide the desired outcome.

e) Assess: To show the reliability and usefulness of the model, it should be evaluated.

In the sample step, the dataset is taken and portioned into training, validation, and test

sets of samples. The dataset is visualized statistically and graphically in the explore step,

to explore distributions, correlations, etc. Then the data is transformed in the modify step,

to change the data for the suitable model, if possible, or deal with missing values. Next,

comes the fitting of the dataset into the machine learning technique, for example when

using neural network or decision trees. Eventually, in the assessment step, the data is

partitioned into alternative sets to validate the model and to estimate the data mining

process.

18

Figure 2-3 SEMMA Methodology (Original from SAS Institute)

The SEMMA process provides an easy to understand process, allowing adequate

development and maintenance of data mining projects. In contrast to the CRISP-DM

process, SEMMA also allows the user to return to previous steps in the process and focus

mostly on the application to exploratory statistical and visualization-based data mining

techniques (Bellazzi & Zupan, 2008).

2.2.2 Medical data mining

 The increase of use of information and computer technology have led to an increase in

the volume and complexity of data (Lobur et al, 2011). Patient records used in

management and other medical information are stored electronically as medical data or

hospital information systems; European Institute for Electronic Health Records

(EuroRec) is an example of patients’ records. This search has an interest in using the

clinical data to develop frameworks and models which can improve healthcare. The field

of data mining and management of clinical datasets has attracted interest in several

19

disciplines. Discovery of knowledge from the raw data is the goal of data mining

techniques, and medical data offers a promise to identify clinical data patterns (Friedlin

et al, 2011; Tsumoto, 2000). The SEMMA and CRISP-DM frameworks have been used

for such clinical data prediction for clustering and classification (Jilani et al, 2016).

Clinical data mining entails extracting implicit and potential information from raw

clinical data to benefit the decision support system and hence to improve healthcare

systems (Esfandiari et al, 2014). Healthcare delivery benefits from the technologies used

in the medical field (Masci et al, 2011). Moreover, the development of data mining for

health monitoring systems has forced the provision of proactive decisions (Sow et al,

2013). Nowadays, there is an active interest in the advancement of diagnosis systems,

which use clinical data to assist in recognition of diseases and tracking patients’

conditions (Lin & Haug, 2008).

Data mining has been used in the medical domain for diagnosis and treatment analysis; it

brings a set of tools that can be applied to clinical data to discover underlying patterns

and support healthcare professionals (Lu et al, 2016). After pre-processing data, the data

is further prepared for sequential patterns mining. The final step for mining data is

evaluation; this is done by using evaluation approaches such as classification, clustering,

and regression. Lokeswari & Jacob (Lokeswari & Jacob, 2015) propose a model that

would enable mining meaningful medical information to be mined from a community

dataset; they implement various parallel classification algorithms; decision trees, K-NN,

and Naïve Bayesian classifiers. The model works by classifying data using the three

techniques then the outputs are given as input to a “Bagging” algorithm which can

improve the accuracy of the parallel classifier. The accuracy is evaluated using specificity

and sensitivity metrics. Sharma and his colleagues (Sharma et al, 2016) provide a survey

on heart and cancer disease. The study reviews the existing research to find out significant

knowledge in this field and summaries of different approaches used in diagnosing disease,

20

in addition to discussing the tools available for processing and classification of data. They

conclude that the selection of data mining approaches is not the same for all; it truly

depends on the dataset type.

The Seattle Heart failure model (SHFM) is an example of a model for diagnosing heart

failure (Levy et al, 2006). The model is designed to predict survival years in heart failure

patients using Prospective Randomized Amlodipine Survival Evaluation (PRAISE1)

(Pfeffer & Skali, 2013). It was developed primarily from clinical trial databases and the

benefit of interventions extrapolated from published data. The SHFM was derived by

retrospectively investigating predictors of survival among 1,125 patients in PRAISE1

(NYHA 3B-4, EF<30%, ACEI, diuretics, 403 deaths). This program uses data from six

research studies on heart failure to calculate an individual patient's probability of survival

with heart failure and the potential benefit of various medical and surgical treatments. It

is intended for use by medical professionals who are trained in the treatment of heart

conditions, to help inform decisions on treatment, and counsel the patient. A stepwise

Cox proportional hazard model is used to develop a multivariate risk model, which

identified age, gender, ischemic ethology, NYHA, ejection fraction, systolic blood

pressure, K-sparing diuretic use, statin use, allopurinol use, haemoglobin, % lymphocyte

count, uric acid, sodium, cholesterol, and diuretic dose/kg as significant predictors of

survival. SHFM provides an accurate estimate of 1-, 2-, and 3-year survival with the use

of easily obtained clinical, pharmacological, device, and laboratory characteristics

(Washington, 2012). The researchers conclude that amlodipine would reduce the rate of

death from all causes in heart failure patients with the same symptoms. The model is a

well-validated prediction model of all-cause mortality in patients with heart failure, but

its relationship with generic health status measures has not been evaluated (Li et al,

2013). It may also be used to assess relative risk and changes over time, but when

assessing the absolute percentage of event-free survival, the overestimation of event-free

21

survival should be accounted for (Sartipy et al, 20014). The SHFM requires simple

variables necessary to calculate risk and incorporates heart failure medications and

devices. Addition of peak oxygen consumption to the model in 1,240 ambulatory heart

failure patients increased the ROC from 0.758 to 0.766.22 When annual mortality is

>20% the risk of pump failure death exceeds the risk of sudden death.

 Patients at Risk of Re-hospitalisation (PARR-30) is another application for identifying

inpatients at risk of re-admission within 30 days of discharge. The dataset is collected

from hospitals in the UK within 30 days of discharge using information that can either be

obtained from hospital information systems or from the patients. The results show that

positive predictive value (the percentage of inpatients identified as high risk who were

subsequently readmitted within 30 days) was 59.2%; also the area under the curve was

0.70%. The existing PARR tools that were first developed in 2005 are designed to identify

patients who may be at risk of re-admission within a year, but they use data that may not

be available while the patient is still in hospital (Nuffieldtrust, 2012). Predictive

models need to be updated from time to time to reflect changes in clinical practice, and

in epidemiology, demographics and clinical coding.

Another study on chronic heart failure is that of Shelton et al (Shelton et al, 2010), who

investigate the effect of atrial fibrillation and its relationship with heart failure. A survey

used a heart failure dataset to investigate current data mining techniques that discover

knowledge from data, to compare prediction performance and decision tree outcomes

(Soni et al, 2011). Classification of heart failure patients into four classes has been

proposed in Saqlain et al (Saqlain et al, 2016), using data mining tools.

Using the PARR1 algorithm requires data on admitting diagnoses; however, obtaining

diagnostic information on patients prior to discharge can be problematic with some

hospitals and is likely to rely on the use of an admitting diagnosis field which many

22

consider less reliable than discharge data entered by medical records staff (Billings et al,

2006).

2.2.3 Data mining techniques

As the volume of information becomes larger, more extensive data mining techniques

have appeared (IBM, 2012). The techniques could be used for classification, clustering,

association, prediction, and pattern recognition, as shown in figure 2-4.

Figure 2-4 Types of Data Mining Techniques

Classification is a process where the learning function in the training data has to map the

input instances into one of the predefined classes (Olson & Delen, 2008). The class is a

specialised target represented by the value of a particular feature in the dataset (Aggarwal

& Zhai, 2012). For example in clinical data, each record may be tagged by a particular

class label that represents the mortality of the patients; thus the goal is to predict the

patient class label.

Clustering is an automatic technique that takes the dataset as input and groups the data

points into clusters. This is unsupervised learning that works without a class label (Olson

23

& Delen, 2008). It is an optimisation problem, where the variables represent the

membership of data points, and the objective function maximises mathematical

quantification of group similarity (Aggarwal & Zhai, 2012). An example of clustering is

to determine patients that are similar to one another in the context of a variety of variables.

The association technique is used to predict patterns depending on the relationship

between particular items in a data and other items in the same transaction. For example,

the data matrix corresponds to an item in each column and association finds the relation

between variables and the class or between the variables themselves.

In prediction, the analysis discovers the relationship between the independent and

dependent variables. For example, in linear distributions, if the line is distributed in a

stable trend, the next target value could be predicted for the requested data. Pattern

recognition techniques search for similar patterns in the data transaction over a dataset;

the patterns can help to find the relationships among data. They are generally categorised

corresponding to the learning technique used to generate the output value.

2.3 Missing Values and Imputation Techniques

 Missing values come from the different systematic ways that the clinical data are

collected, and the transfer of data between systems; they constitute an important issue

in medical data mining (Rahman & Davis, 2013). Missing values are categorised into

three types, (a) missing completely at random (MCAR) (b) missing at random (MAR),

and (c) missing not at random (MNAR). MCAR refers to a variable that has missing

values that do not affect the data in other variables, this missing data is independent of

other variables and of itself, so the value of a record does not depend on any other

variable, even itself. MAR is present when the variable is independent of other variables

but not itself, for example when a variable is left empty because it is affected by another

24

variable value. MNAR refers to a variable that is related to other variables, so many

variables are not filled because such a variable is left blank.

Missing values or missing data occur when no information is available for some data

points in the database. Missing values are often present in real data (Engels & Diehr,

2003) since as Carmona et al (Carmona et al, 2012) note, the collected data in real-life

applications are not perfect. The data could be missing for a variety of reasons, like

manual data entry procedures, and equipment errors. The existence of missing values in

data mining produces several negative effects in the knowledge extraction process, such

as (a) loss of efficiency, (b) difficulty in managing and analysing data, and (c) bias

resulting from differences between missing and complete data (Carmona et al, 2012).

Data mining algorithms are designed for quality data (Blake & Mangiameli, 2011). A

number of techniques for data analysis have been developed in recent years. However,

most of them do not deal sufficiently with missing values (Lobato et al, 2015).

Methods used to impute missing values are ignoring, single imputation, and multiple

imputations. If the occurrence of the missing data is completely at random, we can simply

remove it because it does not affect other data (Jing, 2012). Case deletion or ignoring

missing data means eliminating all records from the dataset that have at least one missing

value (Carmona et al, 2012). Removing missing data will lose some data which could be

important for the learning process. Also, the distribution of data will change, while

imputation can restore the maximum amount of information without losing any data (Jing,

2012).

2.3.1 Single imputation:

A variety of single imputation methods exist, they include:

 Concept Most Common (CMC): in this method, the missing value is imputed in

respect of class value by the most common value in the attribute for symbolic

http://click.thesaurus.com/click/nn1ov4?clkpage=the&clksite=thes&clkld=380:1&clkdest=http%3A%2F%2Fwww.thesaurus.com%2Fbrowse%2Fadequately&clkmseg=59

25

attributes; missing values of numerical attributes are imputed by the most common

value. The concept refers to a set of all cases with the same outcome (Grzymala-

Busse et al, 2005).

 Mean/Mode: missing values are imputed by computing the mean of the numeric data,

or the mode value for discrete data. This method assumes that the data are MCAR,

which is not true in most biological data (Rahman et al, 2014). The mean cannot be

computed for dependent variables and will be affected by other values.

 K-Nearest Neighbour Imputation (KNNI): this algorithm is instance-based. Every

time a missing value is found in a current instance, by calculating the distances for

each data point, KNN can impute the missing value by the nearest data point value.

KNNI can predict both quantitative (the mean among the KNN) and qualitative

attributes (the most repeated value among the KNN). The main deficiency of the

KNNI approach is that the algorithm searches through all the data and this is repeated

each time to find nearest distances, which is very slow and is a limitation for large

datasets (Batista & Monard, 2003). This limitation is critical for KDD since we have

a massive dataset.

 Model-based methods: a model is designed to learn from complete data, and then the

missing values are imputed based on the prior knowledge. Based on using

classification learning for nominal attributes, and regression for continuing attribute,

the model can then impute missing values for the rest of data (Rahman et al, 2014).

 Expectation Maximisation (EM): a statistical method based on maximum likelihood.

EM consists of an E-step and an M-step The E-step calculates the conditional

expectation of the parameter on missing data. The M-step estimates the parameters

by maximising the complete data likelihood (Jing, 2012). EM is commonly used in

data clustering and machine learning. According to Little & Rubin (Little & Rubin,

26

1989), in incomplete data problems, it is a general iterative algorithm for maximum

likelihood estimation (Yuan, 2010).

The treatment of missing data is a very widespread broad statistical problem and one

should consider that there is no universal imputation method performing best in every

situation (Schmitt et al, 2015). We will use most of the single imputation methods

investigate the best methods. The methods used will be differentiated by applying

different scenario.

2.3.2 Multiple imputations MI:

Missing values can be imputed by finding more than one imputed value by different

methods, then filling the missing value with the least estimation error (Ghoneim et al,

2011; Su et al, 2011b). MI appears to be the most attractive method for handling missing

data (Allison, 2000), The basic idea is given by Rubin (Rubin, 1987):

 Use an appropriate model to impute missing values that incorporate random

variation.

 Do this M times (usually 3-5 times), producing M complete sets.

o Perform the desired analysis on each dataset using standard complete-data

methods.

o Average the values of the parameter estimate across the M samples to produce

a single-point estimate.

o Calculate the standard errors, by averaging the squared standard errors of M-

estimates, then calculating the variance of the M parameter estimates across

samples, and combining the two quantities.

o Develop a Multivariate normal (MVN) model, which considers that the

variables are continuous and normally distributed.

Multiple imputations make the model more complex, so we will not use this technique in

this research.

27

2.3.3 Machine learning (ML)

It is possible to impute missing values based on machine learning algorithms (Farhangfar

et al, 2008). Unlike statistical methods, ML algorithms generate a data model from

incomplete data, then the model is used to perform classification that imputes the missing

data (Farhangfar et al, 2007). Decision trees, probabilistic, and rule-based methods are

some examples of ML algorithms used to impute missing data. Evolution of the

imputation method simply applies a classification technique for the imputed data, then

evaluates the method outcomes based on accuracy, sensitivity, and specificity.

2.4 High Dimensionality

 The task of data mining is to extract information and knowledge for a large dataset. Data

pre-processing is required to prepare the data for data mining and machine learning to

increase the predictive accuracy (Selvakuberan et al, 2011). Often high dimensionality

data cause problems for the learning algorithms in terms of efficiency and effectiveness.

Thus it is important in mining medical data to manipulate the high dimensionality and

data preparation, then to use data for other applications (Cios & Moore, 2002). Usually,

clinical datasets are highly dimensional in nature, as large quantities of information about

patients and their clinical history are accumulated (Balakrishnan et al, 2008).

Dimensionality reduction is used for reducing the number of features to those that are

more relevant for further analysis (Joshi & Machchhar, 2014). Therefore the reduction

will reduce the dataset size, while maintaining much of the variance of the larger dataset

without dropping the critical features. This also decreases computational complexity and

makes it easier to use real-life datasets. A variety of models have been developed to obtain

optimal extraction of patterns, including artificial intelligence and machine learning

models (Abraham et al, 2007).

The goals of dimensionality reduction algorithms are (Gonen, 2013):

1) Improve prediction performance by removing redundant and inherent noise.

28

2) Explore data by getting low dimensional visualisations.

3) Reduce computational complexity.

With the input variables { 𝑥1, … 𝑥𝑛} = 𝑋 ∈ 𝜒 , and the response variable 𝑦, then the

objective of dimensionality reduction is to find a subset {𝑥1, … 𝑥𝑚} = �̂� ⊆ 𝑋 where 𝑛 >

𝑚, with minimal dimensions 𝑑 that satisfy a particular criterion (Fewzee & Karray, 2012).

Two different approaches for dimensionality reduction are available: supervised and

unsupervised. The supervised approach is when some discriminant analysis uses class

information, and in unsupervised approaches, data samples are not accompanied by labels

(Joshi & Machchhar, 2014). Examples of supervised approach methods are linear

discriminant analysis (LDA), and autoencoder neural network. Unsupervised methods

include principal component analysis (PCA), independent component analysis (ICA),

single value decomposition (SVD), and kernel principal component analysis (KPCA).

2.4.1 Feature selection

Feature selection is important in clinical data because it determines the features that can

diagnose the disease. Thus, a minimum number of features could determine patients’ care

activity (Gürbüz & Kılıç, 2011). A raw clinical dataset could provide useful knowledge

for effective decision making, and data mining searches for the relationships and patterns

of this kind of data. These datasets usually have a high dimensionality of variables, with

irrelevant and redundant features. Feature selection is used to handle the above issues,

and also can reduce the amount of data needed for learning, increasing the constructed

models’ precision, and improving algorithm predictive accuracy (Balakrishnan et al,

2008). By reducing the number of clinical data features, this may reduce the number of

measures made or enhance classification accuracy, hence reducing false negatives

(Balakrishnan et al, 2008). Much research in data mining has focused on improving

classification accuracy by applying feature selection methods (Abraham et al, 2007).

29

Feature selection could be used to speed up the process of learning, since using limited

features will simplify the representation of patterns and decrease the complexity of the

classifiers. The performance of a classifier depends on the relationship between the

sample size, the number of features, and the classifier complexity. To obtain good

classification accuracy, the number of training samples must increase as the number of

features increases (Guyon & Elisseeff, 2003). The prediction accuracy of the classifier in

data mining is improved by applying feature selection techniques, since not all features

used in descriptive data are important for all problems.

Feature selection methods:

1. Ranking methods, these are simple methods where only the best features are

selected by measuring the relevance to the concept variable. They are categorized

into

 Univariate techniques: individual features are evaluated independently. The

best 𝑚 features that obtain the best accuracy will be selected. These methods

are computationally simple, and sometimes fail if there are dependencies

between features. Examples of univariate techniques are chi-square,

information gain, and correlation. These methods use a calculation measure

between each feature and the concept variable, then select the best features that

can improve the classification performance.

 Multivariate techniques take into account the relations between features, using

different approaches to measure the correlation between features and the class.

An example is ReliefF.

 Subset features selection; these methods do not rank features depending on

their measurements, but select the subset that obtains a high improvement, for

example, correlation-based feature selection (Cfs) and consistency. These

methods operate either by increasing or decreasing the number of features,

30

depending on the starting point. They may start with the empty set then add

features one after the other to the evaluated set, or start with the full set and

delete features from the set until the best subset is attained. The approaches

used are backward and forward, sequential forward selection (SFS) and

sequential backwards selection (SBS) (Uzer et al, 2013).

2. Wrapper method: in this method the evaluation of features uses a training algorithm

to find the relevant subset of features to attained the best subset (Cohen & Hirsh,

1994). Thus the algorithm acts as a wrapper around the classifier, which selects

subsets that best classify the dataset. Then the cross-validation will evaluate the

learning scheme. This method has high computational complexity because it is

necessary to train the classifier for each selected subset (Zhang et al, 2015). The

heuristic search has space size 2𝑛 for 𝑛 features.

3. Embedded methods: in this technique, the feature selection is performed in the

learning process. Therefore, the method employs a classification algorithm, then it

will search for variables by adopting the structure of the classifier (Maldonado et al.,

2011). For example, it can use support vector machine (SVM) as a classifier method

to find the best features depending on the technique of SVM learning.

Feature selection is computationally complex since it needs many iterations to select a

proper group of features. Also, this method needs to be evaluated each time features are

selected.

2.4.2 Feature extraction

Feature extraction refers to the most outstanding information that can be used for data

representation, classification, and visualisation. It involves building a deep hierarchy of

features within unsupervised modelling (Rifai et al, 2011). Each level learns the

representation, to become better than the one above. Principal component analysis (PCA)

is a widely used technique for feature extraction to solve linear problems. As it is a linear

31

method, it can work with linear data only; it works with a structured and steady dataset

(Choi et al, 2014). Using PCA, patterns are detected in the data and on the basis of these

patterns, similarities and dissimilarities in the data are identified (Sun & Du, 2006). PCA

helps in detecting patterns in the data that cannot be represented and analysed graphically.

ICA is an unsupervised dimensionality reduction technique; with high computational

complexity, that relates to data independence (Bashiri & Geranmayeh, 2011). The

disadvantage of LDA is the lack of sample data per class, so the classification

performance is decreased due to the generalisation of decisions for arbitrary data with

noise regularisation (Zhu et al, 2009). Sang Jeen et al (Sang Jeen et al, 2003) compare

between PCA and autoencoder neural network mechanisms for feature extraction to

reduce the dimensionality of optical emission spectroscopy data. The results show that

neural networks have more agreement with low errors between model predictions and

measured data. Feature extraction is more efficient than feature selection because it has

one iteration to extract the features, so a less computation and fewer steps are needed.

2.5 Pattern Recognition

 Maintaining clinical datasets is an essential task to provide quality services in the

healthcare industry (Assawamakin et al, 2013). The automatic medical analysis is an

important application of pattern recognition. Pattern recognition is defined as the

classification of data based on knowledge already achieved or on statistical information

extracted from the patterns (Rutkowski et al, 2014). In the last decades, pattern

recognition has attracted more interest from researchers in computer vision and machine

learning (Chellappa, 2016; Karczmarek et al, 2017). It accurately detects objects when

the system is efficient (Ahmad et al, 2011). The main computational steps of pattern

recognition are (a) feature weights and calculation, (b) feature extraction or selection, and

(c) classification (Caesarendra et al, 2015).

32

The motivations for development of pattern recognition techniques are (Khodaskar &

Ladhake, 2014):

(a) It is an important part of the artificial intelligence field, which tries to give human

intelligence to a machine.

(b) In real life problems, it can provide high quality, intelligent analysis, and

classification of measurements,

(c) Data mining and knowledge discovery benefit from frameworks developed by

pattern recognition techniques.

Data mining techniques applied to clinical datasets discover relationships and patterns

that are helpful in studying the progression and management of diseases (Prather et al,

1997).

2.5.1 Patterns Measures

Distance measure:

The variation between pattern representations will be calculated to measure the distance.

Similar patterns have minimum distances. One metric example is the Minkowski

measure, which is the distance between two data points in the form;

𝑑𝑚(𝑥, 𝑦) = (∑|𝑥𝑘 − 𝑦𝑘|𝑚

𝑛

𝑘=1

)

1
𝑚

(2.1)

The Euclidean distance is an example of distance measure, where 𝑚 = 2;

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)
2

 (2.2)

This metric should have the following properties (Wang et al, 2005),

33

1. Positive reflexivity 𝑑(𝑥, 𝑦) ≥ 0

2. Symmetry 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

3. Triangular inequality 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)

Weighted distance measure:

For more precision when calculating the distance, a weight can be added to their values.

The metric of weighted distance is of the form (Murty & Devi, 2011),

𝑑(𝑥, 𝑦) = ∑(𝑤𝑘 × (𝑥𝑘 − 𝑦𝑘)𝑚)

1
𝑚

 (2.3)

Size of Patterns

The size of a pattern measured by the features being considered.

2.6 Classification

There are two steps to classify data, firstly, building a model that describes a

predetermined class of dataset; secondly, the using the model data for training. Prediction

is viewed as the construction and use of a model to evaluate the class of an unlabelled

sample (Han & Kamber, 2011). The pre-processing steps help the classification or

prediction process to improve accuracy, efficiency, and scalability (Han & Kamber,

2011). According to Han and Kamber the three pre-processing steps are:

1- Data cleaning: to remove the data with many missing values.

2- Treatment of missing values: this step will help reduce confusion during learning.

3- Relevance analysis: this step is known as feature selection, which eliminates

features that are irrelevant or redundant.

34

Evaluation of Classifiers: the type of research and the target of the framework can

determine the evaluation process for the classifier. Thus the evaluation is categorized into

(Daskalaki et al, 2006; Margineantu & Dietterich, 2000)

 Prediction accuracy: To classify unknown patterns correctly, is the main aim of the

classifier. The accuracy is measured by the percentage of a number of data points that

are correctly classified for the test dataset.

 Speed or computation cost: the time spent to create the classifier for learning the

dataset is a design time, then the time spent by using the designed classifier to classify

a pattern is the computational time.

 Space required; is the space of the training set; if the dataset is huge, it could be

reduced by dimensionality reduction or divided into portions.

 Interpretability: has easy it is to understand how the classifier chooses the class of

patterns.

Methods of validation: classifiers need data for training and data for validation. Data

validation methods can be categorized into (Murty & Devi, 2011)

 Holdout method: it divides the dataset into two sets one for training and one for

testing; typically two-thirds are used for training.

 Random sub-sampling: different training and validation subsets are generated each

time. Then the accuracy will be calculated by,

𝐴𝑐𝑐 =
1

𝑘
 ∑ 𝐴𝑐𝑐𝑖

𝑘

𝑖=1

 (2.4)

where 𝑘 is the number of times to select the subsets, and the accuracy is calculated by

the number of correctly classified data points from all data points.

 Cross-validation: each pattern is used the same number of times for training and

testing. In 𝑘-fold cross-validation, the data is divided into 𝑘 equal subsets. During

35

each run, one subset is used for testing and the rest of the subsets are used for training.

To ensure the quality of the model, a cross-validation method is used to estimate the

error rate of classifiers. In cross-validation, the dataset is partitioned randomly into 𝑁

samples and evaluations are run for 𝑁 iterations. At each iteration, 𝑁 − 1 samples are

selected for training and the final sample is used to evaluate the accuracy of the

classifier.

 Bootstrap procedure: selects a pattern randomly from the dataset without eliminating

it, then selects another and so on. This is repeated 𝑛 times to select 𝑁 patterns.

Cross-validation will be used in this research where the data will be split into 70 per cent

for training and 30 per cent for testing.

2.6.1 Classification methods

1- The decision tree (DT); decision trees use a tree-graph to make predictions by

decisions. Knowledge is extracted and represented in the form of classification IF-

THEN rules. One rule is created for each path, from the root to a leaf node. Building

a decision tree starts by selecting a feature as the root and then extending the tree for

all possible features to reach the class label, and so on, as shown in figure 2-5. The

aim of decision tree learning is to create a model that predicts the value of a target

variable based on several input variables; it reaches the goal by determining a most

likely strategy (Ravichandran et al, 2012).

36

Figure 2-5 Example to Building a Decision Tree

2- Random Forest (RF); is a way to combine information across an ensemble, by a

strategy of divide-and-conquer to generate many decision trees for the training set. For

𝑘 classifiers in the ensemble there are decision trees for classifying a new element into

one of 𝑚 possible outcome groups. At each node, an individual decision tree

determines the split on the basis of a smaller, random selection of attributes, and not

from the set of all attributes, see figure 2-6. Each tree in the forest of trees then votes

on the classification of a new item, and the most popular class is returned as the

ensemble solution (Ledolter, 2013). The attributes of RF are that it works efficiently

on large datasets, and it provides more consistent accuracy than other algorithms. Also,

if we have missing values, this method estimates missing data and maintains the

accuracy rate (Pal & Mather, 2003). Moreover, RF provides an estimate of important

attributes in the classification (Ham et al, 2005). However, the weaknesses of RF

37

approach are the computation time cost, and the complex interpretability or difficulty

of gaing insight.

3- J48 is a simplified version of a C4.5 decision tree, which is a development of the

ID3 algorithm (Ravichandran et al, 2012). C4.5 is a divide-and-conquer technique

for growing trees from the set 𝑁 of cases by the following steps (Quinlan, 1996);

(a) The tree for 𝑁 is a leaf for the most frequent class; if 𝑁 has stopping criteria, then

the reason for stopping is when 𝑁 has cases for this class.

(b) Partitioning 𝑁 into subsets 𝑁1,𝑁2, …𝑁𝑘 for 𝑇 test with outcomes 𝑇1,𝑇2… 𝑇𝑘.

(c) The tree has evaluated for a subtree 𝑇𝑖 that is constructed by the same procedure

as the case 𝑁𝑖.

Therefore, J48 splits the data into ranges based on the attribute values for items that are

identified in the training sample (Devasena, 2015). Given a set 𝑇 of total instances the

following steps are used to construct the tree structure (Gupta et al, 2012):

Step 1: If all the instances in 𝑇 belong to the same group class, or 𝑇 has fewer instances

than the tree, then the tree is represented as a leaf labelled with the same class.

 Step 2: If step 1 does not occur; then a test is selected based on a single class. This test

is considered as a root node for the tree with one branch for each outcome of the test

Figure 2-6 Example of Random Forest

38

according to the result of each respective case, and the same may be applied in a

recursive way to each subnode.

Step 3: For every attribute information gain is calculated and ranked using two heuristic

criteria (Kaur & Chhabra, 2014),

The J4.8 algorithm is fastest to train, it generally, gives good results although less so

than random forest and its output is human readable. For the missing values, J48

eliminates missing values in the dataset while building a decision tree.

4- REPTree (Reduced Error Pruning Tree) is a fast decision tree learner. It builds a

decision tree using information gain and prunes it using reduced-error pruning. At the

beginning of the model preparation, it sorts the values of numeric attributes once (Han

et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han

et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han

et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han

et al, 2011)(Han et al, 2011)(Han et al, 2011)(Han et al, 2011). The method creates

multiple trees in many iterations, then selects the representative, which is the best tree.

Pruning uses mean square error for the prediction (Kalmegh, 2015).

5- Naïve Bayesian Classification is a simple technique used for classifying from a subset

of attributes and is a consistently performing probabilistic model. Data classification

based on Naïve Bayes is the task of predicting the class of an instance from a set of

attributes and describing the instance; it considers that all the variables are

conditionally independent given the class (Domingos & Pazzani, 1997). Naive

Bayesian provides a useful perspective for understanding and evaluating many

learning algorithms. It calculates explicit probabilities for hypotheses, and it is robust

to noise in input data. There are many uses of Bayesian classification, such as text

39

classification, spam filtering, and online applications. Naïve Bayesian probability is

given by:

 𝑃(𝑐|𝑓) =
𝑃(𝑓𝑥|𝑐)𝑃(𝑐)/𝑃(𝑥)

𝑃(𝑓)
 (2.5)

where 𝑐 is the class, 𝑓 is the predictor variable, 𝑃(𝑐|𝑓) is the posterior probability of

class 𝑐 given feature 𝑓 , 𝑃(𝑐) a prior probability of the class, 𝑃(𝑓|𝑐) is the probability

of the variable given class also known as likelihood, and 𝑃(𝑓) is the prior probability of

the variable. The algorithm starts by calculating probability for the likelihood table, then

applies the Naïve Bayesian equation to find the posterior probability for the classes.

Thus the prediction outcome is the highest posterior probability.

6- K-nearest neighbours (K-NN) is a classification technique that stores all available

cases and classifies new cases based on a similarity measure, for example, distance

functions. For the 𝑁 training vector, K-NN identifies the 𝑘 nearest neighbour of the

vector 𝐶 whose class we want to estimate, regardless of label. For example, if we want

to predict vector 𝐶 in a binary class sample, where 𝑘 = 3, then the algorithm will

calculate the distance for the three nearest neighbour vectors to 𝐶, as explained in

figure 2-7. Next the algorithm will predict 𝐶 to the class label that has maximum

nearest labels, which is class A in our example. The main drawback of this algorithm

is the complexity of search for large dataset, because it will search the nearest

neighbour for each sample.

Figure 2-7 KNN algorithm example

http://www.saedsayad.com/k_nearest_neighbors.htm

40

7- Support vector machine (SVM); it is a supervised learning algorithm for linear

classification and regression. The samples are represented by points in space. The

model is built to identify and categorize these points into two groups for binary

classification. These two categories have to be separated by a hyperplane (or margin),

and each time the gap between categories has to be as wide as possible (Tong & Koller,

2001). The hyperplane is defined by

 𝑔(�⃗�) = �⃗⃗⃗�𝑇�⃗� + 𝑏 (2.6)

where �⃗� is the input vector, �⃗⃗⃗�𝑇is the weight of the vector, and 𝑏 is the bias. The data

are separated depending on the value of threshold,

�⃗� = {

𝑐𝑙𝑎𝑠𝑠 𝐴, 𝑔(�⃗�) ≥ 1

𝑐𝑙𝑎𝑠𝑠 𝐵, 𝑔(�⃗�) ≤ −1

(2.7)

The margin is calculated by

 𝑧 =
|𝑔(�⃗�)|

‖�⃗⃗⃗�‖
 =

1

‖�⃗⃗⃗�‖

(2.8)

Hence, the total margin is computed by

𝑧 = ∑

|𝑔(�⃗�)|

‖�⃗⃗⃗�‖

(2.9)

Minimizing ‖�⃗⃗⃗�‖ will maximize the gap between classes.

As we can see in figure 2-8, the algorithm first finds a hyperplane between two classes

and then increases the gap to improve the outcome accuracy. Although in most cases,

there is more than one hyper-plane that correctly separates classes, the method

searches for the maximum margin between classes.

41

Figure 2-8 SVM algorithm example

The comparison between the classification methds is shown in table 2-2.

Table 2-1 Classification methods pros and cons

Classification

method

Advantages Disadvantages

DT Ability of selecting the most

discriminatory feature

comprehensibility so that

can be used in Rule

Generation problems.

 Data classification without

much calculation, dealing

with noisy or incomplete

data, handling both

continuous and discrete data

(it is necessary to choose the

proper algorithm)

 A drawback of using

decision trees is that the

outcomes of decisions,

subsequent decisions and

payoffs may be based

primarily on expectations.

 The high classification error

rate while training set is

small in comparison with the

number of classes.

RF It is one of the most accurate

learning algorithms

available.

 It runs efficiently on large

databases.

 It gives estimates of what

variables are important in

the classification

 Random forests have been

observed to overfit for some

datasets with noisy

classification/regression

tasks.

 Biased in favour of

categorical variables with

more levels

J48 Easy to interpret and

explain.

 Easily handles feature

interactions and is non-

parametric, so it is not

necessary to worry about

outliers or whether the data

is linearly separable.

 Has the highest sensitivity of

all the other algorithms

(Endo et al, 2008).

42

RepTree Reliable tools for real-time

quality monitoring tasks

under both network and

human impairments (Yang

et al, 2015).

 Fast learning regression tree

which is suitable for

classifying numerical values

(Namratha et al, 2013).

 Tree is unstable even for

small changes in input data.

 Large tree models are

difficult to analyse

(Namratha et al, 2013).

Naïve

Baysian
 Tremendously appealing

because of its simplicity,

elegance, and robustness.

 Light to train: no
complicated
optimisation required.

 Easily updateable if new
training data is
received.

 Assumes that the effect of an

attribute value on a given

class is independent of the

values of the other attributes.

This assumption is called

class conditional

independence.

 It is made to simplify the

computations involved.

Knn Robust on noisy training

data (especially if we use

Inverse Square of weighted

distance as the “distance”).

 Effective if the training data

is large.

 Need to determine value of

parameter K (number of

nearest neighbours).

 Computing cost is quite high

because we need to compute

distance of each query

instance for all training

samples.

SVM By introducing the kernel,

SVMs gain flexibility in the

choice of the form of the

threshold separation.

 Since the kernel implicitly

contains a non-linear

transformation, no

assumptions about the

functional form of the

transformation (Auria &

Moro, 2008).

 Generally black boxes, it is

not possible to read the

acquired knowledge in a

comprehensible way.

 The lack of transparency in

results. Since the dimensions

might be very high, SVM

might not be able to show the

company’s score as a

parametric function based on

financial ratios nor any other

functional form

(Karamizadeh et al, 2014).

2.7 Machine Learning Process

Machine learning (ML) refers to the question whether computers might be made to learn.

This field, along with Artificial Intelligence (AI), is probably the most significant

progress in the last decade (Kononenko & Kukar, 2007). Alpaydin in (Alpaydin, 2014)

defines machine learning as programming a computer to optimise a performance criterion

43

by implementing example data or a training model. From the above, machine learning

consists of two steps: first, training, which needs efficient algorithms to store and process

the massive amount of data and to solve the optimisation problem. Secondly, the

representation and algorithmic solution for inference need to be efficient. The ML

objective is to minimise the model error through training data (Baker, 2014). These days

machine learning is a cornerstone of many computing fields. The popularity of ML comes

from the powerful new optimisation techniques, and the appearance of effective and user-

friendly implementation tools (Kononenko & Kukar, 2007).

2.7.1 Machine learning models

The most popular techniques are:

1- Linear regression, a machine learning model for expressing the dependence of a

response variable on several explanatory variables (Friedman et al, 2001). 𝛽0 and 𝛽𝑗

are unknown coefficients and 𝑋𝑗 is the explanatory variable to predict a real value

𝑌 for the input vector 𝑋𝑇 = (𝑋1, 𝑋2, … 𝑋𝑝). Where 𝑝 is the number of features, the

linear regression has the form:

 𝑓(𝑥) = 𝛽0 + ∑ 𝑋𝑗𝛽𝑗
𝑝
𝑗=1 (2.10)

2- Multi-layer perceptron (MLP): it is a feedforward neural network, consisting of three

layers, an input layer, a hidden layer, and an output layer (Wei, 2005). The hidden

layer plays a filtering and synthesis role for the input, while the output presents the

final response (Fusco et al, 2015). The output of one hidden neuron is:

 𝑧𝑗 = 𝑔(∑ 𝑤𝑖,𝑗𝑥𝑖)𝑑
𝑖=0 (2.11)

where 𝑑 is the input neuron, 𝑥 is a hidden neuron, 𝑔 is a transfer function, and 𝑤𝑖,𝑗 is

the weight from the input neuron 𝑖 to the hidden neuron 𝑗, 𝑥𝑖 is the 𝑖th input and 𝑥0 is

a bias which equals 1.

44

Artificial Neural Network (ANN) is a multi-layer perceptron; its self-adaptability,

self-organization, and error tolerance make it suitable for nonlinear simulation. One

of the most widely used is the back-propagation (BP) neural network. The BP

consists of the input layer, one or more hidden layers, and an output layer. The

network’s response best matches the desired response by a training process to adjust

the connection weights in the network (Li et al, 2014).

MLP is a technique that could be used for unsupervised learning by reducing the

dimensionality.

2.7.2 Training methods

Machine learning processes consist of training, validation and testing subsets

(Suthaharan, 2016). The attributes of machine learning employ the labelled set for

estimating the dataset; also improving and resembling. Then, the second part of the

dataset is used for testing; the algorithm tests some data to validate the effectiveness of

the model. The training phase is an iteration process to ensure the model will obtain the

best outcomes with minimum error. The training phase of machine learning is categorised

into supervised learning and unsupervised learning

a- Supervised Learning

Parametrization and optimisation are the two main objectives; the response variables are

used to define and differentiate these objectives (Suthaharan, 2016). If the response

variable is continuous then the parametrization objective is defined as regression; on the

other hand, it is defined as a classification if the response variable is discrete. The

supervised learning algorithm is initiated and applied according to these main steps (Kile

& Uhlen, 2012):

1. Analyse 𝑛𝑡 operating states, and determine the response 𝑦 for each, to generate a

training data.

2. Predict �̂�𝑖 for an input 𝑥𝑖 , by train a supervised model, as

45

 �̂�𝑖 = 𝑓(𝑥𝑖) (2.12)

3. Predict the response of the remaining operating states 𝑥𝑖 , where 𝑖 = 𝑛𝑡 +

1, 𝑛𝑡 + 2, ….

In reliability evaluation, the response 𝑦 is a classification label, e.g. Dead vs. Alive, or

Success vs. Fail (Pindoriya et al, 2011). Examples of supervised learning techniques are

logistic regression and decision trees, while for a complex problem, more advanced

algorithms like neural networks can be used (Kile & Uhlen, 2012).

b- Unsupervised learning

Unsupervised learning is based on the idea that there are underlying classes that are

hidden within a dataset. The objective of a process is to identify a model that can partition

the data into subgroups or multiple clusters (Asheibi et al, 2009). The general points of

unsupervised learning are as follows (Kile & Uhlen, 2012):

1- Input dataset, and represent as data points.

2- Form 𝑛 clusters of similar data points.

3- Find the centre of each cluster, i.e. the data points closest to the centre.

4- Evaluate the reliability indices of each data point closest to the centre.

The main disadvantage of unsupervised learning is that only heuristic arguments can be

used, as opposed supervised learning, due to the absence of objective criteria for verifying

the results. K-mean , spectral, and self-organizing clustering are the most popular

clustering algorithms (Kile & Uhlen, 2012). Self-organizing maps are a suitable tool for

high dimensional data. The algorithm is based on the principle that the distance between

samples in the same cluster will be significantly less than the distance between samples

in different clusters (Sapkal et al, 2007).

A supervised learning technique will be used in this research, where the class label is

defined. We will investigate many machine learning techniques to find the best methods

46

that could be used for the heart failure dataset. Also, we will employ different evaluation

techniques such as RF, Reptree, and J48 to compare between the outputs for these

methods.

2.8 Neural Networks

A neural network is a collection of interlinked elements that are structured into layers and

can be represented as a network of connections of neurones (Andreou et al, 2002). Neural

networks consist of an input layer which takes in the input, a hidden layer and an output

layer (Ojala, 2012). Each interlink corresponds to a numerical value called weight. The

weight gets updated according to the problem being solved (Andreou et al, 2002). Each

node in the hidden layer has 𝑛-inputs (𝑋1, 𝑋2 … . , 𝑋𝑛) and a bias, figure 2-9.

The neurons are a summing container for the input neurons; then mapping forward the

link for the layer ahead under a certain condition, see figure 2-10. There are different

types of neural network architectures: feedforward, recurrent, and topological maps

(Alkhasawneh & Hargraves, 2014).

Figure 2-9 Single neuron architecture

47

Figure 2-10 Model of a Single Neuron, see (Haykin [2009])

The neuron output is calculated by,

𝑣𝑘 = ∑ 𝑤𝑘𝑥(𝑖, 𝑗) + 𝑏𝑘 (2.13)

where 𝑤 is the weight of 𝑘-neurons, 𝑥(𝑖, 𝑗) the input value from matrix dataset for row 𝑖

and column 𝑗, and 𝑏 is the bias. The 𝑘th processing element consists of 𝑝 input values 𝑥𝑝,

each value multiplied by synaptic weights 𝑤𝑘𝑝, the summation over 𝑗 for all values

resulting in an output 𝑣𝑘. The output then becomes input to the activation function 𝜑𝑘,

which generates the output 𝑦𝑘, for the processing elements.

𝑦𝑘 = 𝜑𝑘 . 𝑣𝑘 (2.14)

There are different types of activation function, such as sigmoid or 𝑡𝑎𝑛ℎ (tangent). The

sigmoid function is defined by a logistic, where output ranges between [0, 1]. The 𝑡𝑎𝑛ℎ

is a rescaling of the logistic and its output range is [-1, 1]. The following are the equations

for the sigmoid and 𝑡𝑎𝑛ℎ functions respectively,

 𝑓(𝑥) =
1

1+𝑒−𝑥 (2.15)

 𝑓(𝑥) = tanh(𝑥) =
2

1+𝑒−2𝑥 − 1 (2.16)

The sigmoid is sometimes preferred, for a number of reasons; its likely analytic

tractability means it is more interpretable than the derivative of the 𝑡𝑎𝑛ℎ function. For a

48

linear mapping, the linear activation functions are used in an autoencoder network like

PCA.

2.8.1 Autoencoder Neural Network

An autoencoder is a feedforward neural network with one or more hidden layers, whose

objective is to reconstruct the input data at the output layer (Hinton et al, 1997). The size

of the output layer is the main difference between an autoencoder and traditional neural

network; in an autoencoder, the size of the output layer is always the same as the size of

the input layer (Tan & Eswaran, 2008). In contrast, the size of the deepest hidden layer is

often smaller than the sizes of the input and output layers. As shown in figure 2-11, the

autoencoder network consists of two components, namely “encoder” and “decoder”. The

encoder network transforms the high dimensional input data into a low-dimensional code,

and the “decoder” network attempts to reconstruct the original high-dimensional data

from the low-dimensional code.

Figure 2-11 The Architecture of Autoencoder with One Hidden Layer

The networks can be trained by minimising the mean squared error (MSE) between the

original and the reconstructed data. The required gradient is easily obtained by using the

49

chain rule to backpropagate the error derivatives first through the decoder network and

then through the encoder network (Hinton & Salakhutdinov, 2006).

2.8.2 Feedforward backpropagation learning process

 Backpropagation is the abbreviation for “backwards propagation of errors”. Knowledge

is acquired by the neural networks learning process. Knowledge is stored by the neuron

weights 𝑤𝑘𝑝 Data is continuously iterated and these weights updated to make predictions

(Alkhasawneh & Hargraves, 2014). Backpropagation is a supervised learning method in

which the desired output for the given input must be known (Tan & Eswaran, 2009). In

the backpropagation method, the activation function used in the neurons must be

differentiable, since it is an implementation of the Delta rule. The Delta rule is a special

case of the more general backpropagation algorithm. It is a gradient descent learning rule

for updating the weights of the inputs to artificial neurons in a single layer neural network.

The output (�̂�) of a neuron is compared with the desired output (𝑥) to derive the sum

squared error. Connection weights of the nodes are adjusted according to the weight

changes. For the output layer, the change in weight is given by Thompson et al

(Thompson et al, 2002):

 ∆𝑤𝑖𝑗 = 𝜂(𝑥𝑙 − �̂�𝑙)𝑓′(𝑛𝑒𝑡𝑙)𝑧𝑗 (2.17)

where 𝞰 is the learning rate. For the hidden layer, the change of weight is derived

from (Thompson et al, 2002):

∆𝑤𝑖𝑗 = 𝜂(∑(𝑥𝑙 − �̂�𝑙)𝑓′(𝑛𝑒𝑡𝑙)𝑤𝑗𝑙)𝑓′(𝑛𝑒𝑡𝑙) 𝑧𝑗

𝑛

𝑙=0

 (2.18)

The new weight is updated according to the Delta rule,

 𝑤𝑛𝑒𝑤 = 𝑤𝑐𝑢𝑟𝑒𝑛𝑡 + ∆𝑤 (2.19)

50

2.8.3 Conjugate Gradient Backpropagation

Simply, this is like the backpropagation but this approach speeds up the training process

compared to the traditional backpropagation with momentum (Tan & Eswaran, 2008).

The line search function of the conjugate is used to locate the minimum point in the error

function. The first search direction is the negative of the gradient of the performance. In

the succeeding iterations, the search direction is computed according to the formula:

 𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1 (2.20)

 where 𝑔𝑘 is the new gradient and 𝑃𝑘−1 is the previous search direction. The parameter

𝛽𝑘 can be computed in different ways, such as

𝛽𝑘 =

∆𝑔𝑘−1
𝑇 𝑔𝑘

𝑔𝑘−1 𝑔𝑘−1

(2.21)

This is a gradient by the inner product of the previous change divided by the norm

squared of the previous gradient.

2.8.4 Stacked autoencoder

 An autoencoder with multiple hidden layers makes it difficult to optimise the weights.

Training multilayer networks are implemented in phases as explained in Bengio et al

(Bengio et al, 2007). During the first phase, the autoencoder is assumed to have three

layers, namely, the input layer 𝑥, the output layer 𝑦, and a hidden layer ℎ1 , as shown in

figure 2-12. Then the network is expanded by adding more hidden layers as in figure 2-

13.

Figure 2-12 Deep Learning, One hidden layer

51

The weights 𝑊1 and 𝑊′1 are trained using conjugate gradient backpropagation. The

separate one-hidden-layer network consisting of the input layer ℎ1, output layer ℎ′1 and

hidden layer ℎ2 is trained individually before being stacked onto the existing autoencoder.

The bias and input to the hidden layer ℎ1 is 𝑧1, 𝑧2, … 𝑧𝑚 where

 𝑧𝑗 = 𝑓(𝑛𝑒𝑡𝑗); 𝑗 ≠ 0; 𝑚 < 𝑛 (2.22)

However, the size and the value of input and output layers are the same; the output layer

ℎ′1 is equal to the input layer ℎ1. Hidden layer ℎ2 is a new hidden layer added onto the

autoencoder. The weights of 𝑊2 and 𝑊′2 can be trained by using backpropagation. After

the training of the separate one-hidden-layer network is completed, all the weights of the

autoencoder are fine-tuned to cover a global minimum (Larochelle et al, 2007).

2.8.5 Restricted Boltzmann Machine (RBM)

 It is a learning algorithm that allows optimal weights to be learnt from experience; the

algorithm discovers important features that represent regularities of the training data

(Salakhutdinov et al, 2007). The problem of the Boltzmann machine is that the learning

stops working correctly when the machine is scaled up to non-trivial problems.

Despite the fact that learning is impractical, the General Boltzmann machine is quite

efficient when the architecture is made conditional such that connections among input

Figure 2-13 Deep Learning, Three hidden layer

52

units, as well as among hidden units are not allowed. The hidden units are independent,

with only visible vector. Thus the learning is efficient to approximate the gradient descent

in quantity called “contrastive divergence”, and works well in practice (Hinton, 2002).

After the multilayer autoencoder is created, conjugate gradient backpropagation can be

used to fine-tune the weights of autoencoders provided the initial weights and biases are

close to the optimum solution. All the weights of the multilayer autoencoder can be fine-

tuned in a single phase provided the weights are pre-trained with RBM (Tan & Eswaran,

2009).

2.8.6 Stacked RBM

It is an architecture that constitutes a stack of RBMs. After learning one hidden layer,

the output of hidden units is used as the input for training the next RBM. The new RBM

is stacked onto the previous RBM after training independently, as illustrated in figure

2-13. By repeating this process, a multilayer autoencoder can be created. The

autoencoder created in this way has a smaller size hidden layer, which leads to

dimensionality reduction. After stacking, conjugate gradient backpropagation is applied

to fine-tune the overall weights. This process is repeated for stacking more hidden layers

(Tan & Eswaran, 2009). It is proved that additional hidden layers improve the

performance of the autoencoder, provided the number of hidden neurons per layer does

not decrease, and the weights are initialized correctly.

2.9 Summary

This chapter provided a general background of data mining tools and their methodologies.

CRISP-DM and SEMMA frameworks make data mining more effective and efficient for

clinical data mining. The frameworks follow the intuitive stages shown in figure 2-1.

However, what is different is the relationship between the three stages, which are often

tailored for the application and nature of data. In contrast, there are two key challenges

53

involved in data mining steps: 1) agreeing on a data preparation method such as a data

cleaning or pre-processing technique so that data mining methods are successfully

implemented and 2) agreeing on a predictive model to predict future outcomes. In spite

of this, the main goal of the frameworks consists of a particular course of action, to

understand, evaluate and compare data which are mainly intended to achieve a result.

There are many data mining tools used to analyze and classify datasets in different

computation techniques. The outcomes are not just related to the method used but depend

on the dataset itself and the preparation of data before classification. The challenges of

real datasets, as discussed in chapter 1, need such tools to deal with these problems.

Data mining consists of a sequence of four steps: (a) pre-processing, (b) modelling, (c)

prediction, and (d) evaluation. However these steps can be reduced; autoencoder is a

model that classifies data after feature extraction so that this model can do two stages in

one possible framework.

The next chapter will explore the pre-processing stage in mining data, by cleaning data

and imputing missing values. Various imputation techniques will be employed to impute

the missing values and these techniques will be evaluated in different classification

methods.

54

 Effect of Imputation on Classification

3.1 Introduction

As discussed in Chapter 2, a data mining methodology starts with the pre-processing of

the data (see figure 2-1). This stage includes the exploration of data, and its preparation

looks at the characteristics of the dataset and a decision is made as to what records and

variables need to be deleted, and how missing values are imputed. Data exploration allows

for the gathering of information about the data itself. This would include the total number

of variables, the number of records, and the percentages of missing values. Once this has

been carried out, the next step is to start the process of imputing missing data, and on

occasion determining the level of noise (or presence of spurious data). In clinical datasets,

missing values are often present for many reasons, as discussed in the literature review

(see section 2.3).

Missing values pose an important computational challenge, as these values do not enable

development of algorithms for predicting the outcome or decision. Ignoring them is not

an option; what can be done is to either eliminate the records with missing values,

eliminate variables with a large percentage of missing values, or impute them. Thus a

general rule of thumb is employed to remove records or variables. Where there is more

than 30% missing, these records or variables are discarded.

In this chapter, a representative set of imputation methods that could be used is

investigated. These methods range from using the mean/median of the data to using

machine learning techniques for imputation. In this chapter, we will evaluate the

performance of different imputation methods, and consider how the incomplete data

affect the computation complexity for classification.

55

3.2 Missing values imputation

There are a variety of strategies to impute missing values. Some of these are:

(a) Listwise deletion strategy: here data points that contain more than a certain

percentage of missing values will be removed.

(b) Remove variables that have more than 30% of values missing. Methods that

discard variables or records are simple and easy, because they just delete data

points with too many missing values.

(c) The mean strategy involves filling the missing values by the mean of the data for

the same feature. The mean method imposes a bias on the data and is not

compatible with other features such as class feature.

(d) Imputation of missing values by using machine learning techniques. The

advantages of are to keep the data almost the same size, maintain the structure of

the dataset and avoid bias. Imputation methods are varied and use different

techniques. Some methods use the information within a variable to impute the

missing values. Such methods often use the mean, median or most common value.

These allow for the values to be replaced in different ways. The other alternative

is to use machine learning techniques to determine the value which is missing.

Some methods estimate the features data when calculating the missing values, for

example, most common and expectation maximization. Other methods estimate

the data points in the dataset, for example, K-mean and K-NN. Further, there are

methods that impute missing values while paying attention to separation of classes

for example SVM and CMC. In the research dataset, the missing values are

distributed randomly. Hence, the records have variations in missing values, and

also, the features have variation in missing values that appear in each attribute.

As discussed in the previous chapter the data mining methodology has a number of stages.

One of these stages is a pre-processing; which includes preparing data and imputing

56

missing values. Imputing missing values has three steps, as shown in figure 3-1: removal

of data with too many missing values, then imputation of the rest of the incomplete data,

and finally, evaluating the imputation results.

We will use six methods to impute missing values in this thesis. These methods cover all

the different techniques used for imputation; they include feature based techniques, data

point based techniques, and class-based techniques. The six methods are discussed in turn

below:

3.2.1 Most Common Imputation (MCI)

This method works simply by finding the most common data points that occur in the

feature to fill the missing value; this is when the data are symbolic. For numerical

attributes, the missing values are filled by the most common of all values in the attribute

(Grzymala-Busse et al, 2005). Therefore, all missing cases in one attribute will be filled

by the same value. The drawback of this approach is that it can alter the distribution of

Original

Dataset 1- Data removal

Discard cases with too much missing

data

Incomplete

datasets

2- Imputation

Imputed

datasets 3- Evaluation Metrics

Figure 3-1 Process of Imputation of Missing Values in a Dataset

57

the data by overestimating the most frequent value, which often leads to improper

interpretation (Su et al, 2011a). In addition, mean imputation distorts relationships

between attributes by dragging estimates of the correlation toward zero (Pigott, 2001) .

3.2.2 Concept Most Common Imputation (CMCI)

The method is similar to the most common imputation, but it divides the data points into

classes and finds the most common for each class (Kaiser, 2014). Thus in this approach,

the algorithm replaces the missing value with the most common value that occurs in the

attribute and for the same class label (Grzymala-Busse et al, 2005). Therefore, the missing

values are filled by the most common value in an attribute for the same concept. This

enhancement of most common imputation gives this method more power because most

values of patients’ records for the same class label could be similar. For example, if the

most common value for the feature (Sodium) is 130 mmol/L, in MCI this value will be

filled with any missing values in this feature, but in CMC it will find MC for the class

Alive, which is, for example, 135, and MC for the class Dead, which is, for example 128,

so if the missing values from the class Alive it will be filled by 135, otherwise by 128

mmol/L.

3.2.3 Expectation maximisation imputation (EM)

EM is an iterative procedure involving two steps, Expectation (E-step) and Maximization

(M-step), adopting maximum likelihood estimates for analysing complete data (Dodge &

Zoppe, 2004). The step uses the known attribute-value to estimate the parameters such as

mean and covariance in the model for the data source (Karmaker & Kwek, 2005). Then

for the repeated E-step, the M-step maximises the likelihood function to fill in the missing

value (Kumdee et al, 2008). Thus, based on the unknown values, the E-step finds the

distribution of the missing value, along with the current estimates of the parameter. Next,

the M-step uses expected values to fill the missing values (Lin, 2010). The expected value

58

of 𝑥 given the measurement 𝑦 and based upon the current estimate of the parameter is

computed using the current estimate of the parameter and the observed data;

 𝑥𝑖
[𝑘+1]

= 𝐸[𝑥𝑖|𝑦𝑖; 𝑝[𝑘]] (3.1)

where 𝑥𝑖 is the data to be estimated, and 𝑦𝑖 is the observed data, 𝑝 is the parameter such

as mean (𝜇) and covariance (𝑐𝑜𝑣). New values of 𝜇 𝑎𝑛𝑑 𝑐𝑜𝑣 will be obtained using the

E-step, then the M-step applies 𝑙𝑜𝑔 likelihood to maximize the estimated parameters. This

will be repeated until the iteration converges or (𝜇𝑘+1, 𝑐𝑜𝑣𝑘+1) = (𝜇𝑘 , 𝑐𝑜𝑣𝑘) .

3.2.4 K-Nearest Neighbour Imputation (KNNI)

The method uses a metric to calculate the nearest neighbours between data points. The

measure most commonly used is the Euclidian distance (Huang et al, 2015), which is the

metric space between two points in Cartesian coordinates. The formula is

 𝐸(𝑎, 𝑏) = √∑ (𝑥𝑎𝑖 − 𝑦𝑏𝑖)2𝑛
𝑖=1 (3.2)

where 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑎) a distance between two data points 𝑎 and 𝑏, and 𝑖 ∈ 𝐷 is the

feature number in the set of features 𝐷. In missing value problems K-NN will divide the

sample space into 𝑘-clusters; each cluster has nearest neighbour data points. The method

then calculates the mean of the cluster to make a centre point to update the learning

procedure and to decrease the error of classification as much as possible. There are two

approaches to fill the missing values with the neighbour data point (Jonsson & Wohlin,

2004). The first approach is where there are no missing neighbours to the missing case,

which allows the complete cases to be neighbours. In the second approach, the neighbours

could be incomplete or complete cases.

The advantages of the KNN model are: (a) it can treat both numeric and categorical

values, (b) accessibility to deal with multiple missing values, (c) no consideration of the

correlations of the data (Jonsson & Wohlin, 2004; Song et al, 2008). However, K-NN

59

also has a drawback that this algorithm searches through all the dataset and updates the

centre value while looking for the most similar instances, so it is a slow model, which is

critical in the analysis of large datasets (Batista & Monard, 2003).

3.2.5 K-mean imputation

The dataset is divided into 𝑘 groups based on similarity of objects and then missing value

are filled by the mean of the group they belong to. The similarity depends on the distance

scale between the centre of the 𝑘 cluster and the objects (Li et al, 2004). This method

finds the mean for a random 𝑘 cluster; the distance between objects and cluster centroid

is calculated with the help of Euclidean distance (Shankar et al, 2016). With 𝑘-mean, is

the dataset 𝐷 of data points 𝑥𝑖 is divided into subsets 𝑆1,𝑆2,…𝑆𝑘, by following these four

steps:

Step 1: select “𝑘” instances randomly, from set stand for centre point.

Step 2: assign each data point to its closest chosen centre point.

Step 3: update the cluster centre.

Step 4: recalculate the positions of 𝑘-centroid.

The minimisation expression is calculated by the following equation

𝐽(𝑥, 𝑚) = 𝑎𝑟𝑔 min
𝑠

∑ ∑(𝑑(𝑥𝑖 , 𝑚𝑗))2

𝑘

𝑗=1

𝑛

𝑖=1

(3.3)

Let 𝑆𝑗 = {𝑥𝑖 , 𝑖 ∈ {1,2, . . , 𝑛}: 𝑑(𝑥𝑖, 𝑚𝑗 ≤ 𝑑(𝑥𝑖, 𝑚𝑟), 𝑟 = 1,2, … , 𝑘}

𝑆𝑗 is called the 𝑗th cluster and 𝑚𝑗 is called its centroid. The disadvantage of this method

is the need for determining the number of clusters, 𝐾, before analysis. Also the mean is

not robust to outliers, so data far from the centroid may shift the centroid away from the

real one.

60

3.2.6 Support Vector Machine (SVM) imputation

Although the SVM algorithm is used for classification by recognising patterns and

analysis of data, it can be used to impute missing values. Adopting the chosen kernel,

SVM defines the boundary between classes by selecting a set of support vectors

(Sivapriya et al, 2012). As illustrated in figure 3-2, the algorithm aims to separate between

the two classes by a margin and expand the gap as much as it can. The best line can divide

the two classes and then classify instances based on which side of the line they appear.

The value of the variable imputed then becomes a target value and avoids the original

classification. However, the training algorithm is slow and requires many complex

computation processes (Liu & Liu, 2010).

Figure 3-2 Support Vector Machine.

3.3 Experiments and Results

3.3.1 Chronic Heart Failure Dataset

The dataset called LifeLab used in this study is a dataset collected from patients with

chronic heart failure; there are 1944 patients, each with up to 60 clinical variables

(Cleland et al, 2016). There are many missing values in the research dataset, and most

61

imputation methods cannot work properly when the record has too many missing values.

The missing values in the thesis dataset range from 0 to 20 per cent for the features, as

shown in the appendix I. Only three features have no missing values. They are “Age”,

“MR-proANP”, and “CT-proAVP”. All the other 57 variables have missing values in from

13 to 396 samples. The features that have the most missing values are “Ferritin”,

“LVEDD (cm)”, and LVEDD (High)” with 393, 380, and 396 missing, respectively.

There are missing values for patients’ records ranging from 0 to 60 per cent. We will

exclude all instances with more than 15 per cent to 60 per cent missing values; this

excludes 194 records, which amount to 10 per cent of data. when these records are

eliminated from the dataset, the number of patients’ records is decreased from 1944 to

1750 samples.

3.3.2 Evaluation of Classification Performance

The aggregate measure of performance is obtained using a classification algorithm and

then generating a confusion matrix. This matrix in its raw form provides information on

the number of correctly classified data points. However, this is further developed to

provide a more sophisticated measure of performance. Table 3-1 illustrates the confusion

matrix. The classification aims to classify the data as accurately as possible, and the

performance measure is related to the percentage of data classified after learning on the

training set (Sokolova & Lapalme, 2009). In the confusion matrix with two class labels,

the classification outputs are for a binary class dataset. The two class labels are known as

“positive” and “negative”; for these two labels, there are two possible results, “true” and

“false” value. Thus the output will be in these categories:

- True Negative, refers to the number of samples that are in the Negative class and

are correctly classified by the algorithm to the Negative class.

62

- True Positive refers to the number of samples in the Positive class that are

correctly classified.

- False Negative refers to the number of samples that are in the Negative class but

classified in the Positive class by the algorithm.

- False Positive refers to the number of samples that are in the Positive class but

classified in the Negative class by the algorithm.

Table 3-1: Confusion Matrix

Based on the confusion matrix, a number of crucial performance metrics such as accuracy,

sensitivity, specificity, and precision are obtained. These metrics indicate how well the

classification is being carried out, and in the case of selection of features, it enables the

comparison of the various sets of features selected. Accuracy measures the ability of the

algorithm to correctly predict the class, by finding the percentage of predictions that

were correct (Chauhan et al, 2013). The formula is:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3.4)

However, for clinical application, sensitivity and specificity are also crucial, in that they

are measures of how well the individual classes are predicted. Sensitivity, also called true

positive rate finds the percentage of the positive class that is correctly classified compared

to those incorrectly classified as negative. This measures the actual positive samples

which are correctly identified. Specificity, also known as the false positive rate, finds the

percentage of the negative class that is correctly classified related to positives that are

 Positives Negatives

Classified as Positive True Positive (TP) False Negative (FN)

Classified as negative False Positive (FP) True Negative (TN)

63

incorrectly classified, so it measures the actual negative samples which are correctly

identified. The positive class in our dataset refers to the “Alive” value, while the negative

class refers to the “Dead” value. Low results of specificity mean the algorithm could not

classify the negative class very well and vice versa.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.5)

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(3.6)

Precision includes positive predictive value (PPV) is the percentage of the positive class

that is correctly classified, i.e. the positive samples that were correctly identified.

Likewise, the negative predictive value (NPV) is the percentage of the negative class that

is correctly classified, i.e. the negative samples that were correctly identified.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.7)

𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁

(3.8)

- The Receiver Operating Characteristic (ROC) curve, is a graphic plot evaluation of

classification performance by plotting sensitivity against specificity. Thus, an increase

in sensitivity will be accompanied by a decrease in specificity. Accuracy is measured in

this curve by how close the curve is to the left-hand border, as illustrated in figure 3-3;

conversely, the lowest accuracy is when the curve is close to the 45-degree diagonal.

Figure 3-3 ROC curve example.

64

3.3.3 Analysis of Results

Imputing missing values is a pre-processing step to ensure that the knowledge discovery

has suitable data, as the presence of missing data influences the tools used for data mining

to obtain fair outcomes. There are various imputation methods used to impute missing

values problems, as discussed in the previous section. Moreover, it is possible that

different imputation methods may give different results, and also have different efficiency

levels.

Although most of the imputation methods improve the classification outcomes, the most

improvement is shown by SVMI and CMCI, whilst EMI and MCI show not much

improvement (see Table 3-2). Results indicate CMCI and SVMI have the highest

improvement outcomes with their accuracy when employing the RF algorithm being

85.71% and 84.97% respectively. These two methods follow a strategy that calculates

missing values with respect to class. CMCI finds the most common value from data in

the same class space, whereas SVMI separates the two classes and calculates the missing

value in the same class space as well. Other methods, such as EMI and MCI, result in

changing the basic nature of the properties of the data, and thus skewed distribution and

shift the mean which then results in incorrect relationships being deduced (Zhang et al,

2012).

MCI finds the most common value in the feature without respect to the class or the

distribution of the data points, and EMI also calculates the missing values depending on

the feature variance and mean. The other two methods, which are KNNI and K-mean,

provide little enhancement of the performance results, with 79.12% and 78.76%

respectively. These two methods calculate the missing value without respect to the class

label but divide the data into several parts in order to estimate the missing value for a part

of a feature instead of all feature values. Therefore, it can be argued that an imputation

method that respects the class label when calculating the missing values will provide more

65

accurate imputation than other methods. Indeed, the methods that calculate the missing

values for the whole feature will result in incorrect imputation and thus will not improve

the classification results. In figure 3-4 we can see how the methods perform, by looking

at not only the accuracy but also the sensitivity and specificity. It can be seen that using

any metric, both CMCI and SVMI yield improved outcomes. However for the other

methods, the overall performance is mixed in terms of the various metrics. For example,

sensitivity is decreased when implementing EMI, K-mean, MCI, and KNN, Also EMI

and MCI do not increase the specificity measure.

From table 3-2 we can see that the learning algorithm RF consistently yield the best results

compared to REPTree and J48. However, REPTree shows slight improvement over J48;

RF gives greater enhancement than the other algorithms. However, RF generates too

many trees; these cover all possible choices, but building a large number of trees will add

to the computational complexity.

3.3.4 Numeric complexity imputation algorithms

For 𝑛-samples and 𝑑-dimensions the computational complexity is as follows (Melgani &

Bruzzone, 2004; Thrun et al, 2004; Zhang et al, 2006{Melgani, 2004 #792):

-KNNI, 𝑂(𝑑) for distance of one sample, 𝑂(𝑛 ∗ 𝑑) for distance of all samples, and 𝑂(𝑛 ∗

𝑘) is the closest samples; then the overall time is 𝑂(𝑛𝑘 + 𝑛𝑑), because each

destination 𝑂(𝑑); second step 𝑂(𝑛 ∗ 𝑑); then third step 𝑂(𝑛).

- K-mean solved the problem solved in time 𝑂(𝑛𝑘𝐼𝑑), where 𝑛 is the number of data

points, 𝑘 is the number of clusters, 𝐼 is the iterations, and 𝑑 is the number of dimensions.

- SVM solved the problem in 𝑂(𝑛2*d), because of 𝑂(𝑚𝑎𝑥 (𝑛, 𝑑), 𝑚𝑖𝑛 (𝑛, 𝑑)2).

- EM is the most complex as its complexity is 𝑂(𝑘2 ∗ 𝑛).

- MC is 𝑂(𝑛2 ∗ 𝑑).

66

- CMC is 𝑂(
𝑛2

2
∗ 𝑑)

As illustrated in figure 3-5, the computational time for learning algorithm RF is very long

compared with REPTree and J48; being 60% more than J48 and 70% more than REPTree,

because REPTree prunes the parts that make a mistake. Besides, the computational time

is very long to learn classification for the incomplete dataset compared with imputed

datasets. Imputed data need half the time compared to incomplete data. Also, we can see

that the best methods that give high performance which are CMC and SVM, have shorter

computational time than other methods, in terms of learning time.

Table 3-2: Performance Measures for Several Imputation Methods Implemented on

Heart Failure Dataset, Using Different Classification Methods

Imputation

Method

Classification

Algorithm
Accuracy Sensitivity

Specificity

EMI

RF 78.05% 96.42% 22.88%

J48 71.20% 81.56% 40.04%

REPTree 75.20% 90.55% 28.37%

K-mean

Imputation

RF 78.76% 95.40% 28.66%

J48 70.88% 80.26% 42.68%

REPTree 75.66% 91.36% 28.45%

MC

Imputation

RF 78.28% 96.26% 24.25%

J48 68.97% 78.99% 37.44%

REPTree 75.48% 91.24% 28.14%

CMCI

RF 85.71% 97.56% 50.11%

J48 81.03% 87.43% 61.78%

REPTree 82.57% 94.67% 46.22%

SVMI

RF 84.97% 97.10% 48.51%

J48 78.57% 91.24% 55.60%

REPTree 80.62% 92.76% 44.16%

K-NNI

RF 79.12% 95.68% 29.28%

J48 71.14% 80.94% 41.65%

REPTree 74.38% 90.81% 24.95%

Original Dataset

RF 78.18% 96.77% 22.26%

J48 72.32% 84.37% 36.08%

REPTree 74.69% 91.08% 25.36%

67

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

98.00%

Sensitivity

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

Accuracy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Specificity

Figure 3-4 The line Charts that Shows the Outcomes of Imputation Methods Using RF method for Classification, (a) Accuracy, (b)

Sensitivity, and (c) Specificity

68

0

0.5

1

1.5

2

R
an

d
o

m
 F

o
re

st

J4
8

R
ep

Tr
e

e

R
an

d
o

m
Fo

re
st

J4
8

R
ep

Tr
e

e

R
an

d
o

m
Fo

re
st

J4
8

R
Ep

Tr
e

e

R
an

d
o

m
 F

o
re

st

J4
8

R
ep

Tr
e

e

R
an

d
o

m
 F

o
re

st J4
8

R
ep

 T
re

e

R
an

d
o

m
 F

o
re

st J4
8

R
ep

 T
re

e

R
an

d
o

m
 F

o
re

st

J4
8

/c
4

.5

R
EP

Tr
ee

EM K-Mean MC SVM CMC KNN withot
Imputation

Ti
m

e
(S

ec
)

Imputation Method

Computational Time for Classification in Seconds

Figure 3-5 The Complexity Time of Different Classification Algorithms Used to Classify the Dataset Imputed By

Different Imputation Methods

69

3.4 Conclusion

This chapter has investigated various imputation methods that are used for handling

missing values. We illustrated that handling missing values is a significant issue in the

data mining life cycle. Imputing missing values was preceded by discarding some

patients’ records with a large percentage of missing values, more than 15 per cent, as well

as eliminating features with a large percentage of missing data. Although in the research

dataset, not all features have large missing values, some patients’ records have large

missing values. Therefore, we discarded all records with more than 15 per cent missing

data, which was 194 patients’ records, so the number of patients remaining is 1750.

The imputation shown in this thesis was applied to a chronic heart failure dataset.

Although many of the imputation methods used in this research gave an improvement in

classification performance; some methods had a little improvement, whereas others had

a significant improvement. The methods that impute missing values by separating the

data points for each class, for example, SVMI and CMCI obtained significant results. In

contrast the methods that evaluate data for the whole feature, for example, EMI and most

common imputation did not yield an improvement , because the data in a patient's records

will have close values rather than the data from two classes. Further, the methods that

divided the data into different groups, for example, K-mean and K-NNI gave a little

improvement.

For the computational time, we show that the RF is the most complex for learning

compared with J48 and REPTree. Also, the learning process for the incomplete dataset

has longer computational time compared with the imputed datasets.

70

 Dimensionality Reduction - feature selection

4.1 Introduction

High dimensionality is one of the obstacles faced in mining clinical data. A large number

of features may influence the accuracy of classification and cause high computational

costs. Two techniques are used to reduce high dimensionality; feature extraction or

feature selection. Feature extraction transforms the existing features into a lower

dimensional space, for example, PCA and LDA, whereas feature selection eliminates

irrelevant features and selects the features that are most relevant. Feature selection can be

categorized into (i) wrapper methods (ii) filter methods and (iii) embedded methods. In

the filter methods, the algorithms measure the relevance of the feature and concept; some

measures used are interclass distance, statistical dependence, and information measures.

In the Wrapper method, the algorithm evaluates the prediction of the features by evolving

the classifier algorithm with the dataset. The embedded method measures the interest of

features by searching along with the learning algorithm by using cross-validation for

assessment. The wrapper is slow in execution because it needs to train a classifier for each

feature subset. Filter methods could rank features or a subset selection. Methods based on

filters are simple and need little computational time. The first step of feature selection is

to search for the space of a possible feature subset; the next step is to evaluation strategies

to select the subset that is optimal or near-optimal with respect to objective function.

Feature selection is important in the data mining process as the selected subset will reduce

computational complexity and simplify interpretation. For example in a clinical dataset,

the selected features can identify the main features that can determine the patient's status.

71

4.2 Feature Selection Problem

Understanding the feature selection problem starts with recognising the supervised

learning process. Consider a dataset 𝐷 that contains input space with 𝑓 features {𝑓𝑖
𝑗
; 𝑖 =

1,2,3 … 𝑛, 𝑗 = 1,2,3, … 𝑁}, where 𝑛 is the number of features and 𝑁 the number of data

points. The output space is {𝑦𝑖
𝑗
; 𝑖 = 1,2,3, … 𝑚; 𝑗 = 1,2,3, . . . 𝑁} Then the function 𝑔 is

function map for each 𝑗 (Rinaldi, 2009).

 𝑔: 𝑓𝑖
𝑗

→ 𝑦𝑖
𝑗
 (4.1)

For an input space with very large dimensions, it becomes numerically intractable.

Therefore, there is a need for reducing the number of features such that the errors in

predicting the outputs are below a threshold. Let 𝑆𝑖 be the reduced set of features such

that 𝑆𝑖 ⊆ 𝑓𝑖 then, |𝑔 − �̂�| ≤ 𝜀 and �̂�: 𝑆𝑖
𝑗

→ 𝑌𝑖
𝑗
. Thus the feature selection problem is one

of finding the set 𝑆𝑖. A first step towards feature selection is to identify (a) irrelevant

features, (b) redundant features. Once these have been determined, and removed from the

set, the final selection process is started to rank the relevance of features.

The definition of relevance is as follows (Huang, 2015):

For a subset 𝑆 and a set of features 𝐹 = {𝑓1, 𝑓2, … 𝑓𝑛}, where 𝑆 ⊂ 𝐹, 𝑌 is the target concept

to be learned, and 𝑟 is a vector of values project to all features in 𝑆. Then, the feature 𝑓𝑖

is relevant to 𝑌 given 𝑆(𝑓𝑖 ∉ 𝑆) 𝑖𝑓𝑓 there exists some 𝑓𝑖 , 𝑌, and 𝑟 for which

 𝑃(𝑆 = 𝑟, 𝐹𝑖 = 𝑓𝑖) > 0

(4.2)

such that

 𝑃(𝑌 = 𝑦|𝑆 = 𝑟, 𝐹𝑖 = 𝑓𝑖) ≠ 𝑃(𝑌 = 𝑦|𝑆 = 𝑟) (4.3)

Let 𝐹 be a full set of features, 𝑓𝑖 a feature, and 𝑆𝑖 = 𝐹 − {𝑓𝑖}, the categories of relevance

can be formalized as follows (Yu & Liu, 2004):

 Strong relevance, input feature 𝑓𝑖 is strongly relevant to the output class 𝐶 𝑖𝑓𝑓

72

 𝑃(𝐶|𝑓𝑖 , 𝑆𝑖) ≠ 𝑃(𝐶|𝑆𝑖)

 (4.4)

 Weak relevance, input feature 𝑓𝑖 is weakly relevant to the output class 𝐶 𝑖𝑓𝑓

 𝑃(𝐶|𝑓𝑖, 𝑆𝑖) = 𝑃(𝐶|𝑆𝑖),

 (4.5)

 and ∃𝑆𝑖
′ ⊂ 𝑆𝑖, Such that 𝑃(𝐶|𝑓𝑖 , 𝑆𝑖

′) ≠ 𝑃(𝐶|𝑆𝑖
′).

 (4.6)

 Irrelevance, feature 𝑓𝑖 is irrelevant to the output class 𝐶 𝑖𝑓𝑓

 ∀ 𝑆𝑖
′ ⊆ 𝑆𝑖, 𝑃(𝐶|𝑓𝑖, 𝑆𝑖

′) = 𝑃(𝐶|𝑆𝑖
′)

(4.7)

The relevance definition can be illustrated by the following 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑋𝑂𝑅 example

(Kohavi & John, 1997). We have 5 Boolean features {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5} and the target

concept 𝑌 = 𝑓1 ⊕ 𝑓2 , where 𝑓4 = 𝑓
2
 and 𝑓5 = 𝑓3̅, see the truth table 4-1. We can see

that 𝑓3 and 𝑓5 are irrelevant because the target 𝑌 is dependent on the values of 𝑓1 and 𝑓2 .

Note that 𝑌 is equivalent to 𝑓1 ⊕ 𝑓4̅ ; therefore 𝑓2 and 𝑓4 are weakly relevant, whereas

𝑓1 is strongly relevant.

Table 4-1: The truth table of 𝒀 = 𝒇𝟏 ⊕ 𝒇𝟐 where 𝒇𝟒 = (𝒇𝟐
̅̅ ̅) and 𝒇𝟓 = (𝒇𝟑

̅̅ ̅)

𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒀

0 0 0 1 1 0

0 0 1 1 0 0

0 1 0 0 1 1

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 0

1 1 1 0 0 0

73

4.3 Materials and Methods

4.3.1 Data pre-processing

The dataset called LifeLab used in this study is a dataset collected from patients with

chronic heart failure; there are 1944 patients, each with up to 61 clinical variables

(Cleland et al, 2016). Considering the data are incomplete, 1750 patients remained after

those with more than 15 per cent missing values were excluded (as discussed in section

3.3.1). Data pre-processing is the most important step of data mining (Patel & Prajapati,

2016). For the purpose of this work Concept Most Common (CMC) was used to impute

the missing values, because it yielded the best outcomes (as illustrated in section 3.3.3).

4.3.2 Feature Selection Methods

The dataset has large dimensionality, and some of these variables are not related to the

class or the other variables. Also, some of these unwanted variables may reduce the

classification performance. A variety of feature selection methods were used; a wrapper

method, an embedded method by implementing a support vector machine (SVM) learning

algorithm, and six filter methods; the categories for these methods are shown in table 4-

2. Univariate methods mean that the relation exists between every single feature and the

class label; whereas multivariate refers to the relation between groups of variables and

the class. The filter methods are divided into subset methods, which are consistency and

Cfs, whereas the others are ranking methods that use different analysis measures.

Table 4-2: Categorization of Feature Selection Methods

 Univariate method

(Single feature

evaluation- ranker)

Multivariate

(Ranker method)

Multivariate

(Subset evaluation)

Filter Information gain,

Chi-square,

Correlation.

ReliefF Consistency,

Correlation-based

feature selection (Cfs).

Embedded Support Vector Machine

(SVM).

Wrapper Ranking accuracy

using a single feature.

74

1- Correlation-based Feature Selection (Cfs) is a method that gives a high ranking to a

subset that includes attributes which are highly correlated to the class feature with low

correlation to other variables. Therefore, it evaluates a subset’s interrelation with the

concept rather than evaluating attributes individually (Hall & Holmes, 2003). The

method considers the individual capability of each attribute according to the amount

of redundancy between them (Guyon & Elisseeff, 2003). The relevant features are

identified by the probability of

 𝑃(𝐶 = 𝑐|𝑓𝑖 = 𝑣𝑖) ≠ 𝑃(𝐶 = 𝑐) (4.8)

where 𝑓𝑖 is the feature 𝑖, 𝑣𝑖 feature’s value where 𝑝(𝑓𝑖 = 𝑣𝑖) > 0, and 𝐶 a class label.

The method calculates the correlation between the features and the concept variable,

by the Pearson coefficient:

𝑟𝑧𝑐 =

𝑘𝑟𝑧𝑖

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑖𝑖

(4.9)

where 𝑘 is the number of components, 𝑟𝑧𝑖 the average correlation of feature-class, and

𝑟𝑖𝑖 the average correlation of feature-feature (Hall, 1999). As a subset method, Cfs has

a number of candidate subsets equal to 2𝑁 , where N is the number of dataset features.

The steps for subset selection are:

 Select a subset of attributes that have good predictive power.

 Add new features to the existing set if using sequential forward selection, otherwise,

remove features from the existing set if using sequential backwards selection.

 Stop criteria, evaluate the subset by classification error or category distance

measurement.

2- Consistency Subset evaluation: this is another subset evaluation method that selects

a subset of attributes depending on the level of consistency in the class values when

the training instances are projected onto the subset of variables (WEKA 3.6.9). A

Consistency algorithm measures the smallest subset of features that can separate

75

classes i.e. the two equal values of instances must belong to the same class label (Dash

& Liu, 2003). The consistent feature form a set {𝑓1, … ,𝑓𝑛} (Shin et al, 2011):

 P(𝐶 = 𝑐 | 𝐹1 = 𝑓1 , … , 𝐹𝑛 = 𝑓𝑛) = 0 𝑜𝑟 1 (4.10)

 Inconsistency rate (also known as consistency measure) is calculated as follows (Dash

& Liu, 2003),

a. If the same two instances differ in the class label it is considered as an

inconsistent pattern.

b. The number of times the inconsistent pattern appears minus the largest number

of different classes is called the inconsistency count.

c. The inconsistency count over all patterns of the feature subset’s divided by all

instances; the outcome is called the inconsistency rate. The proportion of these

inconsistent examples in the total number of examples is given by:

 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 (4.11)

Then the consistency is defined as:

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 1 − 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (4.12)

3- Chi-square Attribute Evaluation; it is a simple filter approach that ranks features

according to value chi-square for two-way tables; the two-way table for this case is a

confusion matrix. The method tests the dependence of two variables, therefore it does

not examine the redundancy between the attributes, as the variables are measured

individually with respect to the class. It is used to test if the amount of a specific

variable and the amount of a specific class are independent. Thus, the method

calculates the chi-square between every feature and the target by observed data points.

Then, if the relation is independent, we can exclude this variable. Chi-square is

identified by:

76

𝜒2 = ∑

(𝑂 − 𝐸)2

𝐸

(4.13)

where 𝑂 is the observed value and 𝐸 is the expected value; high scores mean that

features 𝑓𝑖 and 𝑓𝑗 are dependent. Chi-square shares similarities with the coefficient of

determination 𝑅², except that 𝑅² is applicable only to numeric data.

4- Correlation Coefficient Evaluation: one of the simple methods is Pearson’s

Correlation Coefficient which measures a linear correlation between two variables.

The resulting value lies between [−1, 1], where −1 refers to a negative relation, 1

refers to a positive relation, and 0 is no relation between the two variables. The Pearson

correlation coefficient is defined as:

𝑅(𝑖) =

𝑐𝑜𝑣(𝑓𝑖, 𝑌)

√𝑣𝑎𝑟(𝑓𝑖)𝑣𝑎𝑟(𝑌)

(4.14)

where 𝑐𝑜𝑣 designates the covariance and 𝑣𝑎𝑟 the variance, 𝑓𝑖 an input feature and,

and 𝑌 the output feature. The feature selection technique uses this algorithm to

estimate the relationship between each variable and the concept variable, and chooses

only the variables that have a high positive or negative relation. Figure 4-1 shows high

positive correlations for some features in the thesis dataset.

5- ReliefF Attribute Evaluation: a supervised feature weight estimation, that measures

attribute quality to select a feature subset (Demšar, 2010). The idea of a Relief

algorithm is that it randomly selects features to estimate the feature’s weights, using

the difference in features value from the nearest sample (Jia et al, 2013). The algorithm

selects a random data point 𝑗, then searches for the 𝑘 nearest neighbour from the same

class (called the nearest hit) and each different class (called nearest miss) as illustrated

in figure 4-2 (Durgabai, 2014). The formula for updating the weight is as follows:

 𝑊𝑗 = 𝑊𝑗 − (𝑓𝑖 − 𝐻)2 + (𝑓𝑖 − 𝑀)2 (4.15)

77

where 𝑊𝑗 is the weight of feature 𝑓, 𝑗 is a random data point, 𝑀 is the nearest miss, 𝐻

is the nearest hit.

set all weights W[A] = 0.0

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚 do

 begin

 randomly select an instance 𝑅

 find 𝑘 nearest hits 𝐻𝑗

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝐶 ≠ 𝑐𝑙𝑎𝑠𝑠(𝑅)

 find 𝑘 nearest misses 𝑀𝑗(𝐶)

 𝑓𝑜𝑟 𝐴 = 1 𝑡𝑜 #𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 do

 𝑊[𝐴] = 𝑊[𝐴] − ∑
𝑑𝑖𝑓𝑓(𝐴,𝑅,𝐻𝑗)

𝑚×𝑘
𝑘
𝑗=1 +

 ∑ [
𝑃(𝐶)

1−𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅))𝑐≠𝑐𝑙𝑎𝑠𝑠(𝑅) ∑ 𝑑𝑖𝑓𝑓(𝐴, 𝑅, 𝑀𝑗(𝐶))]/(𝑚 × 𝑘)𝑘
𝑗=1

 end

Figure 4-2 Relief algorithm

Figure 4-1 Pearson's Correlation between Features with High Positive Correlation in the Thesis Dataset.

78

6- Information Gain Attribute Evaluation is a method using entropy to measure the

relevance between the feature and the class label (Novakovic, 2009). The entropy 𝑦 is

a conditional probability after observing 𝑓𝑛

𝐻(𝑦) = − ∑ 𝑃(𝑓𝑖)

𝑛

𝑖=1

∑ 𝑝(𝑦|𝑓𝑖) log2

(𝑃(𝑦|𝑓𝑖)

𝑃(𝑦)

(4.16)

where 𝐻(𝑦) is the entropy of the given dataset. It is a symmetric measure; the

information gained by 𝐻(𝑦) after observing 𝐻(𝑓𝑖) is equivalent to the information

about 𝐻(𝑓𝑖) after observing 𝐻(𝑦) (Novaković et al, 2011). Therefore, values vary from

0 (no information) to 1 (maximum information). If 𝐼𝐺(𝑓, 𝑌) = 0 then the two

variables are independent, otherwise they are dependent. Sui (2013) has some

definitions of relevance by IG; one of them is using IG to measure the prediction power

of the attribute, 𝑓𝑖 is releveant 𝑖𝑓𝑓

 𝐼𝐺(𝐹) > 𝐼𝐺(𝐹 − 𝑓𝑖)

(4.17)

where 𝐹 – 𝑓𝑖 is the feature subset resulting from removing feature 𝑓𝑖 from feature set 𝐹.

By this definition the feature is relevant if the information achieved by learning the feature

subset 𝐹 − 𝑓𝑖 is less than the information achieved by set 𝐹.

7- Wrapper filter the wrapper uses the induction algorithm itself as part of the evaluation

function to search for a good subset (Cohen & Hirsh, 1994). The feature selection

algorithm then occurs as a wrapper around the induction algorithm used as a “Black

Box”, as in figure 4-3. The Black Box is used to prompt a classifier that will be

convenient to classify future instances, and the algorithm leads to a search for a high-

performance subset in terms of classification (Kohavi & John, 1997). The evaluation

involves the induction algorithm using cross-validation to evaluate the precision of the

learning scheme for a set of features approximating the accuracy using estimation

79

accuracy techniques. The search space size for 𝑛 features is 2𝑛 with complexity 𝑂(𝑛),

due to each state in the search space representing a subset. wrapper is unfeasible for

computationally intensive methods as it must train a classifier for each feature subset

(Zhang et al, 2015). The wrapper method relies on heuristic searching for all possible

search subsets. An example of a heuristic search is hill climbing. The hill climbing

algorithm shown in figure 4-4 displays addition of features one at a time until no

further improvement can be achieved.

1: Let 𝑆 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒.

2: Expand 𝑆: apply all operators to 𝑆, given 𝑣’s children.

3: Apply the evaluation function 𝐸𝑣𝑎𝑙 to each child 𝑤 of 𝑆.

4: Let 𝑣’ = the child 𝑤 with highest evaluation 𝐸𝑣𝑎𝑙(𝑤).

5: If 𝑓(𝑣’) > 𝑓(𝑆) then 𝑆 ← 𝑣′; 𝑔𝑜𝑡𝑜 2

6: Return 𝑆.

Figure 4-4 Hill-Climbing Search Algorithm.

8- Support Vector Machine (SVM), Embedded methods are different from the filter

and wrapper methods as the feature selection is performed in the process of the

Best
subset

Feature subset search

Feature subset evaluation

Induction Algorithm

Input

Features
Induction

Algorithm

Evaluation

Figure 4-3 The Wrapper Method for Feature Selection

Learning
Algorithm

80

learning classifier (Hamed et al, 2014). The embedded method of searching for an

optimal subset of variables adopts the structure of the classifier; embedded algorithms

compromise the interaction with the classification model. The SVM algorithm uses a

margin hyperplane to ensure the two patterns are separated linearly; the hyperplane

maximises the sum of distances between the margin and hyperplane, see figure 4-5

(Wahed & Wahba, 2003). The model is trained with all features by setting the

coefficients associated with the features to 0 and attempting to remove these features

while preserving model performance. If the classes are not linear then a variant of

SVM is used (Huang et al, 2015; Ozcift, 2012):

1. Train a regular linear SVM.

2. Re-scale the input variables by multiplying them by the absolute values of the

components of the weight vector 𝑤 obtained.

3. Iterate the first 2 steps until convergence.

For 𝑛 features the number of subsets tried is equal to 𝑛 with computational complexity

equal to 𝑂(𝑙𝑜𝑔 𝑛).

1: Converged: = FALSE, 𝜃 ∶= 1

2: while converged==FALSE do

3: [𝑓𝑙
′ , 𝛼 , 𝑏] = trainSVM(𝐹′ , 𝑌′ , 𝜃 , 𝐶)

4: 𝜃∗= apply_Bundle_Method (𝐹′′, 𝑌′′, 𝑓𝑙
′, 𝛼, 𝑏, 𝐶)

5: if 𝜃∗ == 𝜃 then

6: converged=TRUE;

7: end if

8: 𝜃 = 𝜃∗

9: end while

Figure 4-5 Algorithm Iterative Dimensionality Reduction for SVM

81

4.3.3 Numeric complexity of feature selection algorithms

Feature selection is an iterative process, as shown in figure 4-6. The subset generation is

a heuristic search in which each state specifies a candidate subset for evaluation (Kumar

& Minz, 2014).

For a dataset 𝐷 with number of features 𝑁, the number of candidate subsets is 2𝑁. The

search strategy is exhaustive; the search space will be 𝑂(𝑁2) and the number of possible

steps is 𝑂(𝑁). In terms of time, for filter and embedded methods, complexity is 𝑂(𝑙𝑜𝑔𝑛)

for 𝑛 number of subsets tried for feature ranking. However for the wrapper it is more

computationally costly as the search space size for 𝑛 features is 2𝑛 with complexity 𝑂(𝑛).

Thus in terms of complexity 𝑓𝑖𝑙𝑡𝑒𝑟 < 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 < 𝑤𝑟𝑎𝑝𝑝𝑒𝑟; and if complexity is an

important element, selecting a filter method would be ideal. However, if other

considerations are to be included, then it is possible that another form of feature selection

method would be selected (See section 4.4.1).

The evaluation process is another complexity added to the complexity of feature selection,

whereas the validation step is not part of the feature selection process but must be

performed by carrying out different tests and comparisons. The selected subset of features

needs more iterations for classification for assessment.

Subset

Evaluation

Subset

Generation

Stopping

Criterion

Goodness

of Subset

Subset
Original
Set

No
Yes

Result

Validation

Figure 4-6 Feature selection process (Dash & Liu, 1997)

82

4.4 Analysis Results

 The number of variables selected by the feature is different and depends on the selection

methods used. Methods such as Embedded, ReliefF, chi-square, and wrapper obtain the

best performance results with 15 features, as illustrated in table 4-3. Other methods need

a large number of features like correlation and information gain, obtaining the best results

with 29 and 34 features, respectively. Moreover, the filter methods, which select subsets

of features such as consistency and Cfs, selected 11 and 23 features, respectively. Further,

the performance accuracy for the smallest set of features is 87.20% while it is 85.70% for

the largest set of features selected, as shown in table 4-3. Thus, increasing the number of

features selected does not ensure an increase in performance.

Table 4-3: The number of features that gain the best performance in the feature

selection methods

Algorithms No. of Features

with Best

performance

Performance accuracy

Ranking methods RF J48 REPTree

 Embedded (SVM) 15 87.14% 82.85% 84.28%

 ReliefF 15 87.20% 83.8% 83.9%

 Chi-square 15 88.50% 83.77% 84.50%

 Wrapper 15 88.85% 84% 84.45%

 Correlation 29 86.11% 82.68% 81.25%

 Information Gain 34 85.70% 82.70% 82.0%

Subset methods

 Consistency 11 87.20% 82.97% 83.70%

 Cfs 23 87.82% 83.42% 84.11

Each feature selection method chooses a different number of features that attained best

classification performance; some of the algorithms improved the classification

performance with a large set of features, while others worked well with a small set of

features. The accuracies of embedded, ReliefF, chi-square, and wrapper methods

increased as the set of features expanded until reaching a maximum of 15 features, then

decreased again, as shown in figure 4-7.

83

All performance results using RF as a learning algorithm are shown in table 4-4.In general

wrapper and chi-square obtained the best results with a number of features lower than 30

variables, then, the results decreased with the same minimum consequence at 85.48%.

The wrapper method generally achieved better recognition rates than the other methods

because it is tuned to the specific interaction between the classifier and dataset. In

addition, the wrapper is successful for identifying strong feature relations because this

method takes into account feature dependencies. The second two methods that had almost

similar results are ReliefF and embedded SVM, which returned the highest results with

15 features. The methods that produced the worst results were Correlation and

Information gain; they started with 78% and 79% respectively by selecting 11 variables.

This is because the information gained by entropy and Pearson’s correlation is not focused

on redundant variables, but can exclude variables that may contribute to prediction more

than other features that have more information but can be swapped with one another. The

two subset selection methods, Consistency and Cfs selected 11 and 23 attributes from 60

variables, with performance results of 87.20% and 87.82% respectively. Consequently,

the performance accuracy of the full dataset is 85.45%, which indicates that all feature

selection approaches can improve the performance of classification, on the condition of

finding an appropriate number of attributes. Moreover, it can be seen that the chi-square

and wrapper methods consistently performed better than full data where any number of

features could be used. The differences in performance accuracy are illustrated in figure

4-9, where we can see a big difference in accuracy, with the Correlation and Information

gain methods yielded of 4% and 3%, respectively, while the least difference resulted from

using the wrapper method with less than 1% change.

84

Figure 4-7 The Accuracy Obtained by Ranking Feature Selection Methods for Different

Numbers of Features Used

Sensitivity and specificity outcomes for different classification methods are explained in

figure 4-8. The results with the highest level of accuracy were obtained when using the

85

RF classification method, followed by REPTree; the lowest accuracy outcomes came

from using the J48 classification method. In the sensitivity diagram, we see that the

wrapper and chi-square methods have the highest sensitivity with 98%. In contrast, the

highest sensitivity using REPTree comes from the Information gain method followed by

chi-square and Cfs, while Consistency gets high sensitivity using the J48 classification

method. RF has the highest specificity results, followed by J48 then REPTree. The

wrapper method has the best specificity results with 62% using the RF classification

method, followed by Information gain then Cfs. Information gain gives the highest

specificity results using J48, followed by chi-square.

Table 4-5 displays the attributes’ ranking for each feature selection method, and the subset

attributes designated from a subset selection method. The best methods rank almost equal

in the ordered list. For example, in the chi-square and wrapper methods, the 15 best

performing features are {LVEDD (cm), MCV, Ferritin, LVEDD (High Indexed), E, Iron,

Hct, CT-proET1, Left Atrium, Aortic Velocity, Uric Acid, MR-proADM, Aortic Root,

VitaminB12} . These attributes contribute to prediction, such that if the selected subset

contains most of the above list, it will enhance the predictive model.

Therefore, we can say that the subsets gained by chi-square and wrapper contain the

variables with the strongest relevance; since these two methods have the highest

performance and high similarity. SVM and ReliefF have different subsets although they

obtained good results; this is because in some cases combining two weak variables can

produce a high related variable. As for the results obtained from Cfs technique, as we

know, the Cfs method tries to find a subset that has less correlation with other variables

and high relevance to the concept variable. This method shows good results with 23

variables, which means some variables with weak relevance are added to those with

strong relevance; the added weakly relevant variables can work together to create strong

variables.

86

Table 4-4: Classification Performance for Selected Number of Features from Different

Feature Selection Methods using RF Algorithm

Algorithm

No. of

Features Accuracy Sensitivity Specificity PPV

Chi-square

11 88% 0.968 0.622 0.885

15 88.57% 0.980 0.602 0.881

23 88.20% 0.979 0.593 0.878

29 87.40% 0.973 0.577 0.874

34 86.28% 0.966 0.551 0.866

44 86.17% 0.971 0.533 0.862

52 85.37% 0.971 0.594 0.854

Correlation

11 78.11% 0.919 0.368 0.814

15 79.71% 0.929 0.400 0.823

23 85.25% 0.955 0.545 0.863

29 86.11% 0.959 0.571 0.871

34 86.05% 0.960 0.563 0.868

44 85.42% 0.965 0.522 0.858

52 84.97% 0.968 0.494 0.852

Information

11 78.97% 0.928 0.373 0.816

15 83.71% 0.945 0.513 0.854

23 83.37% 0.949 0.487 0.848

29 84.40% 0.958 0.501 0.852

34 86.62% 0.964 0.572 0.871

44 86.05% 0.967 0.540 0.863

52 85.60% 0.970 0.515 0.857

ReliefF

11 87.02% 0.967 0.579 0.873

15 87.20% 0.969 0.581 0.874

23 86.74% 0.970 0.558 0.868

29 86.17% 0.967 0.545 0.865

34 85.42% 0.958 0.542 0.863

44 85.08% 0.971 0.490 0.851

52 85.02% 0.969 0.494 0.852

SVM

11 87.25% 0.961 0.606 0.880

15 87.54% 0.969 0.595 0.878

23 86.91% 0.964 0.584 0.874

29 85.88% 0.966 0.538 0.863

34 86.28% 0.965 0.556 0.867

44 85.65% 0.971 0.513 0.857

52 84.68% 0.969 0.481 0.849

Wrapper

11 88.22% 0.977 0.597 0.879

15 88.85% 0.977 0.622 0.886

23 87.82% 0.976 0.584 0.876

29 87.25% 0.977 0.558 0.869

34 87.20% 0.971 0.574 0.873

44 86.40% 0.975 0.531 0.862

52 86.45% 0.978 0.524 0.861

Consistency 11 87.20% 0.966 0.588 0.876

CFS 23 87.82% 0.978 0.579 0.875

Full Data 60 85.48% 0.975 0.494 0.853

87

Table 4-5: The Order List of the First 22 Features from All Features Selection Methods

*hint: where the number before the feature name is the result of the employed method.

 Consistency CFS Chi-square Wrapper SVM ReliefF Correlation Information Gain

1 Age(yrs) Chloride 433 LVEDD(cm) 0.192 LVEDD(cm) CT-proET1 0.03 LVEDD(HgtIn) 0.281 Urea 0.055 MR-proANP

2 Phosphate() Urea 426 LVEDD(HgtInd) 0.170 MCV MR-proADM 0.03 LVEDD(cm) 0.271 MR-proANP 0.051 Urea

3 UricAcid(mm) Albumin 394 MCV(fL) 0.169 Ferritin Urea(mmol/L 0.018 MR-proANP

 0.252
LeftAtrium(BSAInd 0.050 CRP

4 MCV(fL) UricAcid(mm) 371 Ferritin(ug/L)
 0.168
LVEDD(HgtInd)

LeftAtrium(BSA
Ind) 0.016 FEV1(L) 0.251 Creatinine 0.047 PCT

5 Iron(umol/L) Glucose 368 Hct(fraction) 0.164 E AlkalinePhosp 0.015 Age 0.233 Albumin 0.046 Creatinine

6 Ferritin(ug/L) Triglycerides 364 Iron(umol/L) 0.160 Iron MCV(fL) 0.013 FEV1 0.226 CT-proAVP 0.039 Age

7 CRP(mg/L) WhiteCellCoun 362 E 0.160 HCT Albumin(g/L) 0.013 CT-proET1 0.224 FEV1(L) 0.039 FEV1(L)

8 CT-proET1 MCV 348 CT-proET1 0.156 CT-proET1 LVEDD(HgtIn 0.013 Iron 0.223 Age 0.037 Albumin

9 CT-proAVP HCT 330 MR-proADM

 0.142
LeftAtrium(BSAIn Creatinine() 0.013 Vitamin

 0.216
LVEDD(HgtInd)

0.037
LeftAtrium(BSAind

10 LVEDD(HgtIn Iron 315 LeftAtrium(BSAInd) 0.141 AorticVelocity WhiteCellCnt 0.013 PEFR(L) 0.199 FEV1 0.036 CT-proAVP

11 E VitaminB12 303 AorticVelocity(m/s) 0.140 UricAcid BSA(m^2) 0.013FVC-Predicd(L) 0.195 Chloride 0.033 FVC (L)

12 Ferritin 295 UricAcid(mmol/L) 0.128 MR-proADM Iron(umol/L) 0.011 FVC(L) 0.192 CRP 0.032 Chloride

13 TSH 219 AorticRoot(cm) 0.101 AorticRoot MR-proANP 0.011 MR-proADM 0.192 MR-proADM 0.029 CT-proET1

14 MR-proANP 214 VitaminB12(ng/L) 0.094 VitaminB12

DiastolicBP(m
mHg)

0.010 FEV1
Predictd(L) 0.185 FVC(L) 0.028 DiastolicBP

15 CT-proET1 205 LeftAtrium(cm) 0.093 Glucose FEV1 0.010 FVC

 0.184
leftAtrium(Hgt) 0.027 FVC

16 LVEDD(cm)
200
Triglycerides(mmol/L) 0.091 Triglycerides Age(yrs)

0.010
PulseBP(mmHg) 0.184 FVC 0.026 Haemoglobin

17 LVEDD(HgtInd) 196 Glucose(mmol/L) 0.083 TSH

FVCPredicted(L
)

0.008
Pulse(EXAM)(bpm) 0.184 Iron 0.023 Weight

18 AorticRoot 192 TSH(mU/L) 0.081 Cholesterol Height(Exam 0.008 Rate(ECG) 0.181 DiastolicBP 0.021 SystolicBP

19 LeftAtrium(cm) 174 Cholesterol(mmol/L)
0.080
LeftAtrium(cm) Chloride(mmo 0.008 BSA(m^2) 0.178 AlkalinePhosp 0.021 FEV1

88

Figure 4-8. Performance measures using three different classification methods; (a)

Specificity (b) Sensitivity

(a)

(b)

RF

RepTree

J48

RepTree

RF

J48

CFS Chi-squared Consistency Correlation All-features IG ReliefF SVM Wrapper

CFS Chi-squared Consistency Correlation All-features IG ReliefF SVM Wrapper

89

4.4.1 The common features selected

a- Similarity results between methods

For the best 15 features selected, the intersection between the feature selections methods

used for these variables is shown in table 4-6. As we can see, the first 14 variables appear

in four methods or more, whereas only one feature appears in all methods, which is “CT-

proET1”. We eliminate variables that appear in only three or fewer methods, although

some of them appear in the best 15 features for the best two methods such as “Aortic

Velocity” and “Aortic Root”. Thus, the result obtained from the most common variables

that appear above is less than for the wrapper and chi-square methods when we use 15

variables to classify, as shown in table 4-7. This is because, as noted above, we eliminate

the features that appear in three or fewer methods. By doing this, we eliminate features

that appear in chi-square and wrapper only. Therefore, features like “Aortic Velocity” and

Figure 4-9 Box plot whiskers for different feature ranking methods in feature

selection

90

“Aortic Root” are more important and have stronger relevance than other variables that

appear in more than four methods, such as “Age” and “Albumin”.

b- The set of features common to 3 methods and more.

The subset has expanded common features selected by adding features that appear in three

methods and more. Table 4-8 shows the results for employing 25 variables which are

picked from the table of common variables that appear in the best 16 features from the

method used. As we can see, compared with the results in Table 44, the outcomes are

improved but still less than those of the wrapper and chi-square methods. For 15 variables

chosen by the wrapper and chi-square methods compared by the set of common variables,

we found that all 15 features chosen by wrapper and chi-square are the same, except

Aortic Root and Aortic Velocity. Almost 90% of features selected in this subset are in the

15 features subset of wrapper and chi-square.

Table 4-6: The Most Common Features and the Number of Methods

Features No. of Methods Features No. of Methods

CT-proET1 7 fev1 3

Iron(umol/L) 6 FEV1(L) 3

LVEDD(HgtInd) 6 FVC 3

age 5 FVC(L) 3

MCV(fL) 5 Glucose 2

MR-proANP 5 WhiteCellCoun 2

LeftAtrium(BSAInd) 5 AorticRoot(cm) 2

MR-proADM 5 AorticVelocity 2

Albumin 4 DiastolicBP(mmHg) 2

Ferritin 4 Phosphate(mmol/L) 1

UricAcid 4 TSH 1

LVEDD(cm) 4 LeftAtrium(cm) 1

Urea 4 AlkalinePhophatase 1

VitaminB12 4 BSA(m^2) 1

CRP 3 FEV1 Predicted(L) 1

Chloride 3 FVC-Predicted(L) 1

CT-proAVP 3 FVC-Predicted(L) 1

E 3 PulseBP 1

HCT 3 Haemoglobin 1

Triglycerides 3 PCT 1

Creatinine() 3

91

Table 4-7: Performance result of different classification methods for 14 features with

common variables that appear in four methods and more

No. of
Variables

Classification
Method

Accuracy Sensitivity Specificity PPV

14 J48 83.14% 90% 62% 87%

14 Random Forest 87.20% 97% 58% 87%

14 REPTree 84.80% 94% 56% 86%

Table 4-8: Performance result of different classification methods for 25 features with

common variables that appear in three methods and more

No. of
Variables

Classification Method Accuracy Sensitivity Specificity PPV

25 J48 83.25% 91% 60% 87%

25 Random Forest 87.48% 96.9% 59% 87.6%

25 REPTree 83.60% 94% 52% 85.5%

4.5 Conclusion

Feature selection is a tool that reduces high dimensionality in order to reduce

computational complexity and ensure accuracy in predictive analysis. All feature

selection methods aim to remove irrelevant and redundant variables while selecting the

most relevant features. The only criterion is that the predictive performance of selected

features is equal to the original set of features present in the dataset.

This chapter investigated several feature selection methods and used a representative set

of classification methods for evaluating the features selected. These methods enabled the

identification of a core set of features, from this dataset. Feature selection techniques

include a wrapper method, an embedded-SVM method, together with six filter methods.

In the category of filter methods were two which based on the creation of sets of subsets

of features; the Cfs and consistency approaches, and four ranking methods; ReliefF,

Information gain, chi-square, and Correlation attributes. In filter methods, selection

procedures are independent of the learning algorithm. Once the ranking has been

obtained, the best features are selected to evaluate their performance. In addition, subsets

are also created and the aim is to find the subset that obtains the best performance, for

92

example, Cfs or Consistency approaches. In contrast, in wrapper the evaluation of features

is a part of the learning algorithm used to train the model itself. Thus, thewrapper method

is generally more computationally intensive. However, in the embedded method, a top

subset of features is built into the classifier construction.

We found that wrapper and chi-square are the two methods with the highest classification

performance. Similarly, embedded-SVM and ReliefF give good performance with 15

features. With all these methods, increasing the number of variables does not improve the

predictive performance. In contrast, the Information gain and Correlation methods

perform poorly with fewer features, but there is a performance enhancement by adding

more features to the selected subgroup. Amongst the subset methods, we used Cfs and

Consistency, which selected groups of 23 and 11 variables, respectively. Cfs performed

better than Consistency, embedded, and ReliefF. We found that all the feature selection

approaches improved the classification performance compared with the full dataset, but

only if we chose an appropriate number of features.

In a large dataset relating to patients with chronic heart failure, the wrapper method was

best for reducing the complexity of variables when trying to construct prognostic models.

The chi-square method was better when computational power was limited. Both methods

selected approximately 25% of the variables in the main dataset.

93

 Effect of Class Imbalance on Feature Selection and

Classification

5.1 Introduction

The third challenge of the clinical datasets, as discussed in Chapter 1, is unbalanced class

distribution. Class imbalance means that one class (majority) is represented by a larger

number of data points than another (minority) one in binary classification (Poolsawad et

al, 2014a). Data mining is generally prone to unbalanced data because most standard

algorithms expect balanced class distributions, so learning classification techniques

achieve poorly with class imbalance (He & Garcia, 2009). Class imbalance is often

present in clinical data because the data collected do not take into consideration the class

label; the data collected from “Alive” patients will be more than that from “Dead”

patients. Thus, class imbalance is critical for real-world applications such as medical

diagnosis, pattern recognition, and fraud detection (Cao et al, 2016). Methods used to

manipulate class imbalance can be categorised into pre-processing approaches and

algorithmic approaches. The pre-processing approaches are the handling obtained by

resampling the class distribution, by under-sampling the majority class, or over-sampling

the minority class in the training set (He & Garcia, 2009; Kirshners et al, 2017). In

contrast, boosting is an example of an algorithmic approach that recalculates weights with

each iteration to place different weights on the training examples (Mahdiyah et al, 2015).

In this chapter, we will show the effect of class imbalance on the training data; also we

will find the outcome of this issue on selection of features using feature selection methods.

5.2 Class Imbalance

In a binary classification, the data are divided into two parts, where each part belongs to

a class label. The part with more data points for a class label is named positive class

instances or majority; the smaller part is named as negative class instances or minority. It

is essential in processing a large volume of data to come up with small random samples,

94

rather than to process all data (Witten & Frank, 2011). Random sampling means each

instance has an equal chance of being included in the dataset; this could be with

replacement, or without replacement. Sampling with replacement refers to selecting an

instance more than once; this is used for the bootstrap algorithm. On the other hand,

sampling without replacement, for each instance selected, simply rejects the second copy.

Bootstrapping is a mechanism whereby every time a sample is taken from a dataset to

form a test or training set, it is drawn without replacement (Witten & Frank, 2011).

The imbalance ratio (IR) is measured by dividing the number of samples of the minority

class by the number of samples of the majority class, as:

 𝐼𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (5.1)

In the research dataset, the class imbalance ratio is 1 to 3 for the Dead to Alive classes,

and the imbalance ratio which is 33%, as shown in table 5-1.

Table 5-1: Target Classes Distribution on Hull-LifeLab

No. of features 60

No. of data points 1750

Target output Mortality

Class Alive Dead

Frequency 1313 437

Percentage 3 1

Imbalance ratio (IR) 0.33

Several approaches can be used to balance class:

1- Data level: these methods create balanced data from the training dataset (Loyola-

González et al, 2017). Methods in this level are called resampling methods, which

can be divided into:

95

a- Resampling (external); basically it is a method that can balance classes by

changing the size of data points to be trained. It provides a convenient and

effective way to deal with imbalance related learning problems using standard

classifiers because it alters the original training set rather than modifying the

learning algorithm. The two approaches of resampling are oversampling and

undersampling (Cao et al, 2016). Oversampling increases the frequency of

samples in the training set for the minority class, as shown in figure 5-1(a). The

drawback of oversampling is that it results in overfitting of the data due to it

making exact copies of the minority class (Al-Shahib et al, 2005). Moreover, the

size of the training set increases, which then increases the time taken to build a

classifier. Undersampling decreases the frequency of samples in the training set

for the majority class, as shown in figure 5-1(b). Undersampling can remove a lot

of informative examples which could be useful in the development of the

classifiers (Batuwita & Palade, 2010).

b- Active learning (internal) improves learner performance by selecting the more

relevant data points to learn and leaving the irrelevant ones (Branco et al, 2015).

This approach is like feature selection but selects data points, not features.

c- Weigh the data space: to avoid costly errors the training set distribution is

modified using information concerning misclassification costs (Branco et al,

2015). It is a generalized cost-sensitive learning method to deal with unbalanced

data distributions, where weights are assigned to every training instance based on

users‘ needs.

2- Algorithm level (Cost-sensitive learning), by changing the classifier algorithm so it

is more precise with the minority class (Loyola-González et al, 2017). The cost-

sensitive method has to learn more characteristics of minority samples, in order to

minimise higher error cost by considering higher costs for the misclassification of

96

positive class examples with respect to the negative class (Cao et al, 2016; SCI2S,

2007).

5.3 Evaluation Measures

A confusion matrix is an object model for evaluating and assessing the performance of

classification (as discussed in section 3.3.2). Based on the confusion matrix (Table 3-

1); different measures are used to evaluate the classification. Each measures such a

particular state; these measures include sensitivity, specificity, accuracy, PPV, and

NPV. Sensitivity measures the percentage of cases correctly detected, in the major

class; as this percentage increases, those incorrectly detected decreases. Specificity

measures the percentage of cases correctly detected, in the minor class; this percentage

increases when the number incorrectly assigned to the other class are decreased, as

Figure 5-1 Oversampling increases the minority class by copying instances.

Under-sampling removes instances from the majority class

Original dataset Final dataset

Original dataset Final dataset

(b) Undersampling majority class

(a) Oversampling minority class

97

illustrated in figure 5-2. Here, sensitivity and specificity are similar measures but for

different class labels. Accuracy can be determined from sensitivity and specificity,

because it measures the number of instances correctly identified in both class labels by

a diagnostic test. PPV and NPV are influenced by the prevalence of the class that is

being tested; PPV determines how to proceed after a patient gets a positive result,

whereas NPV determines how to proceed after a patient gets a negative result.

Figure 5-2 The trade-off between Sensitivity and Specificity

5.4 Class Balancing Techniques

Methods used in the thesis to handle class imbalance are:

1- Resampling: Produces a random subsample of a dataset using sampling either

with replacement or without replacement. The original dataset must fit entirely in

memory, and the number of instances in the generated dataset may be specified.

The filter can be made to maintain the class distribution in the subsample, or to

bias the class distribution toward a uniform distribution.

2- Spread Subsampling: Produces a random subsample of a dataset. The original

dataset must fit entirely in memory. This filter allows specifying the maximum

98

"spread" between the rarest and most common class. For example, it may specify

that there must be, at most, a 2:1 difference in class frequencies.

5.5 Analysis Results

In this section we investigate the class imbalance for the selected subsets obtained in

Chapter 4 by employing the chi-squared, Information gain, ReliefF, embedded-SVM,

and wrapper methods, then, we find the performance for the subsets using random

forest and J48 methods for classification. The sets of data selected by different feature

selection methods have improved the performance when applying RF and J8 as

learning algorithms. Tables 5-2 and 5-3 show the results of applying the RF and J48

algorithms respectively, for different subsets sizes.

As we can see, the accuracy of data balanced using the resampling method has

significant enhancement since resampling increases the minority class by copying

instances, called oversampling. In contrast, using the spread subsample method does

not show significant improvement and has almost the same results as the imbalanced

classes. The most interesting aspect to note is the specificity results, which we can

see doubled in some cases, such as with Information gain for 11 variables, and in all

other cases, there are high increases. Specificity, also called true negative rate –

section 3.3.2, measures the number of negatives correctly identified. After

resampling, the classification of the new dataset has increased the number of true

negatives (TN), and in many cases, this has doubled. TN means the true classification

of “Dead” instances, where the “Dead” value refers to the minority class meaning that

resampling can reinforce the minority class. The false positive (FP) measures the

incorrect classification of the positive (Alive) class, which is the majority class;

therefore, resampling decreases the error of the positives classified. The specificity of

spread sub-sampling is equal to the specificity with class imbalance.

99

The specificity and accuracy with 11 and 23 variables are differentiated depending

on the feature selection methods in class imbalance and balanced classes. However,

by increasing the number of variables to 34 and 44, specificity and accuracy become

equal for all feature selection methods, at around 79% and 94% respectively, using

RF. The same indication is seen in PPV for both classification methods used, where

with 44 features it outperforms (around 93%) all feature selection methods used.

From the sensitivity and PPV for the balanced classes employed by RF and J48,

respectively, it can be seen that the sensitivity becomes more than 99% or near for all

feature selection methods with different numbers of variables. The increase in the

percentage of sensitivity is because of the increase in the number of true positives

(TP). Therefore, positive predicted values (PPV) are increased in the balanced classes

in the same way as accuracy, with significant aggregate.

100

Table 5-2: Accuracy, Specificity, Sensitivity, and PPV Results in Implementing Random Forest Classification for Several Feature Selection Methods on Different

Numbers of Subsets compared with class imbalance, and balanced classes using resampling and spread subsampling for the subsets from chapter 3

 Accuracy Specificity Sensitivity PPV

N
o
.

o
f

F
ea

tu
re

s

F
ea

tu
re

se
le

ct
io

n

m
et

h
o
d

Im
b

a
la

n
c

ed
 d

a
ta

R
es

a
m

p
le

D
a
ta

S
p

re
a
d

S
u

b

S
a
m

p
le

Im
b

a
la

n
c

ed
 d

a
ta

R
es

a
m

p
le

D
a
ta

S
p

re
a
d

S
u

b

S
a
m

p
le

Im
b

a
la

n
c

ed
 d

a
ta

R
es

a
m

p
le

D
a
ta

S
p

re
a
d

S
u

b

S
a
m

p
le

Im
b

a
la

n
c

ed
 d

a
ta

R
es

a
m

p
le

D
a
ta

S
p

re
a
d

S
u

b

S
a
m

p
le

11 Chi-squared 88.00% 97.02% 88.91% 62.20% 90.62% 62.47% 96.80% 99.16% 97.72% 88.50% 96.95% 88.67%

11 Information gain 78.97% 90.97% 79.31% 37.30% 73.23% 38.90% 92.80% 96.88% 92.76% 81.60% 91.58% 82.02%

11 Relief 87.02% 95.25% 88.11% 57.90% 85.35% 59.04% 96.70% 98.55% 97.79% 87.30% 95.29% 87.76%

11 Embedded-SVM 87.25% 94.91% 86.74% 60.60% 83.52% 58.58% 96.10% 98.71% 96.12% 88.00% 94.74% 87.64%

11 Wrapper 88.22% 95.42% 87.88% 59.70% 83.75% 57.89% 97.70% 99.31% 97.87% 87.90% 94.84% 87.47%

23 Chi-squared 88.20% 95.08% 87.88% 59.30% 82.84% 59.50% 97.90% 99.16% 97.33% 87.80% 94.55% 87.84%

23 Information gain 83.37% 92.91% 83.54% 48.70% 76.66% 49.20% 94.90% 98.32% 94.97% 84.80% 92.68% 84.89%

23 Relief 86.74% 94.11% 86.74% 55.80% 80.09% 56.06% 97.00% 98.78% 96.95% 86.80% 93.71% 86.89%

23 Embedded-SVM 86.91% 94.51% 86.90% 58.40% 81.46% 58.35% 96.40% 98.86% 96.42% 87.40% 94.13% 87.43%

23 Wrapper 87.82% 95.14% 87.77% 58.40% 82.84% 59.04% 97.60% 99.24% 97.33% 87.60% 94.56% 87.71%

34 Chi-squared 86.28% 94.57% 86.74% 55.10% 81.24% 54.69% 96.60% 99.01% 97.41% 86.60% 94.07% 86.59%

34 Information gain 86.62% 94.40% 85.94% 57.20% 80.78% 54.69% 96.40% 98.93% 96.43% 87.10% 93.93% 86.47%

34 Relief 85.42% 96.29% 85.54% 54.20% 86.50% 52.63% 95.80% 99.54% 96.50% 86.30% 95.68% 85.96%

34 Embedded-SVM 86.28% 94.05% 86.34% 55.60% 79.18% 55.38% 96.50% 99.01% 96.65% 86.70% 93.46% 86.68%

34 Wrapper 87.20% 94.97% 87.25% 57.40% 81.92% 57.21% 97.10% 99.31% 97.26% 87.30% 94.29% 87.23%

44 Chi-squared 86.17% 94.22% 85.82% 53.30% 79.86% 52.17% 97.10% 99.01% 97.03% 86.20% 93.66% 85.91%

44 Information gain 86.05% 94.00% 85.82% 54.00% 78.49% 53.09% 96.70% 99.16% 96.73% 86.30% 93.27% 86.10%

44 Relief 85.08% 94.11% 85.02% 49.00% 78.72% 48.74% 97.10% 99.24% 97.11% 85.10% 93.34% 85.06%

44 Embedded-SVM 85.65% 93.88% 85.82% 51.30% 78.49% 51.72% 97.10% 99.01% 97.18% 84.90% 92.65% 84.94%

44 Wrapper 86.40% 93.94% 86.57% 53.10% 78.72% 54.92% 97.50% 99.01% 97.11% 86.20% 93.32% 86.62%

101

Table 5-3: Accuracy, SPEC, SEN, and PPV Results in Implementing J48 Learning Algorithm for Several Feature Selection Methods on Different

Numbers of Subsets, compared with imbalanced classes and balanced classes using resampling and spread subsampling methods for the subsets from

Chapter 3

 Accuracy Specificity Sensitivity PPV

N
o
.

o
f

F
ea

tu
re

s

F
ea

tu
re

se
le

ct
io

n

m
et

h
o
d

Im
b
al

an

ce
d

cl
as

s

R
es

am
p

le

D
at

a

S
p
re

ad

S
u
b
S

am

p
le

Im
b
al

an

ce
d
 d

at
a

R
es

am
p

le

 D
at

a

S
p
re

ad

S
u
b
S

am

p
le

Im
b
al

an

ce
d

C
la

ss

R
es

am
p

le

 D
at

a

S
p
re

ad

S
u
b

sa
m

p
le

Im
b
al

an

ce
d

cl
as

s

R
es

am
p

le

d
at

a

S
p
re

ad

S
u
b
S

am

p
le

11 Chi-squared 85.02% 92.00% 84% 62.24% 89.39% 63.16% 92.61% 95.05% 91.01% 88.05% 94.33% 88.13%

11 Information gain 77.25% 86.17% 76.74% 37.76% 66.36% 33.41% 90.40% 92.76% 91.17% 81.36% 89.23% 80.44%

11 Relief 85.71% 90.85% 83.94% 57.89% 79.86% 58.35% 94.97% 94.59% 92.46% 87.14% 93.38% 86.96%

11 Embedded-SVM 82.11% 89.60% 83.25% 52.86% 75.51% 53.78% 91.85% 94.29% 93.07% 85.41% 92.04% 85.81%

11 Wrapper 84.05% 91.25% 83.94% 60.87% 78.72% 58.58% 91.77% 95.43% 92.38% 87.57% 93.09% 87.02%

23 Chi-squared 82.40% 91.08% 83.25% 60.64% 74.85% 62.24% 89.64% 94.59% 90.25% 87.25% 93.59% 87.78%

23 Information gain 79.02% 87.71% 77.60% 55.15% 72.77% 52.40% 86.98% 92.69% 85.99% 85.35% 91.09% 84.44%

23 Relief 82.00% 90.11% 81.77% 61.33% 77.35% 58.81% 88.88% 94.36% 89.41% 87.35% 92.60% 86.71%

23 Embedded-SVM 82.71% 91.25% 82.85% 60.41% 81.01% 62.70% 89.41% 94.67% 89.57% 87.15% 93.74% 87.83%

23 Wrapper 82.34% 90.68% 82.85% 61.56% 79.63% 62.01% 89.26% 94.36% 89.79% 87.46% 93.30% 87.66%

34 Chi-squared 82.68% 91.42% 82.05 60.41% 80.78% 63.16% 90.10% 94.97% 88.35% 87.24% 93.69% 87.81%

34 Information gain 82.91% 90.22% 81.65% 61.56% 81.24% 58.58% 90.02% 93.22% 89.34% 87.56% 93.72% 86.63%

34 Relief 81.82% 89.88% 80.68% 61.10% 78.49% 59.95% 88.73% 93.68% 87.59% 87.27% 92.90% 86.79%

34 Embedded-SVM 82.57% 90.91% 81.77% 60.87% 80.09% 62.70% 89.79% 94.52% 88.12% 87.33% 93.45% 87.65%

34 Wrapper 83.00% 91.54% 81.48% 60.87% 81.24% 64.07% 90.48% 94.97% 87.28% 87.42% 93.83% 87.95%

44 Chi-squared 81.48% 90.85% 82.28% 60.18% 80.32% 61.56% 88.58% 94.36% 89.19% 86.99% 93.51% 87.45%

44 Information gain 81.31% 90.22% 82.17% 61.33% 81.24% 60.87% 87.97% 93.22% 89.26% 87.24% 93.72% 87.27%

44 Relief 80.74% 90.68% 80.51% 59.95% 79.18% 59.04% 87.59% 94.52% 87.66% 86.79% 93.17% 86.54%

44 Embedded-SVM 82.57% 91.48% 81.94% 61.78% 81.01% 62.70% 89.49% 94.97% 88.35% 87.56% 93.76% 87.68%

44 Wrapper 81.25% 90.85% 82.05% 60.41% 78.95% 62.01% 88.18% 94.82% 88.73% 87.00% 93.12% 87.53%

102

5.5.1 Feature selection with balanced data

In the previous section, results using the features obtained from unbalanced data were

presented. However, what needs to be looked into is the implicit assumption that features

selected from the original data set would be the same with the balanced data, using the

same feature selection algorithms. In fact after resampling data, the classification

performance was not improved appreciably for the selected subsets. It can be seen from

the tables 5-4 and 5-5; that with the resampled dataset, there was not much of a change in

the performance of most of the feature selection algorithms, apart from the Information

gain algorithm. It should be noted that this algorithm gave a better performance even

when the number of features was small compared to the others. The performance of

feature selection using the chi-square, wrapper, embedded, and ReliefF methods

decreased. On the other hand, features obtained using the Information gain method

provided an increase in accuracy from 78.97% to 86.90% for a subset of 11 attributes,

when employed with balanced classes. With 44 variables, all methods including

Information gain, had lower performance for balanced data than the original dataset.

Implementing the learning algorithm J48 for subsets with 34 and 44 features yielded

almost the same results, with and without resampling.

The explanation for these observations is that the true positive values (TP) of the

confusion matrix show little variation between the classification of the balanced and

imbalanced classes, whereas the changes come in false classification, especially false

positive (FP). As seen in Table 5-6 the list features selected from the balanced dataset is

slightly different from the list of features selected from the original data (refer to Table

4-5), while in some methods, including Cfs and Chi square, there are noticeable changes

in the selected features between balanced and unbalanced classes. Thus, resampling by

increasing the samples of the minority class will allow some features to be more relevant

to predict the minority class rather than the majority class. Conversely undersampling the

103

majority class can discard data potentially important for the classification process. Hence

there does not exist a control to remove patterns of the majority class. Resampling may

cause overfitting, especially when using oversampling (Guo et al, 2008), which is due to

selection of irrelevant features by the feature selection algorithm.

5.6 Training Datasets on Balance Data

 Training the datasets selected by different feature selection methods on balanced data

gave the outcomes shown in Table 5-7. The table illustrates the performance outcomes

of training a feature subset on an RF classifier learned on balanced data, the selected

features subset from Chapter 4. There is an impact of class imbalanced training data

on the performance of a classifier, because in all feature selection methods the output

is enhanced. The outcomes show that building a classifier on balanced data will

produce better results, since the learning algorithm will build on accurate decision tree,

since the samples have equal chance to represent the class label. The class corrected

classification includes increased TP and TN compared with the classification outputs

for class imbalance, whereas FN is noticeably decreased because now we have enough

minority samples. In all methods the sensitivity because almost 97% because the

number of FN has decreased. Also the specificity is enhanced, because the number of

FP has deceased. In general, a class imbalance in the training data has an effect on the

classifier performance. The minority class effects also the variability of the classifiers’

performance, due to the random sampling from the population and random factors

present in the training neural network.

104

Table 5-4: Classification of balanced classes using Random Forest after resampling data

 Accuracy Specificity Sensitivity PPV

N
o
.
o
f

F
ea

tu
re

s

F
ea

tu
re

se
le

ct
io

n

m
et

h
o
d

Im
b
al

an
ce

d
 d

at
a

R
es

am
p
le

b
ef

o
re

cl
as

si
fi

ca
t

io
n

Im

b
al

an
ce

d
 d

at
a

R
es

am
p
le

b
ef

o
re

cl
as

si
fi

ca
t

io
n

Im
b
al

an
ce

d
 d

at
a

R
es

am
p
le

b
ef

o
re

cl
as

si
fi

ca
t

io
n

Im

b
al

an
ce

d
 d

at
a

R
es

am
p
le

b
ef

o
re

cl
as

si
fi

ca
t

io
n

11 Chi-squared 88.00% 86.40% 62.20% 55.15% 96.80% 96.80% 88.50% 86.64%

11 Information gain 78.97% 86.90% 37.30% 56.75% 92.80% 96.95% 81.60% 87.07%

11 Relief 87.02% 80.97% 57.90% 39.36% 96.70% 94.82% 87.30% 82.45%

11 Embedded-SVM 87.25% 82.17% 60.60% 46.22% 96.10% 94.14% 88.00% 84.02%

11 Wrapper 88.22% 86.91% 59.70% 56.75% 97.70% 96.95% 87.90% 87.07%

23 Chi-squared 88.20% 84.80% 59.30% 49.43% 97.90% 96.57% 87.80% 85.16%

23 Information gain 83.37% 85.08% 48.70% 50.11% 94.90% 96.73% 84.80% 85.35%

23 Relief 86.74% 83.71% 55.80% 46.00% 97.00% 96.27% 86.80% 84.27%

23 Embedded-SVM 86.91% 83.20% 58.40% 47.83% 96.40% 94.97% 87.40% 84.54%

23 Wrapper 87.82% 86.17% 58.40% 52.86% 97.60% 97.26% 87.60% 86.11%

34 Chi-squared 86.28% 84.68% 55.10% 48.97% 96.60% 96.57% 86.60% 85.04%

34 Information gain 86.62% 84.40% 57.20% 48.51% 96.40% 96.34% 87.10% 84.90%

34 Relief 85.42% 83.08% 54.20% 45.31% 95.80% 95.66% 86.30% 84.01%

34 Embedded-SVM 86.28% 82.91% 55.60% 43.71% 96.50% 95.96% 86.70% 83.67%

34 Wrapper 87.20% 85.14% 57.40% 50.57% 97.10% 96.65% 87.30% 85.45%

44 Chi-squared 86.17% 83.31% 53.30% 44.85% 97.10% 96.12% 86.20% 83.97%

44 Information gain 86.05% 83.88% 54.00% 46.45% 96.70% 96.34% 86.30% 84.39%

44 Relief 85.08% 83.48% 49.00% 45.54% 97.10% 96.12% 85.10% 84.13%

44 Embedded-SVM 85.65% 82.74% 51.30% 44.85% 97.10% 95.35% 84.90% 83.86%

44 Wrapper 86.40% 83.02% 53.10% 42.56% 97.50% 96.50% 97.11% 83.47%

105

Table 5-5: Classification of balanced classes using J48 after resampling data

 Accuracy Specificity Sensitivity PPV

N
o
.

o
f

F
ea

tu
re

s

F
ea

tu
re

se
le

ct
io

n

m
et

h
o
d

Im
b

a
la

n
ce

d

d
a
ta

R
es

a
m

p
le

b
ef

o
re

cl
a
ss

if
ic

a
ti

o

n

Im
b

a
la

n
ce

d

d
a
ta

R
es

a
m

p
le

b
ef

o
re

cl
a
ss

if
ic

a
ti

o

n

Im
b

a
la

n
ce

d

d
a
ta

R
es

a
m

p
le

b
ef

o
re

cl
a
ss

if
ic

a
ti

o

n

Im
b

a
la

n
ce

d

d
a
ta

R
es

a
m

p
le

b
ef

o
re

cl
a
ss

if
ic

a
ti

o

n

11 Chi-squared 85.02% 85.02% 62.24% 62.24% 92.61% 92.61% 88.05% 88.05%

11 Information gain 77.25% 84.11% 37.76% 59.95% 90.40% 92.16% 81.36% 87.36%

11 Relief 85.71% 79.42% 57.89% 34.10% 94.97% 94.52% 87.14% 81.16%

11 Embedded-SVM 82.11% 79.60% 52.86% 47.14% 91.85% 90.40% 85.41% 83.71%

11 Wrapper 84.05% 84.11% 60.87% 59.95% 91.77% 92.16% 87.57% 87.36%

23 Chi-squared 82.40% 82.91% 60.64% 63.16% 89.64% 89.49% 87.25% 87.95%

23 Information gain 79.02% 83.65% 55.15% 63.39% 86.98% 90.40% 85.35% 88.12%

23 Relief 82.00% 81.48% 61.33% 56.75% 88.88% 89.72% 87.35% 86.17%

23 Embedded-SVM 82.71% 82.22% 60.41% 61.10% 89.41% 89.26% 87.15% 87.33%

23 Wrapper 82.34% 83.37% 61.56% 62.24% 89.26% 90.40% 87.46% 87.80%

34 Chi-squared 82.68% 82.45% 60.41% 61.78% 90.10% 89.34% 87.24% 87.54%

34 Information gain 82.91% 82.97% 61.56% 61.78% 90.02% 90.02% 87.56% 87.62%

34 Relief 81.82% 81.31% 61.10% 64.07% 88.73% 87.05% 87.27% 87.92%

34 Embedded-SVM 82.57% 82.05% 60.87% 60.41% 89.79% 89.26% 87.33% 87.14%

34 Wrapper 83.00% 82.91% 60.87% 62.24% 90.48% 89.79% 87.42% 87.72%

44 Chi-squared 81.48% 81.48% 60.18% 61.10% 88.58% 88.27% 86.99% 87.21%

44 Information gain 81.31% 81.54% 61.33% 61.33% 87.97% 88.27% 87.24% 87.27%

44 Relief 80.74% 80.91% 59.95% 61.56% 87.59% 87.36% 86.79% 87.22%

44 Embedded-SVM 82.57% 81.94% 61.78% 60.87% 89.49% 88.96% 87.56% 87.23%

44 Wrapper 81.25% 81.54% 60.41% 61.10% 88.18% 88.35% 87.00% 87.22%

106

Table 5-6: The Order List of Selecting 22 Features from Balanced Data Using Several Feature Selection Methods

 CFS Chi square wrapper Svm relief

1 Age(y) Iron(umol/L) LVEDD(HgtIndexed) LeftAtrium(BSAIndexed) PEFR(L)

2 Creatinine(umol/L) Albumin(g/L) MCV(fL) MR-proADM Age(yrs)

3 AdjCalcium(mmol/L) LVEDD(HgtIndexed) Ferritin(ug/L) CT-proET1 LVEDD(HgtIndexed)

4 Albumin(g/L) LVEDD(cm) LVEDD(cm) Urea(mmol/L) FVCPredicted(L)

5 UricAcid(mmol/L) TotalProtein(g/L) UricAcid(mmol/L) AlkalinePhophatase(iu/L) LVEDD(cm)

6 Glucose(mmol/L) Bicarbonate(mmol/L) MR-proADM MCV(fL) Potassium(mmol/L)

7 Cholesterol(mmol/L) E CT-proET1 Iron(umol/L) FEV1Predicted(L)

8 MCV(fL) Ferritin(ug/L) Hct(fraction) LVEDD(HgtIndexed) CT-proET1

9 Hct(fraction) UricAcid(mmol/L) AorticVelocity(m/s) Creatinine(umol/L) Hct(fraction)

10 Iron(umol/L) Hct(fraction) Iron(umol/L) Chloride(mmol/L) SystolicBP(mmHg)

11 VitaminB12(ng/L) LeftAtrium(BSAIndexed) E Albumin(g/L) Iron(umol/L)

12 Ferritin(ug/L) MCV(fL) Glucose(mmol/L) WhiteCellCount(10^9/L) FEV1(L)

13 CRP(mg/L) AorticVelocity(m/s) LeftAtrium(BSAIndexed) BSA(m^2) FEV1

14 TSH(mU/L) CRP(mg/L) LeftAtrium(HgtIndexed) Age(yrs) PulseBP(mmHg)

15 MR-proADM Sodium(mmol/L) Triglycerides(mmol/L) FVC Albumin(g/L)

16 AorticRoot(cm) CT-proET1 VitaminB12(ng/L) TSH(mU/L) FVC(L)

17 LeftAtrium(BSAIndexed) MR-proADM AorticRoot(cm) E Urea(mmol/L)

18 AorticVelocity(m/s) Triglycerides(mmol/L) LeftAtrium(cm) Ferritin(ug/L) Pulse(Exam)(bpm)

19 E PCT Cholesterol(mmol/L) FVCPredicted(L) Chloride(mmol/L)

20 Weight(Exam)(kg) AorticRoot(cm) Urea(mmol/L) Height(Exam)(m) QT

21 SystolicBP(mmHg) Bilirubin(umol/L) PEFR(L) BMI LeftAtrium(BSAIndexed)

22 PEFR(L) Chloride(mmol/L) Chloride(mmol/L) Platelets(10^9/L) LeftAtrium(cm)

107

Table 5-7: Classification Outputs using RF method for training datasets on the balanced data

Feature selection

methods
Number of

features
TP FN FP TN Accuracy sensitivity Specificity

 Chi square 11 1285 28 103 334 92.51% 97.87% 76.43%

 Chi square 34 1282 31 150 287 89.65% 97.64% 65.68%

Chi square 44 1286 27 146 291 90.11% 97.94% 66.59%

Information gain 11 1245 68 168 269 86.51% 94.82% 61.56%

Information gain 34 1278 35 152 285 89.31% 97.33% 65.22%

Information gain 44 1278 35 138 299 90.11% 97.33% 68.42%

Relief F 11 1295 18 130 307 91.54% 98.63% 70.25%

Relief F 34 1287 36 153 284 89.77% 97.28% 64.99%

Relief F 44 1285 28 166 271 88.91% 97.87% 62.01%

SVM 11 1281 32 117 320 91.48% 97.56% 73.23%

SVM 34 1286 27 155 282 89.60% 97.94% 64.53%

SVM 44 1283 30 152 285 89.60% 97.72% 65.22%

Wrapper 11 1289 24 109 328 92.40% 98.17% 75.06%

Wrapper 34 1286 27 149 288 89.94% 97.94% 65.90%

Wrapper 44 1279 34 151 286 89.42% 97.41% 65.45%

108

5.7 Conclusion

In this chapter, the impact of unbalanced class distributions for a large dataset is

demonstrated. The imbalance issue is presented in clinical data, where the number of

people living has to be much more than the number of dead. Moreover, the

implementation of five different feature selection methods was considered. The feature

selection techniques used were information gain, chi-squared, ReliefF, embedded-SVM,

and wrapper. Class imbalance was addressed by resampling and spread subsampling, and

the learning tests used were the J48 and RF algorithms. The results presented in this

chapter indicate that determining features from original data, and then training a classifier

on balanced data, produces good results, often outperforming the original method. The

outcomes show that resampling of the unbalanced classes generates a good enhancement

in performance results for all measurements such as accuracy, specificity, sensitivity, and

PPV, because there are enough samples for the minority class, which reduces the number

classed incorrectly. In contrast, using spread sub-samples to balance the class

distributions yields no different results compared with the classification for the

unbalanced classes. Specificity had a great increase using the resampling method because

it raised the number of the negative class (minority class). All other performance

measures were improved using resampling to balance class, although the improvement

was less compared with the specificity measure. The most performance improvement was

for the information gain method, considering that the resampling added more information

to the features, which increased the prediction results. Resampling data has greatly

improved performance only with the information gain method. All other methods resulted

in reduced performance or produced the same performance as the original data.

Another aspect considered was training the data on the model built on a class balance.

The outcomes show that this will yield better results. Henceforth, a classification method

built on balanced data will have an equal chance for all features, which leading to better

109

choices of the root. Also, classification algorithms show a bias towards the majority class,

so the size of samples for both classes should be enough to contain the significant

information to represent the data.

110

 Autoencoder Framework for Dimensionality Reduction

and Classification

6.1 Introduction

An important aspect of feature selection is that at its very core lies a combinatorial

problem, and all algorithms reduce the search space and make their selection efficient.

Thus when looking at these algorithms, it is important to understand the degree of

complexity they have. On the other hand extraction of features does not have this

combinatorial problem, as they are often projections of higher dimensions on lower

dimensions. However, when designing clinical decision support systems, feature

extraction does not provide dimensions with original labels or meanings, which is a big

drawback. However, if the process of feature extraction (and/or selection) are combined

into one single process with learning classifiers, this problem of labels does not

immediately become transparent. Thus the use of autoencoders and deep machine

learning techniques are used in this context. Therefore, feature extraction would be a

suitable solution for dimensionality reduction in terms of computational complexity.

Deep learning is an automatic model that can be used for feature extraction because it is

trained to do so. Autoencoder network is an example of deep machine learning that can

compress the data mining methodologies by performing feature extraction and

classification at the same time, so that result validation is done in the same model process.

Deep networks based on autoencoders are created by stacking pre-trained autoencoders

layer by layer. An autoencoder is an automated model that can classify data, without

explicitly providing information on how dimensions are reduced, or what projections are

used to extract the data. There is a seamless integration of the two steps. This overcomes

the immediate difficulty of lack of labels for the variables. Therefore it is an option that

can reduce the data mining methodology steps and make it more efficient. As seen in the

previous chapter, feature selection algorithms are iterative, and often the number of

111

iterations far exceeds the number of features selected. This is the combinatorial problem

mentioned earlier.

6.2 Artificial Neural Network (ANN)

Neural networks are composed of a large number of artificial neurons. The neuron can

have varying numbers of inputs from 1 to 𝑛. Each input to a neuron has its own weight

associated with it, as illustrated in figure 6-2, by the small circle. The weight is simply a

floating point number; the training process of the network concentrates a fine-tuning the

weights. These inputs represented as 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 are transformed into a single output

𝑂, via three basic elements (González, 2009):

- Two parameters, bias 𝑏 and weights (𝑤1,𝑤2, … 𝑤𝑛).

- The combination function ℎ, which combines the input signals and the two parameters to

produce a single input.

- A transfer function or activation function 𝑔 that produces the output 𝑂 by taking as

argument the net input signal.

Figure 6-1 Neuron architecture

112

The matrix is representation introduced for the neural network, then the combination

function ℎ computes the inner product of the input vector and weights, which also

includes a bias 𝑏, represented as a synaptic weight connected to a fixed input,

ℎ = (∑ 𝑤𝑖

𝑛

𝑖=1
𝑥𝑖) + 𝑏

(6.1)

6.2.1 Activation Functions

The output is a function of the weighted sum 𝑦 = 𝑓(𝑥) which is an activation function.

There are different types of activation functions, see figure 6-3:

1- Linear function,

 𝑓(𝑥) = (∑ 𝑤𝑖𝑥𝑖) + 𝑏
(6.2)

2- Heaviside step function,

𝑓(𝑥) = {

1 , 𝑥 ≥ 𝑡
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.3)

Where 𝑡 is a threshold

3- Sigmoid function,

𝑓(𝑤𝑥) =

1

1 + 𝑒−w𝑥

(6.4)

4- Tanh function,

𝑓(𝑥) = tanh(𝑥) =

2

1 + 𝑒−2w𝑥
− 1

(6.5)

6.2.2 The Perceptron Function Space

The model perceptron mathematically may be viewed as a parameterized function space

𝑓 from an input X ⊂ ℝ𝑛 to an output y ⊂ ℝ where 𝑓 consists of parameterized bias and

weight, with 𝑛 + 1 dimensions due to 𝑛 inputs and 1 bias. Then the network input to the

neuron is obtained first by linear combination of inputs and weights, in equation 6.1. By

113

adding the activation function 𝑔 to the linear combination, the output of the neuron is

given by

𝑦 = 𝑔(𝑏 + ∑ 𝑤𝑖𝑥𝑖)

𝑛

𝑖=1

 (6.6)

This is simply the architecture and mathematical notations for a single perceptron that

can solve simple learning tasks, where 𝑔 is a sigmoid function. However, connecting

many neurons in a network architecture gives more power of neural computation to solve

complex learning tasks.

6.3 Multilayer Neural Network (MLP)

6.3.1 Feed-forward architecture

A collection of neurons connected together in a network can be represented by a directed

graph, where the nodes represent the neurons and arrows represent the links between

Figure 6-2 Activation function types

114

them. In a feedforward network, the neurons in each layer feed their output forward to

the next layer until we get the final output from the neural network. The number of hidden

layers within a feedforward network is differs, and the number of neurons in each layer

can be adapted to the input and output nodes. The input layer redistributes input signals

to all nodes in the first hidden layer. The output layer stimulates patterns from the hidden

layer and creates the output patterns. Neurons in the hidden layer can detect hidden

features; the hidden layer is so called because it ‘hides’ the desired output. Figure 6-4

shows a multilayer perceptron with 𝑛 inputs, one hidden layer with 𝑚 neurons, and 𝑘

neurons at the output layer.

Figure 6-3 Feedforward neural network

6.3.2 Learning process

The learning step is the most important part of ANN creation and development for an

appropriate performance (Bataineh, 2012). There are two categories of learning:

supervised learning and unsupervised learning. In supervised learning, the output and

input data are known, which can be used for classification and regression problems.

115

Unsupervised learning means that the output is not known, and the network is trained to

groups the output in a proper way. This kind of training is used for clustering problems.

Training phases:

1- Normalisation: because of size and variance, the inputs of the training samples should

be normalised. Normalisation is to decrease the variance and compress inputs to a

small range (Bataineh, 2012). One of the ways it is done is by sigmoidal function to

compress inputs to be handled by the network.

2- Optimisation: the network will be optimised and updated during the training process

to reach the best prediction level through the training. The optimisation of the network

is performed by the loss (minimization) function, which is the difference between the

predicted outputs and the desired outputs. The cost function is the mean square error

(MSE), defined as:

𝑀𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖

(6.7)

where 𝑦 is the predicted output and �̂� the actual outputs. Updating neuron weights until

reach the minimal value of MSE defined by the user.

6.4 Deep Neural Networks

The standard neural network consists of a 3-layer neural network involving one input

layer, one hidden layer, and one output layer. In a deep neural network, there are multiple

hidden layers to compute much more complex features (Ng et al, 2013). Although having

more layers increases performance and is more beneficial, backpropagation and gradient

descent are complex mathematically, as discussed in the previous section. Therefore, for

deep layers, the chain becomes too long and derivatives are very hard to estimate

consistently.

116

There are two conditions that make a neural network deep (Cho, 2014):

1- The network is extendable by adding more layers, and the activation of the neurons

is shared. Consequently, the nodes in the added layer use the activations of the units

in the existing lower layer for their own activations.

2- In every layer, it is possible to train the parameters.

6.4.1 Autoencoder Architecture

Autoencoder is a neural network that is trained to reproduce the inputs at the output layer,

by learning a deep neural network. Autoencoder has a hidden layer ℎ that describes a code

used to represent the input. This network leads to generative modelling by theoretical

connection with latent variable models. Moreover, it is based on comparing the

activations of the network on the original input to the reconstructed output (Hinton &

Salakhutdinov, 2006).

Consider a training set for 𝑛 sample of inputs 𝑥 where 𝑥 ∈ ℝ𝑑 a real value and targets 𝑡.

𝐷𝑛 = {(𝑥1, 𝑡1), . . , (𝑥𝑛, 𝑡𝑛)}. The goal is to conjecture a new representation 𝑦, where 𝑦 ∈

ℝ𝑑′. If 𝑥 a binary representation 𝑥 ∈ [0,1]𝑑 then 𝑦 ∈ [0,1]𝑑′
. We assume supervised

learning.

 Optimisation of the cost function is the basis of the learning process, which measures the

difference between the inputs 𝑥 at its reconstruction at the output 𝑦. The architecture of

autoencoder is in two parts, consisting of the network encoder and decoder, where the

encoder function 𝑥 = 𝑓(𝑥) and the decoder 𝑟 = 𝑔(ℎ) produces a reconstruction, figure

6-5.

117

Figure 6-4 Autoencoder Architecture

The encoder maps the vector 𝑥 to another vector 𝑥 ∈ ℝ𝐷(1)
 , when the input is a vector 𝑥 ∈

ℝ𝐷𝑥, as follows (Inc, 2016)

 𝑧(1) = ℎ(1)(𝑊(1)𝑥 + 𝑏(1))

(6.8)

Table 6-1 below shows the details of the encoder equation.

Table 6-1: Encoder Parameters

The subscript (1) The first layer.

ℎ(1): ℝ𝐷(1)
→ ℝ𝐷(1)

 A transfer function for the encoder.

𝑊(1) ∈ ℝ𝐷(1)×𝐷𝑥 Weight matrix

𝑏(1) ∈ ℝ𝐷(1)
 Bias vector

The encoded representation 𝑧 maps back into an estimate of the original input vector 𝑥,

via decoder as follows,

 �̂� = ℎ(2)(𝑊(2)𝑥 + 𝑏(2))

(6.9)

Table 6-2 below shows the details of the decoder equation.

118

Table 6-2: Decoder Parameters

The subscript (2) The second layer.

ℎ(2): ℝ𝐷𝑥 → ℝ𝐷𝑥 A transfer function for the decoder.

𝑊(2) ∈ ℝ𝐷𝑥×𝐷(1)
 Weight matrix

𝑏(2) ∈ ℝ𝐷𝑥 Bias vector

 Autoencoder Structures

1. Under completed autoencoder.

Where the ℎ (hidden layers) have fewer dimension than 𝑥 (input layer), then the training

forces the autoencoder to obtain the most relevant features of the data (Deng et al, 2010).

The learning process is described as

 𝐿(𝑥, 𝑔(𝑓(𝑥)) (6.10)

where 𝐿 is the loses function. This structure is performed similarly to PCA when the

decoder is linear and 𝐿 is the mean squared error. However, it will perform more

powerfully when the encoder and decoder functions are nonlinear.

2. Regularized Autoencoder.

A weakness of the under complete autoencoder is excess capacity of the encoder and

decoder. Moreover, if the hidden layer has dimensions greater than or equal to the input

layer, this will cause the over-complete case (Vincent et al, 2010). A regularised

autoencoder is used in which encoder and decoder can learn, depending on the data

distribution. Sparse and denoising autoencoder are two examples of Regularized

Autoencoder.

2.a Sparse Autoencoder.

In this method, the training measure involves a sparsity penalty Ω(ℎ) to the hidden

layer ℎ. Hence, the learning process will be described as

119

 𝐿 (𝑥, 𝑔(𝑓(𝑥))) + Ω(ℎ) (6.11)

where 𝑔(ℎ) is the decoder output. The penalty Ω(ℎ) is simply like a term added to a

feedforward network. The sparse autoencoder framework is like approximating

maximum likelihood training of a generative model that has hidden features. Adding a

regularizer to the cost function will boost the sparsity of an autoencoder (Deng et al,

2013). The mean squared error function is the cost function for training an autoencoder,

𝐸 =
1

𝑁
∑ ∑(𝑋𝑘𝑛 − �́�𝑘𝑛)2 + 𝜆 ∗ Ω𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝛽 ∗ Ω𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

𝐾

𝐾=1

𝑁

𝑛=1

(6.12)

where the first part is the mean squared error, Ω𝑤𝑒𝑖𝑔ℎ𝑡𝑠 is 𝐿2 regularization, Ω𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 is

sparsity regularization, 𝜆 is the coefficient for the 𝐿2 regularization, and 𝛽 is the

coefficient for the sparsity regularization term. Then the function of the average output

activation value of a neuron, which is the regulairzer, is given by

𝑝�̂� =

1

𝑛
∑ 𝑧𝑖

(1)
(𝑋𝑗) =

1

𝑛
∑ ℎ(𝑤𝑖

(1)𝑇𝑋𝑗 + 𝑏𝑖
(1)

𝑛

𝑖=1

)

𝑛

𝑗=1

(6.13)

this is the average output activation measure of a neuron 𝑖 , where 𝑛 is the total number

of training samples. Here the autoencoder can learn a representation by constraining the

value of 𝑝�̂� by adding a term to the cost function.

2.b Denoising Autoencoder.

This autoencoder network adds a penalty Ω to the cost function and changes the restriction

error term as well (Lu et al, 2013). Denoising autoencoder must undo the corruption of 𝑥

 𝐿(𝑥, 𝑔(𝑓(�̂�))) (6.14)

where �̂� is a copy of input that has been corrupted by some noise.

6.4.2 Autoencoder Parameters

The proposed model uses particular parameters, such as the number of inputs and outputs

and a number of hidden layers (Lukoševičius & Jaeger, 2009; Teoh et al, 2006):

https://uk.mathworks.com/help/nnet/ref/trainautoencoder.html#buyr01b-1

120

1- A number of input neurons: as every input variable is treated by a single input

neuron, the number of input neurons is determined by the size of the input vector.

2- A number of hidden layers: since the optimal number of hidden layers strongly

depends on the data, then the number of hidden layers cannot be clearly defined,

and may differ from case to case (Lawrence et al, 1997). In most cases, one or two

hidden layers as enough, and increasing the number of those layers also increases

the danger of overfitting (Chen, 2007). Therefore, the number of hidden layers

cannot be predicted easily, and training of networks with different numbers of

hidden layers may be required for the following comparison.

3- A number of hidden neurons: no rules exist for how to select the right number of

hidden neurons. Experimentation phase is the most common method to determine

the proper number. Nevertheless, it is also necessary to keep in mind that too big a

number is demanding on resources, and too small a number may not reflect all the

variety of the input data (Teoh et al, 2006). The network that performs well on the

testing set and has the smallest number of hidden neurons is preferred (Kaastra &

Boyd, 1996).

4- A number of output neurons. Most neural networks use only one output neuron for

forecasting the next value.

5- A number of neural networks. Different networks have different strengths and

weaknesses. The data decide how many layers a deep neural network needs (Cho,

2014).

6- Network parameters, see Table 6-3.

121

Table 6-3: Autoencoder Parameters to Build the Network

The L2 weight regularisation parameter is quite a small number. Increasing the values of

the weights 𝑤(𝑙) and reducing the values of 𝑧(𝑙) can make the sparsity regulizer too

small to train a sparse autoencoder (Olshausen & Field, 1997). Sparsity regulation is the

second parameter, which controls the impact of a sparsity regularizer. Therefore, it

attempts to enforce a constraint on the sparsity of the hidden layers’ output. Adding a

regularization term encourages sparsity by adding a large number, when the average

activation value are not close in value between neuron 𝑖 and its desired value (Olshausen

& Field, 1997). Kullback-Leibler divergence can be a sparsity regularization term

because it is a function for measuring the difference between two distributions;

 Ω
𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦= ∑ 𝐾𝐿(𝜌||�̂�𝑖

𝐷(1)

𝑖=1)= ∑ 𝜌𝐷(1)

𝑖=1 log(
𝜌
�̂�𝑖

)+(1−𝜌) log(
1−𝜌
1−�̂�𝑖

)
 (6. 15)

Here, it takes a small value when 𝜌 and �̂�𝑖 are close to each other, if they are equal it takes

the value zero, otherwise it become larger. Thus minimizing of the cost function forces

this term to be small. We will define the desired value of the average activation value

using the sparsity proportion, which is the next parameter of the sparsity regularizer. It

controls the sparsity of the output from the hidden layer. A low value for sparsity

proportion usually leads to each neuron in the hidden layer "specializing" by only giving

Parameter Value Description

L2 Weight Regularization 0.001 Controls the impact of an L2 regularizer for the

weights of the network.

Sparsity Regulation 4 Controls the impact of a sparsity regularizer,

which attempts to enforce a constraint on the

sparsity of the output from the hidden layer.

Sparsity Proportion 0.05 Controls the sparsity of the output from the

hidden layer.

Decoder Transfer Function Logsig
𝑓(𝑧) =

1

1 + 𝑒−𝑧

noF 60 Number of Features

noClass 2 Number of Classes

https://uk.mathworks.com/help/nnet/ref/trainautoencoder.html#inputarg_SparsityProportion

122

a high output for a small number of training examples. For example, if the sparsity

proportion is set to 0.05, this is equivalent to saying that each neuron in the hidden layer

should have an average output of 0.05 over the training examples. This value must be

between 0 and 1. The ideal value varies depending on the nature of the problem. The

transfer function could be one of four types, as discussed in section 6.3.1; here we chose

logistic function (Sigmoid) as a transfer function. NoF refers to the number of features as

input, where in our implementation is 60 nodes with binary class that indicate the last

parameter.

6.4.3 Autoencoder Algorithm

The pseudo code for the algorithm used is shown in figure 6-6. The algorithm is divided

into four parts, starting by initializing the network, then defining the encoder function,

after that defining the decoder function and lastly training the network. The initialize

function will randomly weigh the neurons in each layer, as well as add a bias neuron for

every neuron. In the encoder function, the nodes in the first visible layer will multiply the

weights by the input values, and calculate the sigmoid function for every neuron. Then

the decoding procedure reverses the calculation of the encoder to the next hidden layer.

The training function takes the weights with such parameters as learning rate to train the

network many times until it reaches a least 𝑀𝑆𝐸. In the main function, we will select the

number of hidden layers and neurons in each hidden layer, then evaluate the network to

decide the best network architecture.

Initialize

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝐴𝑢𝑡𝑜𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑖𝑛𝑡 𝑛_𝑣, 𝑖𝑛𝑡 𝑛_ℎ, 𝑑𝑜𝑢𝑏𝑙𝑒 ∗∗ 𝑤, 𝑑𝑜𝑢𝑏𝑙𝑒 ∗ ℎ𝑏, 𝑑𝑜𝑢𝑏𝑙𝑒
∗ 𝑣𝑏) {

 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +)

 𝑊[𝑖] = 𝑛𝑒𝑤 𝑑𝑜𝑢𝑏𝑙𝑒[𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒];
 𝑑𝑜𝑢𝑏𝑙𝑒 𝑎 = 1.0 / 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒;
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +) {
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑗 + +) {
 𝑊[𝑖][𝑗] = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−𝑎, 𝑎); }}
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +)

 ℎ𝑏𝑖𝑎𝑠[𝑖] = 0;
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑖 + +)

 𝑣𝑏𝑖𝑎𝑠[𝑖] = 0;
Encoder

𝑔𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛_𝑣𝑎𝑙𝑢𝑒𝑠(𝑖𝑛𝑡 ∗ 𝑥, 𝑑𝑜𝑢𝑏𝑙𝑒 ∗ 𝑦) {
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +) {

123

 𝑦[𝑖] = 0
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑗 + +) {
 𝑦[𝑖] += 𝑊[𝑖][𝑗] ∗ 𝑥[𝑗];
 }
 𝑦[𝑖] = ℎ𝑏𝑖𝑎𝑠[𝑖];
 𝑦[𝑖] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦[𝑖]);
 } }

Decoder

𝑔𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛_𝑣𝑎𝑙𝑢𝑒𝑠(𝑖𝑛𝑡 ∗ 𝑦, 𝑑𝑜𝑢𝑏𝑙𝑒 ∗ 𝑧) {
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑖 + +) {
 𝑧[𝑖] = 0
 𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 𝑛_𝐻𝑖𝑑𝑑𝑒𝑛; 𝑗 + +) {
 𝑧[𝑖] += 𝑊[𝑖][𝑗] ∗ 𝑦[𝑗];
 }
 𝑧[𝑖] = ℎ𝑏𝑖𝑎𝑠[𝑖];
 𝑧[𝑖] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦[𝑖]);
 } }
Train

𝑔𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛_𝑣𝑎𝑙𝑢𝑒𝑠(𝑖𝑛𝑡
∗ 𝑥, 𝑑𝑜𝑢𝑏𝑙𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 𝑙𝑟, 𝑑𝑜𝑢𝑏𝑙𝑒 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛_𝑙𝑒𝑣𝑒𝑙) {

 𝑡𝑖𝑙𝑑𝑒_𝑥 = 𝑛𝑒𝑤 [𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒]
 //𝑣𝑏𝑖𝑎𝑠
 𝐹𝑜𝑟 (𝑖 = 0; 𝑖 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑖 + +) {
 𝑣_𝑒𝑟𝑟𝑜𝑟[𝑖] = 𝑥[𝑖] – 𝑧[𝑖];
 𝑣𝑏𝑖𝑎𝑠[𝑖] = 𝑣𝑏𝑖𝑎𝑠[𝑖] + 𝑙𝑟 ∗ 𝑣_𝑒𝑟𝑟𝑜𝑟[𝑖]/𝑁;
 }
 //ℎ𝑏𝑖𝑎𝑠
 𝐹𝑜𝑟(𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +) {
 ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] = 0;
 𝑓𝑜𝑟 (𝑗 = 0; 𝑗 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑗 + +) {
 ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] = ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] + 𝑊[𝑖][𝑗] ∗ 𝑣_𝑒𝑟𝑟𝑜𝑟[𝑗];
 }
 ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] = ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] ∗ 𝑦[𝑖] ∗ (1 − 𝑦[𝑖]);
 ℎ𝑏𝑖𝑎𝑠[𝑖] = ℎ𝑏𝑖𝑎𝑠[𝑖] + 𝑙𝑟 ∗ ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖]/𝑁;
 }
 //𝑊
 𝐹𝑜𝑟(𝑖 = 0; 𝑖 < 𝑛_ℎ𝑖𝑑𝑑𝑒𝑛; 𝑖 + +) {
 𝐹𝑜𝑟 (𝑗 = 0; 𝑗 < 𝑛_𝑣𝑖𝑠𝑖𝑏𝑙𝑒; 𝑗 + +) {
 𝑊[𝑖][𝑗] = 𝑊[𝑖][𝑗] + 𝑙𝑟 ∗ (ℎ_𝑒𝑟𝑟𝑜𝑟[𝑖] ∗ 𝑡𝑖𝑙𝑑𝑒_𝑥 + 𝑣_𝑒𝑟𝑟𝑜𝑟[𝑗] ∗
 𝑦[𝑖]/𝑁

Figure 6-5 Pseudo Code to Programming Autoencoder Model

Autoencoder allows automatic generation of features, reducing human intervention in

this process. Hence, the training is to perform the input-copying task that can be useful

to extract meaningful features. This automatic feature extraction can be performed

using an error function that encourages the model encoder to have specific

124

characteristics, including sparsity of the representation and robustness to noise. This

autoencoder can be stacked to create a deep structure to increase the level of

abstraction of the features learned. However, the lack of interpretability is the

drawback to this model, which means it is difficult to understand how the features

arrive at the prediction. The time complexity of the worst case of back-propagation

model is 𝑂(𝑤^3); where 𝑤 is the count of the weights in the network. This is because

of the number of passes through each connection weight required to update that weight.

The first pass is to compute the error at the output, the second pass is the backward

propagation of the error to the lowest most weights, and the final pass is the update of

each weight.

6.5 Analysis Results

6.5.1 One Hidden Layer

One hidden layer is the simplest autoencoder network. The autoencoder with one layer

obtained the results shown in Table 6-4. We can see that the best performance and

greatest accuracy can be obtained with 30 neurons in the hidden layer, although all the

results are not very good and less than many classification methods. Therefore, one

hidden layer is not enough for autoencoder to learn to extract the best features. We can

see how the classification outcomes (TP, FN, FP, and TN) look. Although the

prediction of positive class value is good, that of negative class value is poor. The

positive class here is the “Alive” instances, whereas the negative is the “Dead”

instances, referred to as the majority and minority classes, respectively. The positive

samples are 1313 instances, equal to three-quarters (75%) of all the data, and the

remaining, quarter (25%) are the ‘Dead’ instances. For example, in the case of a hidden

layer with 30 neurons the TP is 1130 and FP are 183, which means 86% of instances

were classified correctly for the positive class (majority class), which is the sensitivity

125

measure. However, in the negative class results, only 56% of the negative class are

predicted correctly; this is the specificity measure. The observations of the outcomes

for one hidden layer show that the model fails because it is difficult to classify negative

values that have few samples. The sensitivity analysis to assess robustness has fair

outcomes. Considering sensitivity tests the effective on positive individuals, the test is

good. On the other hand, specificity measures how effectiveness the test is when used

on negative individuals; for one hidden layer the outcome is bad, with less than 57%

which means it is a random draw. Therefore, because sensitivity is used to show how

effectively a prediction identifies cases who are “Alive”, the result shows a good

outcome, as higher sensitivity is better; but for the negative class, the test cannot

identify the individuals correctly, since the outcome for specificity is low. The other

measures related to the concepts of sensitivity and specificity are PPV and NPV

respectively. PPV and NPV measure the group of people whose test results reflect their

mortality status and are affected by mortality prevalence. PPV is the proportion of

individuals who test positively and truly are “Alive”; it increases with a high

prevalence of “Alive”, NPV is the proportion of individuals who test negatively

“Dead” and truly are not positive; the NPV decreases with a high prevalence of

positive “Alive”.

Table 6-4: Performance Results of the Autoencoder in one Hidden Layer

No. of Neurons

in the Hidden

Layer TP FN FP TN ACC SEN SPEC PPV

30 1130 188 183 249 78.8% 85.7% 57.6% 86.1%

20 1131 195 182 242 78.4% 85.2% 57.1% 86.2%

40 1133 195 180 242 78.1% 85.3% 57.3% 86.3%

10 1119 192 194 245 77.5% 85.3% 55.8% 85.2%

50 1131 183 182 254 78.7% 86.0% 58.2% 86.1%

For more explanation we will test the likelihood ratios (LR), seeing that LR as an

expression of the accuracy test is used to evaluate how good an analytic test (CEBM,

126

2017). Whereas sensitivity and specificity are more automatically used in selecting the

rule test to apply, LR shows more directly how we can understand positive and

negative test results (Kohlberg & Hammer, 2014). In fact, it measures the power of a

test to change the probability of pre-test into post-test. Therefore, likelihood ratios can

be used to estimate how much a trial result will modify our prospect (McGee, 2002).

Positive LR (LR+) =

𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

𝐹𝑃/(𝑇𝑁 + 𝐹𝑃)
=

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

(6.16)

Negative LR (LR−) =

𝐹𝑁/(𝑇𝑃 + 𝐹𝑁)

𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)
=

 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

(6.17)

The interpretation of the likelihood ratios is defined by Table 6-5.

Table 6-5: Likelihood Rates and Their Interpretations

LR+ Increase in likelihood LR-

>10 Cause large change <0.1

5-10 Cause moderate changes 0.1-0.2

2-5 Cause small changes 0.2-0.5

1-2 Cause minimal changes 0.5-1

1 Uninformative, no

change

1

Larger is better Smaller is better

Thus, in our last example, positive LR and negative LR is shown in the following

Table 6-6. We can see that positive LR and negative LR are around 2 and 0.25

respectively. Therefore, there is a tiny improvement in diagnosis based on our pre-

test probability. In other words, an instance that is actually “Alive” is two times

more likely to test positive, where the instance “Dead” has minimal increase in

likelihood. Besides, an instance that is actually “Alive” is only 0.25 as likely to test

negative for the instance “Dead”, with a small decrease in likelihood ratios.

127

Table 6-6: Likelihood Results for the Autoencoder with One Hidden Layer

Number of

neurons in the

hidden Layer

LR+ LR-

30 2.02 0.25

20 1.99 0.26

40 2.00 0.26

10 1.93 0.26

50 2.06 0.24

To sum up, one hidden layer in an autoencoder network cannot get good results.

Receiver Operation Characteristic (ROC) is a plot that simplifies the display of

results. The ROC curve is a commonly used way to visualise the performance of a

binary classifier. The curve shows the sensitivity against (1-specificity) (Pencina et

al, 2008). When the curve climbs toward the top-left meaning, the model correctly

predicted the cases. Figure 6-7 shows the ROC curve for the classification using

autoencoder with 30 neurons in the hidden layer; as shown, the performance is

acceptable but not very good. Although the plotting for true positive rate and false

negative rate is far from the 45-degree diagonal, it is not close to the top-left border.

Figure 6-6 ROC curve for Autoencoder with 30 neurons in One Hidden Layer

6.5.2 Two Hidden Layers

With two hidden layers for the autoencoder network, it becomes more computationally

costly, but can solve complex problems. Using two hidden layers to create an

128

autoencoder network obtained the outcomes illustrated in Table 6-7. The table shows

some examples; the full results are shown in the appendix -III. As we can see, there are

various options with two hidden layers. The first hidden layer may have more neurons

than the second hidden layer or vice versa, or the size of both hidden layers are equal.

When the first hidden layer has 50 neurons; the best results were obtained with 50 or 45

neurons in the second hidden layer; the accuracies obtained were 84.11% and 83.57%

respectively. Sensitivity was almost equal for all cases with 50 neurons in the first

hidden layer, around 86%. The difference between the two layer and one layer models

is evident in the increase in true positive (TP) results. Another option is to have the size

of the first hidden layer as 40 neurons, with different sizes of the second hidden layer.

The outcomes show an enhancement with accuracy reaching 84.63% with 40 and 35

neurons for the first and second hidden layers respectively. Thus, the number of true

negative (TN) is slightly increased, which refers to a boost in the minority class results.

As we see, there is more differentiation between the results when we change the number

of neurons in the second hidden layer. The third case has 35 neurons in the first hidden

layer and different sizes for the second hidden. The best results were obtained with 35

neurons in the first hidden layer, while the second hidden layer had either 25 or 45

neurons. Accuracy reached 84.68%, and there was also an improvement in specificity,

which was more than 72.5%, but no noticeable changes in sensitivity, since the increase

was for the majority class more than the minority class.

For a number of neurons in a hidden layer with half the number of inputs, 30 nodes, the

results show enhancement, especially when the second hidden layer has 40 neurons,

where the accuracy reached 84.94%. Therefore, the majority class showed a large increase

in TP. Moreover, there was an effect on the other performance measures such as

specificity, and PPV, while sensitivity stayed around 85%. Next, we make the first hidden

layer size equal to 25 neurons combined with several sizes of the second hidden layer. In

129

this case, the performance declines as the range of accuracy are from 82.3% to 83.98%

and there is noticeable variation in specificity and PPV measures, while there is a little

variance for sensitivity. The best outcomes for this case are when the number of neuron

in the second hidden layer is either 15 or 10. Then, using 20 neurons as the first hidden

layer and changing the size of the second hidden layer will decrease performance more

than the other options. The network architectures that achieve the best results are in bold.

The ROC curves when using [30, 40] and [35, 30] neurons in the hidden layers are shown

in figure 6-8. As we see, the curve is enhanced and becomes closer to the left border

compared to using one hidden layer.

Table 6-7: Performance Outcomes using Autoencoder with Two Hidden Layers

No. of Neurons in

the Hidden Layers TP FN FP TN ACC SEN SPEC PPV

30 40 1241 217 72 220 84.94% 85.12% 75.34% 94.52%

50 50 1217 207 96 230 84.11% 85.46% 70.55% 92.69%

 40 30 1219 208 94 229 84.19% 85.42% 70.90% 92.84%

 40 35 1233 213 80 224 84.63% 85.27% 73.68% 93.91%

35 10 1194 198 119 239 83.32% 85.78% 66.76% 90.94%

35 35 1211 200 102 237 83.63% 85.83% 69.91% 92.23%

35 45 1228 212 85 225 84.51% 85.28% 72.58% 93.53%

30 25 1216 204 97 233 83.92% 85.63% 70.61% 92.61%

30 30 1183 187 130 250 82.55% 86.35% 65.79% 90.10%

30 40 1241 217 72 220 84.94% 85.12% 75.34% 94.52%

30 45 1240 214 79 223 84.76% 85.28% 73.84% 94.01%

25 20 1171 182 142 255 82.12% 86.55% 64.23% 89.19%

25 40 1206 198 107 239 83.46% 85.90% 69.08% 91.85%

20 20 1187 191 126 246 82.83% 86.14% 66.13% 90.40%

20 40 1182 190 131 247 82.72% 86.15% 65.34% 90.02%

15 20 1132 184 181 253 81.73% 86.02% 58.29% 86.21%

15 25 1129 183 184 254 81.63% 86.05% 57.99% 85.99%

10 15 1070 163 243 274 79.61% 86.78% 53.00% 81.49%

10 60 1106 176 207 261 80.91% 86.27% 55.77% 84.23%

130

The diagnosis test in Table 6-8 illustrates the positive LR and negative LR for the best

four models. The results are better than those for one hidden layer, shown previously. The

positive LR becomes greater than 3, which is good and indicates small changes rather

than the minimal changes in the previous test. Moreover, the negative LR goes to 0.20,

which indicates small changes, as in the previous test, but the value is increased.

Table 6-8: Likelihood Results for Autoencoder with two Hidden Layers

Hidden

Layers
LR+ LR-

30 40 3.45 0.20

30 45 3.26 0.20

40 35 3.24 0.20

35 45 3.11 0.20

6.5.3 Three Hidden Layers

As we can see in Table 6-9 with three hidden layers, autoencoder will classify all the

major class correctly and all the minor class incorrectly, which is unsatisfactory. Thus,

more than two layers caused overfitting of the training data.

Figure 6-7 ROC curve for the two Hidden Layers , (a) Hidden Layers [30,40] ,(b)

Hidden Layers [35,30]

131

Table 6-9: Performance Results for Autoencoder with Three Hidden Layer

No. of Neurons

in the Hidden

Layers

ACC TP FN FP TN SEN SPEC PPV

50, 40, 30 75% 1313 437 0 0 75% 100%

40, 30, 20 75% 1313 437 0 0 75% 100%

6.5.4 Autoencoder with class balance

As shown in the previous sections, autoencoder is affected by class imbalance. The results

indicate that the model has the best results with the majority class label, while the overall

outcomes are decreased, as the minority class label has poor results. Thus, overall

performance is strong but for the minority class it is very poor. This could happen because

the classifiers assume that unseen data points are drawn from the same distribution as the

training set (Wasikowski & Chen, 2010). Also, as autoencoder tries to optimize the MSE

on the training data, it generalizes very well to overall predictive accuracy on the training

set. The class imbalance can be balanced by different techniques including random

resampling, as seen in the previous chapter. By random resampling, the samples could be

decreased or increased to make a better balance between two classes. The outcomes of an

autoencoder model with two hidden layers applied on a resampled dataset is shown in

Table 6-10. As illustrated, the results for the balanced class show reduced sensitivity,

which is almost the same as the sensitivity of classification will unbalanced data since the

TN samples have increased. However TP of the balanced class has decreased, which

affect the performance outcomes including accuracy and specificity. The resampled

dataset did not improve the performance of autoencoder classification because increasing

the samples of the minority class will change the majority class, whilst the resampling

will not be an accurate representation of the population, thus resulting in inaccurate results

132

with the actual test data set. Although oversampling will not lead to loss of information,

this will increase the likelihood of overfitting since it replicates the minority class

samples. Resampling class imbalance will to boost some features that may be recognised

as irrelevant or redundant by the network. This will lead to such features being extracted,

instead of others that are relevant, and this is why the interpretation of the outcome

changes from unbalanced to balanced data.

Table 6-10: Performance Results for Autoencoder with Balanced data

Neurons in

hidden layers

TP FN FP TN Accuracy Sensitivity Specificity PPV

35 30 1060 189 221 279 76.6% 84.87% 55.80% 82.75%

40 20 1060 195 221 273 76.2% 84.46% 55.26% 82.75%

30 10 1061 176 220 292 77.4% 85.77% 57.03% 82.83%

30 30 1072 187 209 281 77.4% 85.15% 57.35% 83.68%

30 15 1066 182 215 286 77.3% 85.42% 57.09% 83.22%

25 15 1067 184 214 284 77.2% 85.29% 57.03% 83.29%

50 25 1059 185 222 283 76.7% 85.13% 56.04% 82.67%

- Evaluate the effect of class imbalance in training data on performance:

Training an autoencoder network on balanced data was used to assess the impact of class

unbalanced training data on the performance of a classifier. However, there are other

factors that affect the performance of neural network based classifiers, such as the number

of features, the correlation between features, and training sample size. The network used

is a feedforward neural network, as training this network obtains the best classification

performance for finding the best set of network weights (Mazurowski et al, 2008). Next,

backpropagation finds the MSE in weight space to train the classifier. As we can see in

Table 6-11, the class correctly classification includes increased TP and TN compared with

Table 6-7. The table shows performance improvement compared to the outcomes of the

autoencoder trained on unbalanced data. Although FP has increased in the results

133

obtained from the network trained on balanced data the outcomes are better because the

increase in TP is more than FP; also as seen the FN has dropped from 217 to 120, which

contributes to the good results. The trained network enhances the outcome of the minority

class, since having more samples increases their outcomes. In general, a class imbalance

in the training data has an effect on the autoencoder classifier’s performance. Hence, the

minor class also affected the variability of the classifier’s performance due to the random

sampling from the population and random factors present in the training neural network.

Table 6-11: Performance results for Autoencoder training on balance data network

No. of

neurons

in the

hidden

layers TP FN FP TN accuracy sensitivity specificity PPV

30 25 1301 120 113 216 86.34% 91.44% 62.94% 91.89%

30 35 1308 126 119 197 86.00% 91.21% 62.34% 91.66%

30 40 1301 129 123 197 85.60% 90.98% 61.56% 91.36%

40 20 1305 125 120 200 86.00% 91.26% 62.50% 91.58%

6.6 Conclusion

This chapter has presented experiments on the autoencoder model using the heart failure

dataset. The model consists of one input layer, several hidden layers, and one output layer.

The difference between autoencoder and other neural network models is that in

autoencoder the output is equal to the input data. Moreover, autoencoder has a bottleneck

in the middle of the network, which is the extracted features reduced from the input data.

We have demonstrated how to implement the autoencoder network to learn meaningful

features, called feature extraction. The network has various parameters that identify the

form of the network and its output. The main parameters are the transfer function, learning

rate, number of hidden layers, and number of neurons in each hidden layer. The results

show that two hidden layers are the best choice to have good results. One hidden layer

134

did not give good performance outcomes, while three hidden layers caused overfitting

and the model did not work properly. The best performance was obtained from the

network with two hidden layers [30, 40].

The analysis of the results shows that because the dataset has unbalanced classes, the

model is suitable for the majority class and unfair for the minority class. The majority

class, which is the positive state in our dataset, has 75% of the data, which is enough to

extract the features that can correctly classify the data. On the other hand, the minority

class, which is the negative state, has 25% of the data and the model cannot predict cases

correctly because there are not enough samples. In addition, autoencoder shows improve

performance when learning on balanced data, since a small number of training examples

also has a detrimental effect on the average performance.

135

 Conclusion and Future Research

7.1 Introduction

The purpose of this research was to investigate clinical data mining issues and to build a

machine learning model that can compress the data mining methodology; by classifying

data and extracting features in one step. Problems that affect clinical datasets are missing

values, high dimensionality, and class imbalance. Imputing missing values is important

as a pre-processing step for all frameworks used for mining data. High dimensionality

can be reduced either by extracting or selecting features. We show that selecting features

is highly complex, since many iterations and evaluation steps are needed to assess each

group of features. Addressing all data mining issues can improve prediction performance

and reduce the complexity of data. The research was motivated by these issues to

investigate machine learning models to impute missing values, reduce dimensionality,

classify data and enhance prediction performance.

The framework started by cleaning data by discarding data that has too many missing

values. Then, missing values were imputed using several machine learning methods, and

the imputation evaluated using different techniques to show the performance and analyse

the weaknesses and strengths of these tools. Then the relevant features were selected from

the large dataset to enhance the accuracy of prediction. Although this technique shows

high complexity due to the many iterations used for each feature selection method, it

determines the significant features. Next, class imbalance was investigated and the dataset

was balanced to select features and classify the balanced data. Eventually, a model that

can compress data mining methodology by extracting the features and classifying the data

were proposed using an autoencoder, in order to investigate this model and how to

implement it for a clinical dataset. The autoencoder model we used has reduced the

136

complexity by using feature extraction and classification; although the model is affected

by class imbalance, it still reduces the complexity and obtains good results.

The thesis successfully addressed the thesis objectives and proposed techniques to

improve data imputation, feature selection and class prediction for the clinical dataset.

This chapter presents the conclusions for the research objectives initially presented in

chapter 1, and gives a summary and some suggestions for future research.

7.2 Contributions of the research

The thesis contributes to the area of data mining and machine learning. Specifically, it

introduces novel thinking and techniques to the fields of missing values, feature selection,

data imbalance, and clinical data. Regarding missing values, it was shown that techniques

based on class separation will outperform other techniques in predictive ability. Next, we

found the major variables in the heart failure dataset that can improve predictive

modelling and enhance classification performance. Moreover, we analysed the best

number of features to be selected by each method. For the balanced data, we found that

training data on a balanced model results in improved. Finally, the autoencoder model

was used to classify clinical data by extracting features.

The thesis explores the challenges of real clinical data through machine learning methods

to investigate a suitable approach for imputing, feature selection, and classification.

Furthermore, it used an autoencoder model to classify data by extracting significant

features. In evaluating the models used, several decision trees were applied, including

RF, J48, and REPTree. The problems posed by real-life clinical datasets were introduced

in chapter 1. We investigated a list of key issues that are of concern in the data mining

and machine learning fields. The specific goals of the research were set out in section 1.5,

following from the motivation and research problem identified in section 1.3 to answer

137

the research questions in section 1.4. The objectives are revisited in this section to

summarise how they have been achieved and to discuss the research findings.

Objective 1: To study existing missing value imputation techniques.

In Chapter 3 we investigated six imputation algorithms to impute missing values in a heart

failure dataset. The chapter discussed the missing value problem in the research dataset

and how imputation methods can manipulate these problem data. Then, these methods

were evaluated using several classification techniques such as random forest, REPTree,

and J48. The imputation methods used were K-nearest Neighbour Imputation (KNNI),

Expectation Maximisation Imputation (EMI), K-mean imputation, Most Common

Imputation (MCI), Concept Most Common Imputation (CMC), and Support Vector

Machine (SVM). Concept Most Common (CMC) has been suggested as the most

appropriate imputation algorithm to impute the missing values in Hull LifeLab data, and

random forest as an algorithm to classify data. The best outcome was obtained by using

CMC and SVM because the technique of these methods calculates the missing values in

consideration of the class label. Moreover, analysing the computational complexity shows

that the incomplete data has high learning complexity compared to the imputed dataset.

Objective 2: To analyse eight feature selection methods to find the best methods that

can be used to select features from clinical data.

In Chapter 4, we investigated the relevant features that can predict the target class. A

unique contribution of our work is that we compare the underlying attribute rankings of

each technique, as opposed to building classifiers using the selected features and

comparing performance metrics, such as overall accuracy, of those classifiers. By

measuring the rank correlation between the attribute rankings, it is easier to discern which

techniques produce similar results, irrespective of the ultimate use of the data.

138

The selected subset improved the prediction performance of the research dataset. Thus,

the selected subset can support clinicians to analyse and interpret specific features. The

methods used to analyse the features were chi-square, ReliefF, information gain,

correlation attributes, Cfs, Consistency, the embedded method, and wrapper. The results

show that wrapper and chi-square are the two best methods that can be used to select

features from a clinical dataset; however, wrapper has high computational complexity.

Objective 2.a: To find the significant features that improve predictive modelling and

enhance the classification performance for the Hull LifeLab dataset.

In Chapter 4, we investigated the relevant features that can predict the target class. The

selected subset improved the prediction and performance of the research dataset. Thus,

the selected subset can support clinicians to analyse and interpret specific features. The

similarity of features selected from all feature selection methods can identify the basic

features that improve the prediction.

Objective 2.b: To identify the number of features that appropriate for each method.

We compared the attribute ranking of each technique, as opposed to building classifiers

using the selected features and comparing performance metrics. Therefore, we found for

each method how many features is the best choice. The methods used to select features

entailed different techniques, so that some methods improve performance with small

subset sizes, whereas others improved performance for large subsets. Chi-square,

wrapper, ReliefF, embedded, consistency, and Cfs improve performance with a small

number of features, whereas information gain and correlation need a large number of

features to improve performance.

Objective 2.c: To investigate class imbalance and the effect on the feature selection

subsets, as well as apply feature selection methods with the balanced classes.

139

In Chapter 5, we analysed class imbalance on the results obtained from the feature

selection method. It was seen that some methods gave positive effects, whereas others

gave negative effects. We found that only information gain improved the results with 11

and 23 features, whereas other methods yielded poor results for the balanced classes

compared to the original dataset. The comparison was made between selected variables

from the unbalanced classes and the variables gained from balanced data after resampling.

The subsets selected by several feature selection methods were then resampled. On

measuring the selected subsets after resampling, we found a significant improvement in

terms of the performance matrix, especially specificity.

Objective 3: To investigate the autoencoder technique that can reduce the data

mining methodology steps, by extracting features and classifying data.

In Chapter 6, an empirical study was made to examine an autoencoder neural network

technique to classify data by extracting features. The findings show that the model

obtained good results in terms of classification. Most of the machine learning methods

used to classify data have the same parameters, which leads to the same results. In the

autoencoder model, the parameters can be changed to find a suitable model for a particular

dataset. In each experiment, we can change parameters such as learning rates, hidden

layers, and regularisation. The best choice for the chronic heart failure dataset is to use

two hidden layers, containing 30 and 40 neurons.

7.3 Scope for future research

Although this thesis has made some significant contributions to the area of mining

medical data, there remain some limitations that open new avenues for further research.

As we use of a chronic heart failure dataset, it would be better to have a different clinical

dataset to be implemented through this framework, since another example of clinical data

can give more information about the algorithms and tools used.

140

The wrapper method is a computationally complex method, although it shows the best

results for the selected features. Thus, it would be interesting to combine another filtering

method with wrapper to get a hybrid approach that will reduce the complexity of wrapper.

This can be done by starting with a filter technique such as Cfs or information gain, to

select a set of features. Then wrapper would be applied to the selected features instead of

the whole feature set.

In the thesis, we demonstrate and implement most of the feature selection techniques, but

did not include the feature extraction methods. Dimensionality reduction using feature

extraction methods such as ICA and PCA should be considered in future research,

particularly in the heart failure dataset. PCA can create new features using the existing

features that may have a better association with the class. Accordingly, principal

component analysis can be employed in different ways. We have block PCA with non-

greedy 𝑙1 −norm and 𝑙2 −norm, as well as, greedy 𝑙1 −norm and 𝑙2 −norm. As a result,

recommendation for future research are as follows:

1) Investigate feature extraction methods with a view to developing decision support

systems.

a. Employ feature extraction methods such as PCA and ICA.

b. Apply different techniques of PCA such 𝑙1-norm and 𝑙2-norm.

2) Investigate the outcomes of feature extraction and its relationship with feature

selection.

141

BIBLIOGRAPHY

Abraham, R., Simha, J. B. & Iyengar, S. S. (2007) Medical data mining with a new

algorithm for feature selection and naive Bayesian classifier, 10th International

Conference on Information Technology (ICIT 2007). Orissa, India, 17-20 Dec.

2007.

Acuna, E. & Rodriguez, C. (2004) The treatment of missing values and its effect on

classifier accuracy, Classification, Clustering, and Data Mining

ApplicationsSpringer, 639-647.

Aggarwal, C. C. & Zhai, C. (2012) Mining text data. London: Springer Science &

Business Media.

Ahmad, T., Jameel, A. & Ahmad, B. (2011) Pattern recognition using statistical and

neural techniques, Computer Networks and Information Technology (ICCNIT),

2011 International Conference on. IEEE.

Al-Shahib, A., Breitling, R. & Gilbert, D. (2005) Feature selection and the class

imbalance problem in predicting protein function from sequence. Applied

Bioinformatics, 4(3), 195-203.

Alkhasawneh, R. & Hargraves, R. H. (2014) Developing a hybrid model to predict student

first year retention in STEM disciplines using machine learning techniques. Journal

of STEM Education: Innovations and Research, 15(3), pp. 35-42.

Allison, P. D. (2000) Multiple imputation for missing data: A cautionary tale.

Sociological Methods & Research, 28(3), 301-309.

Alpaydin, E. (2014) Introduction to machine learning. Cambridge, Massachusetts: The

MIT press.

Andreou, P. C., Charalambous, C. & Martzoukos, S. H. (2002) Critical assessment of

option pricing methods using artificial neural networks, International Conference

on Artificial Neural Networks. Madrid, Spain: Springer.

142

Asheibi, A., Stirling, D. & Sutanto, D. (2009) Analyzing harmonic monitoring data using

supervised and unsupervised learning. IEEE Transactions on Power Delivery,

24(1), 293-301.

Assawamakin, A., Prueksaaroon, S., Kulawonganunchai, S., Shaw, P. J., Varavithya, V.,

Ruangrajitpakorn, T. & Tongsima, S. (2013) Biomarker selection and classification

of “-omics” data using a two-step bayes classification framework. BioMed

Research International, 2013, 1-9.

Auria, L. & Moro, R. A. (2008) Support vector machines (SVM) as a technique for

solvency analysis.

Baker, Y. S. (2014) Applying machine learning techniques in diagnosing bacterial

vaginosis. Doctoral Dessirtation, . North Carolina Agricultural and Technical State

University.

Balakrishnan, S., Narayanaswamy, R., Savarimuthu, N. & Samikannu, R. (2008) SVM

ranking with backward search for feature selection in type II diabetes databases,

IEEE International Conference onSystems, Man and Cybernetics, 2008. SMC 2008

Singapore, Singapore: IEEE.

Barzi, F. & Woodward, M. (2004) Imputations of missing values in practice: results from

imputations of serum cholesterol in 28 cohort studies. American Journal of

Epidemiology, 160(1), 34-45.

Bashiri, M. & Geranmayeh, A. F. (2011) Tuning the parameters of an artificial neural

network using central composite design and genetic algorithm. Scientia Iranica,

18(6), 1600-1608.

Bataineh, M. H. (2012) Artificial neural network for studying human performance. PhD

(Dessertation). University of Lowa.

Batista, G. E. & Monard, M. C. (2002) A study of K-nearest neighbour as an imputation

method. HIS, 87(251-260), 48.

143

Batista, G. E. & Monard, M. C. (2003) An analysis of four missing data treatment

methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533.

Batra, S., Parashar, H. J., Sachdeva, S. & Mehndiratta, P. (2013) Applying data mining

techniques to standardized electronic health records for decision support, Sixth

International Conference onContemporary Computing (IC3), 2013 Noida, India:

IEEE.

Batuwita, R. & Palade, V. (2010) Efficient resampling methods for training support

vector machines with imbalanced datasets, The 2010 International Joint

Conference onNeural Networks (IJCNN), . Barcelona, Spain: IEEE.

Bellazzi, R. & Zupan, B. (2008) Predictive data mining in clinical medicine: Current

issues and guidelines. International Journal of Medical Informatics, 77, 81-97.

Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. (2007) Greedy layer-wise training

of deep networks. Advances in Neural Information Processing Systems, 19, 153.

Billings, J., Mijanovich, T., Dixon, J., Curry, N., Wennberg, D., Darin, B. & Steinort, K.

(2006) Case finding algorithms for patients at risk of re-hospitalisation.London.

Blake, R. & Mangiameli, P. (2011) The effects and interactions of data quality and

problem complexity on classification. Journal of Data and Information Quality

(JDIQ), 2(2), 1-28.

Branco, P., Torgo, L. & Ribeiro, R. (2015) A survey of predictive modelling under

imbalanced distributions. arXiv preprint arXiv:1505.01658.

Caesarendra, W., T Putri, F., Ariyanto, M. & D Setiawan, J. (2015) Pattern recognition

methods for multi stage classification of parkinson's disease utilizing voice features,

International Conference onAdvanced Intelligent Mechatronics (AIM). Busan,

South Korea: IEEE.

144

Cao, P., Liu, X., Zhang, J., Zhao, D., Huang, M. & Zaiane, O. (2016) ℓ 2, 1 norm

regularized multi-kernel based joint nonlinear feature selection and over-sampling

for imbalanced data classification. Neurocomputing, 234(19 April 2017), 38-57.

Carmona, C. J., Luengo, J., Gonzalez, P. & del Jesus, M. J. (2012) A preliminary study

on missing data imputation in evolutionary fuzzy systems of subgroup discovery,

International Conference onFuzzy Systems (FUZZ-IEEE). Brisbane, QLD,

Australia, 10-15 June 2012. IEEE.

Catley, C., Smith, K., McGregor, C. & Tracy, M. (2009) Extending CRISP-DM to

incorporate temporal data mining of multidimensional medical data streams: A

neonatal intensive care unit case study, Computer-Based Medical Systems, 2009.

CBMS 2009. 22nd IEEE International Symposium on. Albuquerque, NM, USA, 2-

5 Aug. 2009. IEEE.

Cerrito, P. B. (2006) Introduction to data mining using SAS Enterprise MinerSAS

Publishing.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth., R.

(2000) CRISP-DM 1.0 Step-by-step data mining guide, 2000. Available online:

[Accessed.

Chauhan, H., Kumar, V., Pundir, S. & Pilli, E. S. (2013) A comparative study of

classification techniques for intrusion detection, Computational and Business

Intelligence (ISCBI), 2013 International Symposium on. IEEE.

Chellappa, R. (2016) The changing fortunes of pattern recognition and computer vision.

Image and Vision Computing, 55, 3-5.

Chen, S.-H. (2007) Computationally intelligent agents in economics and finance.

Information Sciences, 177(5), 1153-1168.

Cho, K. (2014) Foundations and advances in deep learningPhD. Aalto University.

145

Choi, Y., Ozawa, S. & Lee, M. (2014) Incremental two-dimensional kernel principal

component analysis. Neurocomputing, 134, 280-288.

Cios, K. J. & Moore, G. W. (2002) Uniqueness of medical data mining. Artificial

Intelligence in Medicine, 26(1), 1-24.

Cleland, J. G., Zhang, J., Pellicori, P., Dicken, B., Dierckx, R., Shoaib, A., Wong, K.,

Rigby, A., Goode, K. & Clark, A. L. (2016) Prevalence and outcomes of anemia

and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiology,

1(5), 539-547.

Cohen, W. W. & Hirsh, H. (1994) The learnability of description logics with equality

constraints. Machine Learning, 17(2), 169-199.

Dash, M. & Liu, H. (1997) Feature selection for classification. Intelligent data analysis,

1(1-4), 131-156.

Dash, M. & Liu, H. (2003) Consistency-based search in feature selection. Artificial

Intelligence, 151(1), 155-176.

Daskalaki, S., Kopanas, I. & Avouris, N. (2006) Evaluation of classifiers for an uneven

class distribution problem. Applied Artificial Intelligence, 20(5), 381-417.

Demšar, J. (2010) Algorithms for subsetting attribute values with Relief. Machine

Learning, 78(3), 421-428.

Deng, J., Zhang, Z., Marchi, E. & Schuller, B. (2013) Sparse autoencoder-based feature

transfer learning for speech emotion recognition, Humaine Association Conference

onAffective Computing and Intelligent Interaction (ACII). Geneva, Switzerland:

IEEE.

Deng, L., Seltzer, M. L., Yu, D., Acero, A., Mohamed, A.-r. & Hinton, G. E. (2010)

Binary coding of speech spectrograms using a deep auto-encoder, Interspeech.

Makuhari, Chiba, Japan: Citeseer.

146

Devasena, C. (2015) Proficiency comparison of LADTree and REPTree classifiers for

credit risk forecast. International Journal on Computational Sciences &

Applications (IJCSA), 5(1), 39-50.

Dodge, Y. & Zoppe, A. (2004) Adjusting the EM algorithm for design of experiments

with missing data, International Conference onInformation Technology Interfaces.

Cavtat, Croatia, 7-10 June 2004. IEEE.

Domingos, P. & Pazzani, M. (1997) On the optimality of the simple Bayesian classifier

under zero-one loss. Machine Learning, 29(2-3), 103-130.

Durgabai, R. (2014) Feature selection using ReliefF Algorithm. International Journal of

Advanced Research in Computer and Communication Engineering, 3(10), 8215-

8218.

Endo, A., Shibata, T. & Tanaka, H. (2008) Comparison of seven algorithms to predict

breast cancer survival(<Special Issue>Contribution to 21 Century Intelligent

Technologies and Bioinformatics). International Journal of Biomedical Soft

Computing and Human Sciences, 13(2), 11-16.

Engels, J. M. & Diehr, P. (2003) Imputation of missing longitudinal data: a comparison

of methods. Journal of Clinical Epidemiology, 56(10), 968-976.

Esfandiari, N., Babavalian, M. R., Moghadam, A.-M. E. & Tabar, V. K. (2014)

Knowledge discovery in medicine: Current issue and future trend. Expert Systems

with Applications, 41(9), 4434-4463.

Europe, S. V. (2017) CRISP-DM 2017. Available online: http://www.sv-

europe.com/crisp-dm-methodology/ [Accessed.

Farhangfar, A., Kurgan, L. & Dy, J. (2008) Impact of imputation of missing values on

classification error for discrete data. Pattern Recognition, 41(12), 3692-3705.

http://www.sv-europe.com/crisp-dm-methodology/
http://www.sv-europe.com/crisp-dm-methodology/

147

Farhangfar, A., Kurgan, L. & Pedrycz, W. (2007) A novel framework for imputation of

missing values in databases. IEEE Transactions on Systems, Man and Cybernetics,

Part A: Systems and Humans, 37(5), 692-709.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (1996) Advances in

knowledge discovery and data mining.

Fewzee, P. & Karray, F. (2012) Dimensionality reduction for emotional speech

recognition and 2012 International Confernece on Social Computing (SocialCom),

International Conference on Privacy, Security, Risk and Trust (PASSAT)

Amsterdam, Netherlands: IEEE.

Friedlin, J., Mahoui, M., Jones, J. & Jamieson, P. (2011) Knowledge discovery and data

mining of free text radiology reports, First IEEE International Conference on

Healthcare Informatics, Imaging and Systems Biology (HISB). San Jose, CA, USA:

IEEE.

Friedman, J., Hastie, T. & Tibshirani, R. (2001) The elements of statistical learning,

1Berlin:Springer series in statistics, .

Fusco, G., Colombaroni, C., Comelli, L. & Isaenko, N. (2015) Short-term traffic

predictions on large urban traffic networks: applications of network-based machine

learning models and dynamic traffic assignment models, International Conference

onModels and Technologies for Intelligent Transportation Systems (MT-ITS).

Budapest, Hungary: IEEE.

Ghoneim, V. F., Solouma, N. H. & Kadah, Y. M. (2011) The impact of missing values

imputation methods in cDNA microarrays on downstream data analysis, 28th

National Radio Science Conference (NRSC), . Cairo, Egypt, 26-28 April 2011.

IEEE.

Gonen, M. (2013) Bayesian supervised dimensionality reduction. Cybernetics, IEEE

Transactions on, 43(6), 2179-2189.

148

González, R. L. (2009) Neural networks for variational problems in engineering. Phd

Universitat Politècnica de Catalunya.

Grzymala-Busse, J. W., Goodwin, L. K., Grzymala-Busse, W. J. & Zheng, X. (2005)

Handling missing attribute values in preterm birth data sets, International

Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing.

Berlin, Heidelberg: Springer, 342-351.

Guo, X., Yin, Y., Dong, C., Yang, G. & Zhou, G. (2008) On the class imbalance problem,

Fourth International Conference on Natural Computation. Jinan, China: IEEE.

Gupta, D., Malviya, A. & Singh, S. (2012) Performance analysis of classification tree

learning algorithms. IJCA) International Journal of Computer Applications, 55(6).

Gürbüz, E. & Kılıç, E. (2011) Diagnosis of diabetes by using Adaptive SVM and feature

selection, IEEE 19th Conference on Signal Processing and Communications

Applications (SIU). Antalya, Turkey: IEEE.

Guyon, I. & Elisseeff, A. (2003) An introduction to variable and feature selection. Journal

of Machine Learning Research, 3(Mar), 1157-1182.

Hall, M. A. & Holmes, G. (2003) Benchmarking attribute selection techniques for

discrete class data mining. IEEE Transactions on Knowledge and Data

Engineering, 15(6), 1437-1447.

Ham, J., Chen, Y., Crawford, M. M. & Ghosh, J. (2005) Investigation of the random

forest framework for classification of hyperspectral data. IEEE Transactions on

Geoscience and Remote Sensing, 43(3), 492-501.

Hamed, T., Dara, R. & Kremer, S. C. (2014) An accurate, fast embedded feature selection

for SVMs, 13th International Conference on Machine Learning and Applications

(ICMLA). Detroit, MI, USA: IEEE.

Han, J. & Kamber, M. (2011) Data mining: concepts and techniques, Third edition.

Waltham, MA, USA: Elsevier.

149

Han, Y., Park, K. & Lee, Y.-K. (2011) Confident wrapper-type semi-supervised feature

selection using an ensemble classifier, 2nd International Conference on Artificial

Intelligence, Management Science and Electronic Commerce (AIMSEC).

Dengleng, China: IEEE.

Hand, D. J., Mannila, H. & Smyth, P. (2001) Principles of data miningMIT press.

He, H. & Garcia, E. A. (2009) Learning from imbalanced data. IEEE Transactions on

Knowledge and Data Engineering, 21(9), 1263-1284.

Hinton, G. E. (2002) Training products of experts by minimizing contrastive divergence.

Neural Computation, 14(8), 1771-1800.

Hinton, G. E., Dayan, P. & Revow, M. (1997) Modeling the manifolds of images of

handwritten digits. Neural Networks, IEEE Transactions on, 8(1), 65-74.

Hinton, G. E., Osindero, S. & Teh, Y.-W. (2006) A fast learning algorithm for deep belief

nets. Neural computation, 18(7), 1527-1554.

Hinton, G. E. & Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504-507.

Hoyer, P. O. & Hyvärinen, A. (2000) Independent component analysis applied to feature

extraction from colour and stereo images. Network: Computation in Neural

Systems, 11(3), 191-210.

Huang, J., Sun, H., Li, Y.-F. & Xie, M. (2015) An empirical study of dynamic incomplete-

case nearest neighbor imputation in software quality data, Software Quality,

Reliability and Security (QRS), 2015 IEEE International Conference on. IEEE.

Huang, S. H. (2015) Supervised feature selection: A tutorial. Artificial Intelligence

Research, 4(2), 22-37.

IBM (2012) Data mining techniques, 2012. Available online:

https://www.ibm.com/developerworks/library/ba-data-mining-techniques/

[Accessed.

https://www.ibm.com/developerworks/library/ba-data-mining-techniques/

150

Inc, T. M. (2016) MATLAB and Statistics Toolbox Release 2016b. Natick, Massachusetts,

United States.

Jia, J., Yang, N., Zhang, C., Yue, A., Yang, J. & Zhu, D. (2013) Object-oriented feature

selection of high spatial resolution images using an improved Relief algorithm.

Mathematical and Computer Modelling, 58(3), 619-626.

Jilani, M. Z. M. B., Tucker, A. & Swift, S. (2016) Simultaneous modelling and clustering

of visual field data, 29th International Symposium on Computer-Based Medical

Systems. IEEE.

Jing, L. (2012) Missing data imputation. PhD, University of California, Los Angeles.

Jonsson, P. & Wohlin, C. (2004) An evaluation of k-nearest neighbour imputation using

likert data, 10th International Symposium on Software Metrics, 2004. Proceedings.

. Chicago, Illinois, USA, USA: IEEE.

Joshi, S. K. & Machchhar, S. (2014) An evolution and evaluation of dimensionality

reduction techniques—A comparative study, IEEE International Conference on

Computational Intelligence and Computing Research Coimbatore, India: IEEE.

Kaastra, I. & Boyd, M. (1996) Designing a neural network for forecasting financial and

economic time series. Neurocomputing, 10(3), 215-236.

Kaiser, J. (2014) Dealing with missing values in data. Journal of Systems Integration,

5(1), 42-51.

Kalmegh, S. (2015) Analysis of WEKA data mining algorithm REPTree, Simple CART

and RandomTree for classification of Indian news. International Journal of

Innovative Science, Engineering and Technology, 2(2), 438-46.

Karamizadeh, S., Abdullah, S. M. & Halimi, M. (2014) Advantage and drawback of

support vector machine functionality, International Conference on Computer,

Communication, and Control Technology (I4CT 2014). Langkawi, Kedah,

Malaysia: IEEE.

151

Karczmarek, P., Kiersztyn, A., Pedrycz, W. & Dolecki, M. (2017) An application of chain

code-based local descriptor and its extension to face recognition. Pattern

Recognition, 65, 26-34.

Karmaker, A. & Kwek, S. (2005) Incorporating an EM-approach for handling missing

attribute-values in decision tree induction, Fifth International Conference on

Hybrid Intelligent Systems, 2005. HIS '05. . Rio de Janeiro, Brazil, Brazil, 6-9 Nov.

2005.

Kaur, G. & Chhabra, A. (2014) Improved J48 classification algorithm for the prediction

of diabetes. International Journal of Computer Applications, 98(22), 13-22.

Kausar, N., Palaniappan, S., Samir, B. B., Abdullah, A. & Dey, N. (2016) Systematic

analysis of applied data mining based optimization algorithms in clinical attribute

extraction and classification for diagnosis of cardiac patients, Applications of

intelligent optimization in biology and medicineSpringer, 217-231.

Khodaskar, A. & Ladhake, S. (2014) Pattern recognition: Advanced development,

techniques and application for image retrieval, International Conference on

Communication and Network Technologies (ICCNT). Sivakasi, India: IEEE.

Kile, H. & Uhlen, K. (2012) Supervised and unsupervised learning in composite

reliability evaluation, 2012 IEEE Power and Energy Society General Meeting.

IEEE.

Kirshners, A., Parshutin, S. & Gorskis, H. (2017) Entropy-based classifier enhancement

to handle imbalanced class problem. Procedia Computer Science, 104, 586-591.

Kohavi, R. & John, G. H. (1997) Wrappers for feature subset selection. Artificial

Intelligence, 97(1), 273-324.

Kohlberg, G. & Hammer, M. (2014) GetTheDiagnosis.org - A Database of Diagnostic

Accuracy, 2014. Available online: http://getthediagnosis.org [Accessed.

http://getthediagnosis.org/

152

Kononenko, I. & Kukar, M. (2007) Machine learning and data mining: introduction to

principles and algorithms. West Sussex, UK: Horwood Publishing.

Kumar, V. & Minz, S. (2014) Feature selection. SmartCR, 4(3), 211-229.

Kumdee, O., Ritthipravat, P., Bhongmakapat, T. & Cheewaruangroj, W. (2008) Dealing

with missing values for effective prediction of NPC recurrence, SICE Annual

Conference. Tokyo, Japan, 20-22 Aug. 2008.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J. & Bengio, Y. (2007) An empirical

evaluation of deep architectures on problems with many factors of variation,

Proceedings of the 24th international conference on Machine learning. Corvalis,

Oregon, USA: ACM.

Lavrač, N. (1999) Selected techniques for data mining in medicine. Artificial Intelligence

in Medicine, 16(1), 3-23.

Lawrence, S., Giles, C. L. & Tsoi, A. C. (1997) Lessons in neural network training:

Overfitting may be harder than expected, National Conference on Artificial

Intelligence. Providence, Rhode Island.

Ledolter, J. (2013) Data mining and business analysis with R. New Jersy: John Wiley &

Sons.

Levy, W. C., Mozaffarian, D., Linker, D. T., Sutradhar, S. C., Anker, S. D., Cropp, A. B.,

Anand, I., Maggioni, A., Burton, P. & Sullivan, M. D. (2006) The Seattle heart

failure model prediction of survival in heart failure. Circulation, 113(11), 1424-

1433.

Li, D., Deogun, J., Spaulding, W. & Shuart, B. (2004) Towards missing data imputation:

A study of fuzzy k-means clustering method, International Conference on Rough

Sets and Current Trends in Computing. Uppsala, Sweden: Springer-Verlag, Berlin,

573-579.

153

Li, H., Jiang, T. & Zhang, K. (2006) Efficient and robust feature extraction by maximum

margin criterion. IEEE Transactions on Neural Networks, 17(1), 157-165.

Li, J., Fu, A. W.-c., He, H., Chen, J., Jin, H., McAullay, D., Williams, G., Sparks, R. &

Kelman, C. (2005) Mining risk patterns in medical data, Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data mining.

Chicago, Illinois, USA ACM.

Li, X., Yu, J., Jia, Z. & Song, J. (2014) Harmful algal blooms prediction with machine

learning models in Tolo Harbour, International Conference on Smart Computing

(SMARTCOMP). Hong Kong, China: IEEE.

Li, Y., Neilson, M. P., Whellan, D. J., Schulman, K. A., Levy, W. C. & Reed, S. D. (2013)

Associations between seattle heart failure model scores and health utilities: findings

from HF-ACTION. Journal of Cardiac Failure, 19(5), 311-316.

Lin, J.-H. & Haug, P. J. (2008) Exploiting missing clinical data in Bayesian network

modeling for predicting medical problems. Journal of Biomedical informatics,

41(1), 1-14.

Lin, T. H. (2010) A comparison of multiple imputation with EM algorithm and MCMC

method for quality of life missing data. Quality & Quantity, 44(2), 277-287.

Little, R. J. & Rubin, D. B. (1989) The analysis of social science data with missing values.

Sociological Methods & Research, 18(2-3), 292-326.

Liu, Y. & Liu, Y. (2010) Incremental learning method of least squares support vector

machine, International Conference on Intelligent Computation Technology and

Automation (ICICTA). Changsha, China: IEEE.

Lobato, F., Sales, C., Araujo, I., Tadaiesky, V., Dias, L., Ramos, L. & Santana, A. (2015)

Multi-objective genetic algorithm for missing data imputation. Pattern Recognition

Letters, 68, 126-131.

154

Lobur, M., Stekh, Y. & Artsibasov, V. (2011) Challenges in knowledge discovery and

data mining in datasets, Perspective Technologies and Methods in MEMS Design.

Polyana, Ukraine: IEEE, 232-233.

Lobur, M., Stekh, Y., Kernytskyy, A. & Sardieh, F. M. (2008) Some trends in knowledge

discovery and data mining, International Conference on Perspective Technologies

and Methods in MEMS Design. Polyana, Ukraine: IEEE.

Lokeswari, Y. & Jacob, S. G. (2015) A cloud-based data mining framework for improved

clinical diagnosis through parallel classification, International Conference on

Applied and Theoretical Computing and Communication Technology (iCATccT).

Davangere, India: IEEE.

Loyola-González, O., Medina-Pérez, M. A., Martínez-Trinidad, J. F., Carrasco-Ochoa, J.

A., Monroy, R. & García-Borroto, M. (2017) PBC4cip: A new contrast pattern-

based classifier for class imbalance problems. Knowledge-Based Systems, 115, 100-

109.

Lu, J., Hales, A., Rew, D. & Keech, M. (2016) Timeline and episode-structured clinical

data: Pre-processing for data mining and analytics, 32nd International Conference

on Data Engineering Workshops (ICDEW). Helsinki, Finland: IEEE.

Lu, X., Tsao, Y., Matsuda, S. & Hori, C. (2013) Speech enhancement based on deep

denoising autoencoder. Interspeech, 436-440.

Lu, Z. & Su, J. (2010) Clinical data management: Current status, challenges, and future

directions from industry perspectives. Open Access J Clin Trials, 2, 93-105.

Lukoševičius, M. & Jaeger, H. (2009) Reservoir computing approaches to recurrent

neural network training. Computer Science Review, 3(3), 127-149.

Ma, Y., Tan, Y., Zhang, C. & Mao, Y. (2015) A data mining model of knowledge

discovery based on the deep learning, 10th Conference on Industrial Electronics

and Applications (ICIEA). Auckland, New Zealand: IEEE.

155

Mahdiyah, U., Irawan, M. I. & Imah, E. M. (2015) Integrating data selection and extreme

learning machine for imbalanced data. Procedia Computer Science, 59, 221-229.

Mallinson, H. & Gammerman, A. (2003) Imputation using support vector machines.

London: Department of Computer Science. Royal Holloway, University of London.

Margineantu, D. D. & Dietterich, T. G. (2000) Bootstrap methods for the cost-sensitive

evaluation of classifiers.Corvallis.

Masci, J., Meier, U., Cireşan, D. & Schmidhuber, J. (2011) Stacked convolutional auto-

encoders for hierarchical feature extraction, International Conference on Artificial

Neural Networks. Espoo, Finland: Springer-Verlag 52–59.

Matignon, R. (2007) Data mining using SAS enterprise miner. New Jersy: John Wiley &

Sons.

Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A. & Tourassi, G.

D. (2008) Training neural network classifiers for medical decision making: The

effects of imbalanced datasets on classification performance. Neural Networks,

21(2), 427-436.

McGee, S. (2002) Simplifying likelihood ratios. Journal of General Internal Medicine,

17(8), 647-650.

Melgani, F. & Bruzzone, L. (2004) Classification of hyperspectral remote sensing images

with support vector machines. IEEE Transactions on geoscience and remote

sensing, 42(8), 1778-1790.

Menardi, G. & Torelli, N. (2014) Training and assessing classification rules with

imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92-122.

Moore, L. (2015) Data mining for heart failure: an investigation into the challenges in

real life clinical datasets. (PhD) University of Hull.

Mullins, I. M., Siadaty, M. S., Lyman, J., Scully, K., Garrett, C. T., Greg Miller, W.,

Muller, R., Robson, B., Apte, C., Weiss, S., Rigoutsos, I., Platt, D., Cohen, S. &

156

Knaus, W. A. (2006) Data mining and clinical data repositories: Insights from a

667,000 patient data set. Computers in Biology and Medicine, 36(12), 1351-1377.

Murty, M. N. & Devi, V. S. (2011) Pattern recognition: an algorithmic approach.

London: Springer.

Namratha, M., Prajwala, T. & Malvika, M. (2013) Collative study of classifiers in pattern

recognition. International Journal of Computer Network and Security(IJCNS),

5(1), 12-15.

Ng, A., Ngiam, J., Yu Foo, C., Mai, Y., Suen , C., Coates, A., Maas, A., Hannun, A.,

Huval, B., Wang, T. & Tandon, S. (2013) Deep learning tutorial!, 2013. Available

online: http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

[Accessed.

Novakovic, J. (2009) Using information gain attribute evaluation to classify sonar targets,

17th Telecommunications forum TELFOR. Serbia, Belgrade,.

Novaković, J., Štrbac, P. & Bulatović, D. (2011) Toward optimal feature selection using

ranking methods and classification algorithms. Yugoslav Journal of Operations

Research, 21(1), 119-135

Nuffieldtrust (2012) Nuffield Trust works on PARR30, 2012. Available online: [Accessed.

Ojala, D. P. (2012) Computation of option prices with neural networks and option price

lags. (PhD) State University of New York at Binghamton.

Olshausen, B. A. & Field, D. J. (1997) Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research, 37(23), 3311-3325.

Olson, D. L. & Delen, D. (2008) Advanced data mining techniques. Verlag Berlin

Heidelberg: Springer Science & Business Media.

Ozcift, A. (2012) SVM feature selection based rotation forest ensemble classifiers to

improve computer-aided diagnosis of Parkinson disease. Journal of Medical

Systems, 36(4), 2141-2147.

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

157

Pal, M. & Mather, P. M. (2003) An assessment of the effectiveness of decision tree

methods for land cover classification. Remote Sensing of Environment, 86(4), 554-

565.

Patel, K. A. & Prajapati, R. C. (2016) A survey-vulnerability classification of bug reports

using multiple machine learning approach. Compusoft, 5(3), 2071 - 2073.

Pencina, M. J., D'Agostino, R. B. & Vasan, R. S. (2008) Evaluating the added predictive

ability of a new marker: from area under the ROC curve to reclassification and

beyond. Statistics in Medicine, 27(2), 157-172.

Pfeffer, M. A. & Skali, H. (2013) PRAISE (prospective randomized amlodipine survival

evaluation) and criticism. The Journal of the American College of Cardiology

(JACC), 1(4), 315-317.

Pigott, T. D. (2001) A review of methods for missing data. Educational Research and

Evaluation, 7(4), 353-383.

Pindoriya, N. M., Jirutitijaroen, P., Srinivasan, D. & Singh, C. (2011) Composite

reliability evaluation using Monte Carlo simulation and least squares support vector

classifier. IEEE Transactions on Power Systems, 26(4), 2483-2490.

Poolsawad, N., Kambhampati, C. & Cleland, J. (2014a) Balancing class for performance

of classification with a clinical dataset. In: Proceedings of the World Congress on

Engineering, 1.

Poolsawad, N., Moore, L., Kambhampati, C. & Cleland, J. G. (2014b) Issues in the

mining of heart failure datasets. International Journal of Automation and

Computing, 11(2), 162-179.

Potamias, G. & Moustakis, V. (2001) Knowledge discovery from distributed clinical data

sources: the era for internet-based epidemiology, Engineering in Medicine and

Biology Society, 2001. Proceedings of the 23rd Annual International Conference of

the IEEE. IEEE.

158

Poultney, C., Chopra, S. & Cun, Y. L. (2006) Efficient learning of sparse representations

with an energy-based model, Proceedings of the 19th International Conference on

Neural Information Processing Systems. Canada: Advances in neural information

processing systems, 1137-1144.

Prather, J. C., Lobach, D. F., Goodwin, L. K., Hales, J. W., Hage, M. L. & Hammond,

W. E. (1997) Medical data mining: knowledge discovery in a clinical data

warehouse. Proceedings of the AMIA Annual Fall Symposium, 101-105.

Quinlan, J. R. (1996) Improved use of continuous attributes in C4. 5. Journal of Artificial

Intelligence Research, 4, 77-90.

Rahman, M. M. & Davis, D. N. (2013) Machine learning-based missing value imputation

method for clinical datasets, IAENG Transactions on Engineering

TechnologiesSpringer, 245-257.

Rahman, S. A., Yuxiao, H., Claassen, J. & Kleinberg, S. (2014) Imputation of missing

values in time series with lagged correlations, International Conference on Data

Mining Workshop (ICDMW). Shenzhen, China, 14-14 Dec. 2014. IEEE, 753-762.

Rajiv Wadhwa, M., Saul, M. I. & Penrod, L. E. (2008) Analysis of a failed clinical

decision support system for management of congestive heart failure. Proceedings

AMIA 2008 Symposium 773-777.

Ravichandran, S., Srinivasan, V. B. & Ramasamy, C. (2012) Comparative study on

decision tree techniques for mobile call detail record. Journal of Communication

and Computer, 9(12), 1331-1335.

Rifai, S., Vincent , P., Muller, X., Glorot, X. & Bengio, Y. (2011) Contractive auto-

encoders: explicit invariance during feature extraction, In Proceedings of the 28th

international conference on machine learning. Bellevue, WA, USA,: ICML-1, 833-

840.

159

Rinaldi, F. (2009) Mathematical programming methods for minimizing the zero-norm

over polyhedral sets. (PhD) University of Rome.

Rubin, D. B. (1987) Multiple imputation for nonresponse in survey. New Jersey: Wiley-

Interscience.

Rutkowski, L., Jaworski, M., Pietruczuk, L. & Duda, P. (2014) Decision trees for mining

data streams based on the gaussian approximation. IEEE Transactions on

Knowledge and Data Engineering, 26(1), 108-119.

Salakhutdinov, R., Mnih, A. & Hinton, G. (2007) Restricted boltzmann machines for

collaborative filtering, 24th International Conference on Machine Learning

Corvallis, OR, Canada: ACM.

Sang Jeen, H., May, G. S. & Dong-Cheol, P. (2003) Neural network modeling of reactive

ion etching using optical emission spectroscopy data. Semiconductor

Manufacturing, IEEE Transactions on, 16(4), 598-608.

Sapkal, S. D., Kakarwal, S. N. & Revankar, P. (2007) Analysis of classification by

supervised and unsupervised learning, International Conference on Computational

Intelligence and Multimedia Applications (ICCIMA 2007).

Saqlain, M., Athar, A., Saqib, N. A. & Khan, M. A. (2016) Developing a classification

model for an effective treatment of heart failure. International Journal of Computer

Science and Information Security, 14(8), 413.

Sartipy, U., Goda, A., Yuzefpolskaya, M., Mancini, D. M. & Lund, L. H. (20014) Utility

of the Seattle Heart Failure Model in patients with cardiac resynchronization

therapy and implantable cardioverter defibrillator referred for heart transplantation.

American Heart Journal, 168(3), 325-331.

SAS-Institute (2017) Data Mining and SEMMA, 2017. Available online:

http://documentation.sas.com/?docsetId=emcs&docsetTarget=n0pejm83csbja4n1x

ueveo2uoujy.htm&docsetVersion=12.3&locale=en [Accessed.

http://documentation.sas.com/?docsetId=emcs&docsetTarget=n0pejm83csbja4n1xueveo2uoujy.htm&docsetVersion=12.3&locale=en
http://documentation.sas.com/?docsetId=emcs&docsetTarget=n0pejm83csbja4n1xueveo2uoujy.htm&docsetVersion=12.3&locale=en

160

Schmitt, P., Mandel, J. & Guedj, M. (2015) A Comparison of Six Methods for Missing

Data Imputation. Journal of Biometrics & Biostatistics, 6(1), 1-6.

SCI2S (2007) Classification with imbalanced datasets, 2007. Available online:

http://sci2s.ugr.es/imbalanced [Accessed.

Selvakuberan, K., Kayathiri, D., Harini, B. & Devi, M. I. (2011) An efficient feature

selection method for classification in health care systems using machine learning

techniques, 3rd International Conference on Electronics Computer Technology

Kanyakumari, India: IEEE.

Shankar, S., Sarkar, B. D., Sabitha, S. & Mehrotra, D. (2016) Performance analysis of

student learning metric using K-mean clustering approach K-mean cluster, 6th

International Conference Cloud System and Big Data Engineering (Confluence).

Noida, India: IEEE.

Sharma, R., Singh, S. N. & Khatri, S. (2016) Medical data mining using different

classification and clustering techniques: a critical survey, Computational

Intelligence & Communication Technology (CICT), Second International

Conference on. 12-13 Feb. 2016. IEEE, 687-691.

Shelton, R. J., Clark, A. L., Kaye, G. C. & Cleland, J. G. (2010) The atrial fibrillation

paradox of heart failure. Congestive Heart Failure, 16(1), 3-9.

Shin, K., Fernandes, D. & Miyazaki, S. (2011) Consistency measures for feature

selection: a formal definition, relative sensitivity comparison, and a fast algorithm,

IJCAI Proceedings-International Joint Conference on Artificial Intelligence.

Barcelona, Spain: Citeseer.

Shouman, M., Turner, T. & Stocker, R. (2012) Using data mining techniques in heart

disease diagnosis and treatment, Japan-Egypt Conference on Electronics,

Communications and Computers (JEC-ECC). Alexandria, Egypt: IEEE.

http://sci2s.ugr.es/imbalanced

161

Sivapriya, T., Kamal, A. N. B. & Thavavel, V. (2012) Imputation and classification of

missing data using least square support vector machines–a new approach in

dementia diagnosis. International Journal of Advanced Research in Artificial

Intelligence, 1(4), 29-33.

Sokolova, M. & Lapalme, G. (2009) A systematic analysis of performance measures for

classification tasks. Information Processing & Management, 45(4), 427-437.

Song, Q., Shepperd, M., Chen, X. & Liu, J. (2008) Can k-NN imputation improve the

performance of C4. 5 with small software project data sets? A comparative

evaluation. Journal of Systems and Software, 81(12), 2361-2370.

Soni, J., Ansari, U., Sharma, D. & Soni, S. (2011) Predictive data mining for medical

diagnosis: An overview of heart disease prediction. International Journal of

Computer Applications, 17(8), 43-48.

Sow, D., Turaga, D. S. & Schmidt, M. (2013) Mining of sensor data in healthcare: a

survey, Managing and Mining Sensor Data. Boca Raton, FL, USA: Springer, 459-

504.

Su, X., Greiner, R., Khoshgoftaar, T. M. & Napolitano, A. (2011a) Using classifier-based

nominal imputation to improve machine learning, Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 124-135.

Su, Y.-S., Gelman, A., Hill, J. & Yajima, M. (2011b) Multiple imputation with

diagnostics (mi) in R: Opening windows into the black box. Journal of Statistical

Software, 45(2), 1-31.

Sun, Y. & Du, M. (2006) DT-CWT feature based classification using orthogonal

neighborhood preserving projections for face recognition, International Conference

on Computational Intelligence and Security,. Guangzhou, China: IEEE.

Suthaharan, S. (2016) Machine learning models and algorithms for big data

classification. Greensboro, NC, USA: : Springer.

162

Tan, C. C. & Eswaran, C. (2008) Performance comparison of three types of autoencoder

neural networks, Modeling & Simulation, 2008. AICMS 08. Second Asia

International Conference on. Kuala Lumpur, Malaysia, 13-15 May 2008. IEEE.

Tan, C. C. & Eswaran, C. (2009) Autoencoder neural networks: a performance study

based on image reconstruction, recognition and compression Koln, Germany:

Lambert Academic Publishing.

Teoh, E. J., Tan, K. C. & Xiang, C. (2006) Estimating the number of hidden neurons in a

feedforward network using the singular value decomposition. IEEE Transactions

on Neural Networks, 17(6), 1623-1629.

Thompson, B. B., Marks, R. J., Choi, J. J., El-Sharkawi, M. A., Ming-Yuh, H. & Bunje,

C. (2002) Implicit learning in autoencoder novelty assessment, International Joint

Conference on Neural Networks. Honolulu, HI, USA, USA, 2002.

Thrun, S., Martin, C., Liu, Y., Hähnel, D., Emery-Montemerlo, R., Chakrabarti, D. &

Burgard, W. (2004) A real-time expectation-maximization algorithm for acquiring

multiplanar maps of indoor environments with mobile robots. IEEE Transactions

on Robotics and Automation, 20(3), 433 - 442.

Tong, S. & Koller, D. (2001) Support vector machine active learning with applications to

text classification. Journal of Machine Learning Research, 2(Nov), 45-66.

Tripoliti, E. E., Papadopoulos, T. G., Karanasiou, G. S., Naka, K. K. & Fotiadis, D. I.

(2017) Heart failure: diagnosis, severity estimation and prediction of adverse events

through machine learning techniques. Computational and Structural Biotechnology

Journal, 15, 26-47.

Tsumoto, S. (2000) Problems with mining medical data, The 24th Annual International

Computer Software and Applications Conference. Taipei, Taiwan: IEEE.

163

Uzer, M. S., Inan, O. & Yılmaz, N. (2013) A hybrid breast cancer detection system via

neural network and feature selection based on SBS, SFS and PCA. Neural

Computing and Applications, 23(3), 719-728.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. (2010) Stacked

denoising autoencoders: Learning useful representations in a deep network with a

local denoising criterion. Journal of Machine Learning Research, 11(Dec), 3371-

3408.

Wahed, M. A. & Wahba, K. (2003) Data mining based-assistant tools for physicians to

diagnose diseases, IEEE 46th Midwest Symposium on Circuits and Systems. Cairo,

Egypt: IEEE.

Wang, L., Zhang, Y. & Feng, J. (2005) On the Euclidean distance of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1334-1339.

Washington, U. o. (2012) Seatle Heart Failure Model, 2012. Available online:

https://depts.washington.edu/shfm [Accessed.

Wasikowski, M. & Chen, X.-w. (2010) Combating the small sample class imbalance

problem using feature selection. IEEE Transactions on knowledge and data

engineering, 22(10), 1388-1400.

Wei, H. (2005) Theory and methods for neural networks architecture design. National

defence industry press, Beijing.

Weitschek, E., Felici, G. & Bertolazzi, P. (2013) Clinical Data Mining: Problems, Pitfalls

and Solutions, Database and Expert Systems Applications (DEXA), 2013 24th

International Workshop on. 26-30 Aug. 2013.

Wirth, R. & Hipp, J. (2000) CRISP-DM: Towards a standard process model for data

mining, Proceedings of the 4th International Conference on the Practical

Applications of Knowledge Discovery and Data Mining. New York, NY: Citeseer.

https://depts.washington.edu/shfm

164

Witten, I. H. & Frank, E. (2011) Data Mining: Practical machine learning tools and

techniques. Cambridge, MA, United States: Morgan Kaufmann.

Yang, X.-S., Chien, S. F. & Ting, T. O. (2015) Bio-inspired computation in

telecommunications. Waltham, USA: Elsevier.

Yu, L. & Liu, H. (2004) Efficient feature selection via analysis of relevance and

redundancy. Journal of Machine Learning Research, 5(Oct), 1205-1224.

Yuan, Y. C. (2010) Multiple imputation for missing data: Concepts and new development

(Version 9.0). Rockville, MD, SAS Institute Inc, 49(1), 1-11.

Zhang, H., Berg, A. C., Maire, M. & Mali, J. (2006) SVM-KNN: Discriminative nearest

neighbor classification for visual category recognition, CVPR’06. New York: IEEE.

Zhang, X., Wu, G., Dong, Z. & Crawford, C. (2015) Embedded feature-selection support

vector machine for driving pattern recognition. Journal of the Franklin Institute,

352(2), 669-685.

Zhang, Y., Kambhampati, C., Davis, D. N., Goode, K. & Cleland, J. G. (2012) A

comparative study of missing value imputation with multiclass classification for

clinical heart failure data, 9th International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD). Sichuan, China: IEEE.

Zheng, Z., Wu, X. & Srihari, R. (2004) Feature selection for text categorization on

imbalanced data. ACM Sigkdd Explorations Newsletter, 6(1), 80-89.

Zhu, L., Han, B., Li, L., Xu, S., Mou, H. & Zheng, Z. (2009) Null Space LDA based

feature extraction of mass spectrometry data for cancer classification, Biomedical

Engineering and Informatics, 2009. BMEI'09. 2nd International Conference on.

IEEE.

165

 Appendix I: Variables of the Hull LifeLab Dataset.

 Variable Min Max Mean (𝝁) STD (𝝈) Missing

1 Age (years) 27 96 70.578 10.568 0

2 Sodium (mmol/L) 123 148 138.808 3.156 68 (3%)

3 Potassium (mmol/L) 2.2 6.3 4.342 0.482 79 (4%)

4 Chloride (mmol/L) 78 112 101.522 4.153 67 (3%)

5 Bicarbonate (mmol/L) 19 45 28.659 2.979 67 (3%)

6 Urea (mmol/L) 1.2 38.5 7.392 4.198 67 (3%)

7 Creatinine (umol/L) 37 561 108.467 46.039 67 (3%)

8 Calcium (mmol/L) 1.32 2.78 2.344 0.104 97 (5%)

9 Adj Calcium (mmol/L) 1.04 2.85 2.431 0.096 98 (5%)

10 Phosphate (mmol/L) 0.52 10.04 1.128 0.291 112 (6%)

11 Bilirubin (umol/L) 1.1 69 15.563 6.553 84 (4%)

12 Alkaline Phosphatase (iu/L) 0.55 344 78.463 32.487 81 (4%)

13 ALT (iu/L) 4 283 24.967 16.994 81 (4%)

14 Total protein (g/L) 36 97 67.043 5.085 77 (4%)

15 Albumin (g/L) 20 47 37.592 3.619 82 (4%)

16 Uric acid (mmol/L) 0.13 12.3 0.425 0.387 342

(18%)

17 Glucose (mmol/L) 1.9 25.1 6.697 2.815 241

(12%)

18 Cholesterol (mmol/L) 1.7 13.8 4.774 1.256 200

(10%)

19 Triglycerides (mmol/L) 0.3 9.5 1.689 1.066 206

(11%)

20 Haemoglobin (g/dL) 0.22 18.7 13.395 1.705 70 (4%)

21 White Cell Count (109/L) 2.3 27.4 7.258 2.136 73 (4%)

22 Platelets (109/L) 13.2 763 237.219 72.444 74 (4%)

23 MCV (fL) 7.5 115.4 90.516 6.322 306 (16

%)

24 Hct (fraction) 0.232 0.95 0.413 0.046 297

(15%)

25 Iron (umol/L) 1 52 15.068 6.071 284

(15%)

26 Vitamin B12 (ng/L) 1.28 1667 362.082 190.863 182 (9%)

27 Ferritin (ug/L) 0.34 929 115.311 112.357 393

(20%)

28 CRP (mg/L) 0.2 184 8.985 16.357 96 (5%)

29 TSH (mU/L) 0.04 50 2.075 2.393 163 (8%)

30 MR-proANP 4 1602 225.844 193.422 0

31 MR-proADM 0.2 4.46 0.835 0.487 319

(16%)

32 CT-proET1 20 396 84.529 46.053 293

(15%)

166

33 CT-proAVP 0.6 199 12.22 15.221 4 (0%)

34 PCT 0.007 0.537 0.029 0.03 17 (1%)

35 ECG (bpm) 36 160 73.444 17.671 20 (1%)

36 QRS width msec) 40 412 107.191 30.851 65 (3%)

37 QT (msec) 132 577 408.194 47.259 83 (4%)

38 LVEDD (cm) 2.18 9.8 5.568 1.073 380

(20%)

39 LVEDD (Hgt indexed) 1.35 5.57 3.316 0.604 396

(20%)

40 BSA (m2) 1.063 3.164 1.957 0.268 38 (2%)

41 Aortic Root (cm) 0.61 5.4 3.25 0.492 247

(13%)

42 Left Atrium (cm) 1.24 8.1 4.169 0.8 220

(11%)

43 Left Atrium (BSA Indexed) 0.69 4.79 2.158 0.473 253

(13%)

44 Left Atrium (Hgt indexed) 0.82 4.79 2.487 0.473 235

(12%)

45 Aortic Velocity (m/s) 0.1 5.4 1.375 0.594 352

(18%)

46 E 0.22 3 0.813 0.315 354

(18%)

47 Height (m) 1.2 1.96 1.677 0.099 18 (1%)

48 Weight (kg) 30 193.8 81.267 18.834 39 (2%)

49 BMI (kg/m2) 12.623 66.277 28.807 5.84 38 (2%)

50 Pulse (bpm) 38 150 74.057 16.371 18 (1%)

51 Systolic BP (mmHg) 75 233 139.972 25.346 13 (1%)

52 Diastolic BP (mmHg) 36 195 79.778 14.562 13(1%)

53 Pulse BP (mmHg) 9 148 60.194 20.742 13 (1%)

54 FEV1 (L) 0.19 4.72 1.726 0.791 70 (4%)

55 FEV1 Predicted (L) 0.645 4.59 2.4 0.63 68 (4%)

56 FEV1 8.653 175.004 71.486 24.631 72 (4%)

57 FVC (L) 0.19 6.31 2.569 0.97 68 (3%)

58 FVC Predicted (L) 1.225 6.002 3.517 0.864 68 (3%)

59 FVC 8.025 165.187 72.831 19.969 75 (4%)

60 PEFR (L) 0.46 834 217.157 134.624 133 (7%)

61 Mortality Alive=1459 Dead=485

167

Appendix II: Statistics on the Research dataset for heart failure

from HYMS.

 Feature

name

Data

type

Missing

values

Range Unique

values

Mean Median

1 Age integer 0 27 96 66 70 72
2 Sodium

Mmol/L integer 68 123 148 26 138 139
3 Potassum Real 79 2.2 6.3 93 4.36 4.3
4 Chloride integer 67 78 112 28 101 102
5 Bicarbonate integer 67 19 45 24 28 29
6 Urea real 67 1.2 38.5 257 7.45 6.3
7 Creatinine integer 67 46 561 207 109 99
8 Calcium Real 97 1.32 2.78 136 2.36 2.35
9 Adj Calcium Real 98 1.4 2.85 147 2.44 2.44
10 Phosphate Real 112 0.52 10.04 217 1.14 1.13
11 Bilirubin integer 84 1.1 69 137 15.8 14
12 Alkaline integer 81 0.55 344 255 80.01 73
13 ALT (iu/L) integer 81 4 283 89 25 22
14 Total Protien

g/L Integer 77 36 97 43 67 67
15 Albumin g/L Integer 82 20 47 27 37 38
16 Uric Acid

mmol/L Real 342 0.13 12.3 413 0.46 0.42
17 Glucose

mmol/L Real 241 2.6 25.1 417 8.2 6.4
18 Cholesterol

mmol/L Real 200 1.7 13.8 300 6.05 5.2
19 Triglycerides

mmol/L Real 206 0.3 9.5 289 2.16 1.8
20 Haemoglobin

g/dL Real 70 1 18.7 118 14.74 14.2
21 White cell

count 10^9/L Real 73 2.3 27.4 266 9.62 7.8
22 Platelets

10^9/L Integer 74 13.2 763 553 313.14 256
23 MCV fL Real 306 7.5 115.4 399 98.82 94.5
24 Hct (fraction) Real 297 0.23 0.95 505 0.55 0.44
25 Iron (umol/L) Integer 284 2 52 324 24.29 22
26 Vitamin B12

(ng/L) Integer 182 4.5 1669 1013 637.86 635.18
27 Ferritin

(ug/L) Real 393 5 929 868 203.33 211.73
28 CRP (mg/L) Real 96 0.2 184 384 18.89 19.87
29 TSH (mU/L) Real 163 0.05 50 421 4.46 5.05
30 MR-proANP Real 0 4 1602 918 505 575.42
31 MR-proADM Real 319 0.2 4.46 751 1.95 2.31
32 CT-proET1 Real 293 20 396 700 204.12 236.51
33 CT-proAVP Real 4 0.7 199 656 34.82 38.53
34 PCT Real 17 0.01 0.54 188 0.08 0.1

168

35 Rate (ECG)

(bpm) Integer 20 36 160 84 129 160
36 QRS Width

(msec) Integer 65 66 412 110 296 387
37 QT Integer 83 244 577 154 519 577
38 LVEDD (cm) Real 380 2.85 9.81 224 8.59 9.8
39 LVEDD (Hgt

indexed) Real 396 1.64 5.57 209 4.92 5.57
40 BSA (m^2) Real 38 1.19 3.16 497 2.82 3.16
41 Aortic Root

(cm) Real 247 0.61 5.4 140 4.82 5.4
42 Left Atrium

(cm) Real 220 1.5 9.09 179 7.74 9.09
43 Left Atrium

(BSA

indexed) Real 253 0.76 5.7 187 4.72 5.7
44 Left Atrium

(Hgt indexed) Real 253 0.87 5.98 189 5.02 5.98
45 Aortic

Velocity

(m/s) Real 352 0.1 5.4 207 4.38 5.4
46 E Real 354 0.28 3 120 2.51 3
47 Height

(Exam) (m) Real 18 1.4 1.96 50 1.9 1.96
48 Weight

(EXAM)

(Kg) Real 39 35.5 193.8 289 168.1 193.8
49 BMI Real 38 12.62 66.28 395 57.67 66.28
50 Pulse (Exam)

(bpm) Integer 18 39 150 69 132 150
51 Systolic BP

(mmHg) Integer 13 75 237 108 214 237
52 Diastolic

BP(mmHg) Integer 13 39 195 66 169 195
53 Pulse BP

(mmHg) Integer 13 19 142 89 123 142
54 FEV1 (L) Real 72 0.29 4.72 230 4.07 4.72
55 FEV1

Predicted (L) Real 69 0.95 4.59 392 4.11 4.59
56 FEV1 Real 79 13.77 175 395 152.52 175
57 FVC (L) Real 68 0.75 6.31 237 5.5 6.31
58 FVC

Predicted (L) Real 68 1.57 6 391 5.46 6
59

FVC Real 75 27.2
165.1
9 394 145.09 165.19

60 PEFR (L) Real 133 2.02 834 271 698 834
61 Martality Nominal 0 0 1 2 0 1

169

Appendix III: Performance Results of Applying Several Hidden

Layers for Autoencoder.

Hidden
Layers TP FN FP TN ACC SEN SPEC PPV

10 10 1021 137 292 300 77.29% 88.17% 50.68% 77.76%

10 15 1070 163 243 274 79.61% 86.78% 53.00% 81.49%

10 20 1107 174 206 265 80.69% 86.42% 56.26% 84.31%

10 25 1060 163 253 274 79.46% 86.67% 51.99% 80.73%

10 30 1079 167 234 272 79.87% 86.60% 53.75% 82.18%

10 40 1056 158 257 279 79.10% 86.99% 52.05% 80.43%

10 50 1089 157 224 280 79.55% 87.40% 55.56% 82.94%

10 60 1106 176 207 261 80.91% 86.27% 55.77% 84.23%

100 50 1176 187 137 250 82.47% 86.28% 64.60% 89.57%

15 10 1188 191 125 246 82.85% 86.15% 66.31% 90.48%

15 15 1211 205 102 232 83.92% 85.52% 69.46% 92.23%

15 20 1132 184 181 253 81.73% 86.02% 58.29% 86.21%

15 25 1129 183 184 254 81.63% 86.05% 57.99% 85.99%

15 30 1133 187 180 250 81.92% 85.83% 58.14% 86.29%

15 35 1131 186 182 251 81.84% 85.88% 57.97% 86.14%

15 40 1205 200 108 237 83.56% 85.77% 68.70% 91.77%

15 60 1190 189 123 248 82.75% 86.29% 66.85% 90.63%

19 38 1189 192 124 245 82.91% 86.10% 66.40% 90.56%

20 10 1188 190 125 247 82.79% 86.21% 66.40% 90.48%

20 15 1168 176 145 261 81.74% 86.90% 64.29% 88.96%

20 20 1187 191 126 246 82.83% 86.14% 66.13% 90.40%

20 25 1199 194 114 243 83.15% 86.07% 68.07% 91.32%

20 30 1132 187 181 250 81.91% 85.82% 58.00% 86.21%

20 35 1184 191 129 246 82.80% 86.11% 65.60% 90.18%

20 40 1182 190 131 247 82.72% 86.15% 65.34% 90.02%

20 50 1205 201 108 236 83.62% 85.70% 68.60% 91.77%

20 60 1177 186 136 251 82.42% 86.35% 64.86% 89.64%

23 33 1188 189 125 248 82.73% 86.27% 66.49% 90.48%

25 10 1216 205 97 232 83.98% 85.57% 70.52% 92.61%

25 15 1208 200 105 237 83.60% 85.80% 69.30% 92.00%

25 20 1171 182 142 255 82.12% 86.55% 64.23% 89.19%

25 25 1199 195 114 242 83.21% 86.01% 67.98% 91.32%

25 30 1206 198 107 239 83.46% 85.90% 69.08% 91.85%

25 35 1188 196 125 241 83.14% 85.84% 65.85% 90.48%

25 40 1206 198 107 239 83.46% 85.90% 69.08% 91.85%

25 45 1176 186 137 251 82.41% 86.34% 64.69% 89.57%

27 43 1223 210 90 227 84.34% 85.35% 71.61% 93.15%

30 10 1177 187 136 250 82.48% 86.29% 64.77% 89.64%

30 15 1172 185 141 252 82.30% 86.37% 64.12% 89.26%

30 20 1225 206 88 231 84.13% 85.60% 72.41% 93.30%

170

30 25 1216 204 97 233 83.92% 85.63% 70.61% 92.61%

30 30 1183 187 130 250 82.55% 86.35% 65.79% 90.10%

30 35 1211 202 102 235 83.75% 85.70% 69.73% 92.23%

30 40 1241 217 72 220 84.94% 85.12% 75.34% 94.52%

30 45 1240 214 79 223 84.76% 85.28% 73.84% 94.01%

30 45 1189 191 124 246 82.86% 86.16% 66.49% 90.56%

30 50 1215 197 98 240 83.51% 86.05% 71.01% 92.54%

30 60 1219 209 94 228 84.24% 85.36% 70.81% 92.84%

35 10 1194 198 119 239 83.32% 85.78% 66.76% 90.94%

35 15 1224 203 89 234 83.95% 85.77% 72.45% 93.22%

35 20 1227 212 86 225 84.50% 85.27% 72.35% 93.45%

35 25 1227 215 86 222 84.68% 85.09% 72.08% 93.45%

35 30 1193 192 120 245 82.96% 86.14% 67.12% 90.86%

35 35 1211 200 102 237 83.63% 85.83% 69.91% 92.23%

35 40 1191 189 122 248 82.77% 86.30% 67.03% 90.71%

35 45 1228 212 85 225 84.51% 85.28% 72.58% 93.53%

35 50 1223 200 90 237 83.77% 85.95% 72.48% 93.15%

40 10 1135 183 178 254 81.71% 86.12% 58.80% 86.44%

40 20 1193 191 120 246 82.90% 86.20% 67.21% 90.86%

40 25 1168 179 145 258 81.91% 86.71% 64.02% 88.96%

40 30 1219 208 94 229 84.19% 85.42% 70.90% 92.84%

40 35 1233 213 80 224 84.63% 85.27% 73.68% 93.91%

40 40 1199 197 114 240 83.32% 85.89% 67.80% 91.32%

40 45 1193 194 120 243 83.08% 86.01% 66.94% 90.86%

40 50 1198 197 115 240 83.31% 85.88% 67.61% 91.24%

40 60 1212 200 101 237 83.64% 85.84% 70.12% 92.31%

43 27 1205 199 108 238 83.51% 85.83% 68.79% 91.77%

45 25 1180 186 133 251 82.46% 86.38% 65.36% 89.87%

50 15 1210 198 103 239 83.51% 85.94% 69.88% 92.16%

50 20 1200 197 113 240 83.33% 85.90% 67.99% 91.39%

50 25 1195 193 118 244 83.04% 86.10% 67.40% 91.01%

50 30 1117 176 196 261 81.06% 86.39% 57.11% 85.07%

50 35 1200 201 113 236 83.57% 85.65% 67.62% 91.39%

50 40 1189 191 124 246 82.86% 86.16% 66.49% 90.56%

50 45 1211 199 102 238 83.57% 85.89% 70.00% 92.23%

50 50 1217 207 96 230 84.11% 85.46% 70.55% 92.69%

50 60 1180 188 133 249 82.58% 86.26% 65.18% 89.87%

60 10 1227 212 86 225 84.50% 85.27% 72.35% 93.45%

60 15 1208 198 105 239 83.48% 85.92% 69.48% 92.00%

60 20 1174 186 139 251 82.39% 86.32% 64.36% 89.41%

60 30 1191 190 122 247 82.82% 86.24% 66.94% 90.71%

60 40 1209 196 104 241 83.38% 86.05% 69.86% 92.08%

80 50 1117 170 196 267 80.71% 86.79% 57.67% 85.07%

