19,705 research outputs found

    Estimation of the Distribution of Random Parameters in Discrete Time Abstract Parabolic Systems with Unbounded Input and Output: Approximation and Convergence

    Get PDF
    A finite dimensional abstract approximation and convergence theory is developed for estimation of the distribution of random parameters in infinite dimensional discrete time linear systems with dynamics described by regularly dissipative operators and involving, in general, unbounded input and output operators. By taking expectations, the system is re-cast as an equivalent abstract parabolic system in a Gelfand triple of Bochner spaces wherein the random parameters become new space-like variables. Estimating their distribution is now analogous to estimating a spatially varying coefficient in a standard deterministic parabolic system. The estimation problems are approximated by a sequence of finite dimensional problems. Convergence is established using a state space-varying version of the Trotter-Kato semigroup approximation theorem. Numerical results for a number of examples involving the estimation of exponential families of densities for random parameters in a diffusion equation with boundary input and output are presented and discussed

    Particle-kernel estimation of the filter density in state-space models

    Get PDF
    Sequential Monte Carlo (SMC) methods, also known as particle filters, are simulation-based recursive algorithms for the approximation of the a posteriori probability measures generated by state-space dynamical models. At any given time tt, a SMC method produces a set of samples over the state space of the system of interest (often termed "particles") that is used to build a discrete and random approximation of the posterior probability distribution of the state variables, conditional on a sequence of available observations. One potential application of the methodology is the estimation of the densities associated to the sequence of a posteriori distributions. While practitioners have rather freely applied such density approximations in the past, the issue has received less attention from a theoretical perspective. In this paper, we address the problem of constructing kernel-based estimates of the posterior probability density function and its derivatives, and obtain asymptotic convergence results for the estimation errors. In particular, we find convergence rates for the approximation errors that hold uniformly on the state space and guarantee that the error vanishes almost surely as the number of particles in the filter grows. Based on this uniform convergence result, we first show how to build continuous measures that converge almost surely (with known rate) toward the posterior measure and then address a few applications. The latter include maximum a posteriori estimation of the system state using the approximate derivatives of the posterior density and the approximation of functionals of it, for example, Shannon's entropy. This manuscript is identical to the published paper, including a gap in the proof of Theorem 4.2. The Theorem itself is correct. We provide an {\em erratum} at the end of this document with a complete proof and a brief discussion.Comment: IMPORTANT: This manuscript is identical to the published paper, including a gap in the proof of Theorem 4.2. The Theorem itself is correct. We provide an erratum at the end of this document. Published at http://dx.doi.org/10.3150/13-BEJ545 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Minimax estimation of smooth optimal transport maps

    Full text link
    Brenier's theorem is a cornerstone of optimal transport that guarantees the existence of an optimal transport map TT between two probability distributions PP and QQ over Rd\mathbb{R}^d under certain regularity conditions. The main goal of this work is to establish the minimax estimation rates for such a transport map from data sampled from PP and QQ under additional smoothness assumptions on TT. To achieve this goal, we develop an estimator based on the minimization of an empirical version of the semi-dual optimal transport problem, restricted to truncated wavelet expansions. This estimator is shown to achieve near minimax optimality using new stability arguments for the semi-dual and a complementary minimax lower bound. Furthermore, we provide numerical experiments on synthetic data supporting our theoretical findings and highlighting the practical benefits of smoothness regularization. These are the first minimax estimation rates for transport maps in general dimension.Comment: 53 pages, 6 figure

    Efficient Optimization of Loops and Limits with Randomized Telescoping Sums

    Full text link
    We consider optimization problems in which the objective requires an inner loop with many steps or is the limit of a sequence of increasingly costly approximations. Meta-learning, training recurrent neural networks, and optimization of the solutions to differential equations are all examples of optimization problems with this character. In such problems, it can be expensive to compute the objective function value and its gradient, but truncating the loop or using less accurate approximations can induce biases that damage the overall solution. We propose randomized telescope (RT) gradient estimators, which represent the objective as the sum of a telescoping series and sample linear combinations of terms to provide cheap unbiased gradient estimates. We identify conditions under which RT estimators achieve optimization convergence rates independent of the length of the loop or the required accuracy of the approximation. We also derive a method for tuning RT estimators online to maximize a lower bound on the expected decrease in loss per unit of computation. We evaluate our adaptive RT estimators on a range of applications including meta-optimization of learning rates, variational inference of ODE parameters, and training an LSTM to model long sequences

    Quantification of airfoil geometry-induced aerodynamic uncertainties - comparison of approaches

    Full text link
    Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by 9 independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost
    • …
    corecore