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1. Introduction

The work we report on here was motivated by a compound inverse or blind deconvolution

problem involving the interpretation of data from a transdermal alcohol biosensor.

The observation (dating back to the 1930s [25, 35, 36, 37, 38]) that ethanol is highly

miscible and finds its way into all the water in the body, and in particular, sweat,

has in the past two decades, led to the development of technology to measure the

amount of ethanol excreted from the body transdermally (i.e. through the skin)

through perspiration and to then use it to quantitatively assess intoxication level. The

basis for the measurement is an oxidation-reduction (redox) reaction that produces

four electrons for each ethanol molecule oxidized. This results in a continuous current

whose level is proportional to the amount of ethanol evaporating from the surface of

the skin beneath the sensor. Now while these devices have been available and in use,

both experimentally and commercially, for a number of years, they have been used

primarily as abstinence monitors because transdermal alcohol level or concentration

(TAC) data cannot consistently be converted to breath and blood alcohol concentrations

(BrAC/BAC) across individuals, devices, and environmental conditions. (BAC and

BrAC are currently, and historically have been, the standard measures of intoxication

among alcohol researchers and clinicians, as well as in the courts.) Indeed, unlike a

breath analyzer, which relies on a relatively simple model from basic chemistry (i.e.,

Henrys Law) for the exchange of gases between circulating pulmonary blood and alveolar

air (see, for example, [22]) that has been found to be reasonably robust across the

population, the transport and filtering of alcohol by the skin is physiologically more

complex and is affected by a number of factors that differ across individuals (e.g.,

skin layer thickness, porosity and tortuosity, etc.) and even drinking episodes within

individuals (e.g., body and ambient temperature, skin hydration, vasodilation). The

challenge in making these devices practicable is to develop a means to reliably convert

biosensor measured TAC into BAC or BrAC.

In our earlier work ([14, 19, 28]) we have taken a strictly deterministic approach

to converting TAC to either BAC or BrAC. We fit first principles physics-based

models in the form of a distributed parameter (diffusion) system with unbounded

input and output, and used individual calibration data to capture the dynamics of

the forward process - the propagation of alcohol from the blood, through the skin, and

its measurement by the sensor (i.e. the forward model) by estimating the parameters

(diffusivity, input/output gain, propagation inertia, etc.) that appear in the model

via nonlinear least squares. Then in a second phase of processing, we use the fit

model to deconvolve BAC or BrAC from the TAC signal measured by the biosensor

in the field. However, because of the challenges described above, this approach was

not entirely satisfying. Indeed, while it was possible to fit the models quite well to

any particular drinking episode, we observed significant variance in the values of the

parameters across different individuals and across different drinking episodes for the

same individual. Consequently, the fit models did not yield the desired level of accuracy
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when they were used to deconvolve BAC or BrAC from TAC for a drinking episode that

they were not specifically trained on.

To deal with this problem we have been looking at the idea of fitting a population

forward model (having BAC or BrAC as input and TAC as output) in the form of

a random partial differential equation, to data from multiple drinking episodes and

multiple individuals and then using the population model to solve the deconvolution

problem. Fitting a population model of this form implies that rather than estimate

particular values for the parameters, we treat the parameters as random variables and

estimate their distributions. In this way, it will become possible to produce not only an

estimate for the BAC or BrAC, but also some form of credible bands to go along with

it providing a quantitative estimate of the level of uncertainty in the estimate.

The basic underlying assumption in such an approach is that our first principles

physics/physiological based model in essence, describes the dynamics common to

the entire population (population interpreted broadly here to include not only all

individuals, but also all devices, environmental conditions, and in effect, all ethanol

molecules) and to then attribute all unmodeled sources of uncertainty (primarily due to

variations in physiology, hardware, and the environment) observed in individual data to

random effects. Moreover, we assume that what we observe in any individual data set

is the combination or average of these random effects. Thus, this approach is realized

by letting the parameters in the PDE model be random variables, the distributions of

which are to be estimated based on aggregate population data.

In this paper, we develop an abstract approximation framework and convergence

theory for formulating and solving just such an estimation problem. In addition to the

theory, we have also included a number of examples and numerical results. However,

we do not discuss here the application of these ideas to either the alcohol biosensor

problem discussed above or even the deconvolution problem. Those results are presented

elsewhere ([31, 32, 33]). In our treatment here, we are strictly concerned with the

problem of estimating the distributions of random parameters in a forward model from

a particular class of abstract linear infinite dimensional systems for which the input is

known and observations of the output for a sampling of members of the target population

are available. That is, we are referring to the problem of fitting the population model.

The class of systems we consider here are those governed by abstract parabolic

or hyperbolic operators with damping formulated in a Gelfand triple setting together

with input and observations on the boundary of the domain. These types of operators

are sometimes referred to as being regularly dissipative, and can typically be shown

to generate holomorphic or analytic semigroups. We formulate the estimation problem

in much the same way as it is in standard linear regression. That is, that each data

point is assumed to be an observation of the mean population behavior plus random

error. We then formulate the estimation problem as an optimization problem over

the space of feasible distributions for the random parameters. The objective of the

optimization problem is to minimize prediction error in the form of the difference

between the observed output signal and the expectation of the output of the model.
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We then consider a sequence of approximating estimation problems in each of which the

infinite dimensional system is replaced by a finite dimensional approximating system.

We then demonstrate that under appropriate (and readily verifiable) assumptions, the

solutions to the approximating estimation problems converge to a solution to the original

estimation problem with the infinite dimensional state. These convergence results are

formulated in a functional analytic or operator theoretic setting and are based on ideas

and results from linear semigroup theory.

Our general approach relies heavily on three relatively recent papers: 1) Banks and

Thompson’s [7] framework for the estimation of probability measures in random abstract

evolution equations and the convergence of finite dimensional approximations in the

Prohorov metric, 2) a more recent and enhanced version of the previous paper, [2], and

3) Gittelson, Andreev, and Schwab’s [20] theory for random abstract parabolic partial

differential equations with dynamics defined in terms of coercive sesquilinear forms.

While our effort here is similar in spirit and takes its cue from the treatment in [2] and

[7], it is somewhat different in that we are forced to assume that the probability measures

that describe the distribution of our random parameters can be defined in terms of a joint

density function; that is, that the random parameters are jointly absolutely continuous.

The approach in [20] is novel in the way that it treats the random parameters in

the PDE as another space-like independent variable. This is done by appropriately

defining corresponding Bochner spaces in which the weak formulation of the problem

is stated and shown to be well-posed. In fact, it turns out that the random parameter

dependent regularly dissipative operators that determine the underlying PDE are

regularly dissipative when embedded in these Bochner spaces. Consequently, we are

able to use linear semigroup theory to develop our approximation framework in much

the same way as we have in our earlier deterministic treatments. In this way, finite

dimensional approximation is handled in much the same way that it is for the standard

deterministic space variables, and the estimation of the distribution of the random

parameters effectively becomes analogous to the problem of estimating a variable

coefficient in a deterministic PDE, a problem which has been studied extensively over

the last thirty years ([4] and [6]).

We use the framework in [20] together with generation and approximation results

from linear semigroup theory, (i.e. the Hille-Yosida-Phillips theorem and a version of

the Trotter Kato approximation theorem) to establish that the sufficient conditions

for a Banks Thompson-like convergence result are satisfied. These theoretical results

allow us to develop rigorously established convergent computational algorithms that

yield numerical approximations to the desired distributions. Moreover, the solutions

in the Bochner spaces and their finite dimensional approximations directly capture the

explicit dependence of the state and output (and eventually the deconvolved input) on

the random parameters. Using this together with the estimated distributions for the

random parameters, it becomes straight forward to directly identify credible intervals

for the output without having to re-solve the PDE many times as you would if you were

attempting to identify these credible intervals by naive sampling.
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An outline of the remainder of the paper is as follows. In Section (2) we formally

develop the estimation problem, reformulate it as a nonlinear least squares optimization

problem and establish the existence of solutions. In Section (3) we discuss infinite

dimensional systems described by regularly dissipative operators involving unbounded

input and output (this is typically the case for a PDE with input and output on the

boundary). In Section (4) we discuss the framework in [20] for treating systems of the

form discussed in Section (3) but now involving random parameters. Our approximation

and convergence results are presented in Section (5) and a discussion of examples and

our numerical results are in Section (6). Section (7) has a few concluding remarks

regarding where we plan to go next with this line of research.

In our discussions to follow we will on occasion use the notation E[X||f ], E[X||F ],

or E[X||π] to denote the expectation of the random variable X with respect to the

probability density function f , the cumulative distribution function F , or the probability

measure π. We use the ”double bar” as opposed to a ”single bar” to distinguish what

we mean here with conditional expectation.

2. Estimation of Random Discrete Time Dynamical Systems

We consider the family of discrete or sampled time initial value problems that are set

in an, in general, infinite dimensional Hilbert state space, H, given by

xj+1,i = g(tj, xj,i, ui; q), j = 0, ..., ni, i = 1, 2, ...,m, (2.1)

x0,i = x0,i(q), i = 1, 2, ...,m, (2.2)

where g : R+ × H ×
∏ni

j=0 R
µ × Q → H and for j = 0, ..., ni and i = 1, 2, ...,m,

ui = {ui,j} is an external input or control with ui,j ∈ Rµ, and tj = jτ , with τ > 0 the

length of the sampling interval, describing the dynamics of a process common to the

entire population. In addition, we assume that we can observe some function of the

solutions of (2.1)-(2.2), xj,i, as given by the output equation

yj,i = y(tj, x0,i, ui; q) = C(xj,i, x0,i, ui; q), j = 0, ..., ni, i = 1, 2, ...,m, (2.3)

where C : H ×H ×
∏ni

j=0 R
µ ×Q→ Rν .

In equations (2.1)-(2.3), we assume q ∈ Q, where Q is the set of admissible

parameters (a subset of Euclidean space endowed with Lebesgue measure), and the

values of the parameters are specific to each individual in the population. Therefore,

assuming that the parameters, q, are samples from a random vector q, the objective

is to estimate their (joint) distribution based on the aggregate data sampled from the

population. For this purpose, we assume that the distribution of these random vectors

is described by the joint pdf f0 ∈ F(Q), where F(Q) represents a set of feasible pdfs

with support in Q.

There are a number of ways to formulate the statistical model that will be used

as the basis for the estimation of the distribution of the random parameters. One
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approach is to treat (2.1)- (2.3) as an, in general, nonlinear mixed effects model (see, for

example, [16, 17, 18, 32]) wherein randomness in the parameters, q, are used to quantify

uncertainty between subjects, and randomness in the output or measurements, yj,i given

in (2.3) is intended to capture uncertainty within individual subjects. In this case we

assume that the observed data points are of the form

Vj,i = yj,i + εj,i, j = 0, ..., ni, i = 1, ...,m,

where εj,i, j = 0, ..., ni, i = 1, ...,m, representing measurement noise are assumed to

be independent across subjects (i.e with repsect to i), conditionally independent with

respect to q within subjects (i.e with repsect to j), identically distributed with mean

0 and known common variance σ2, and with εj,i ∼ ϕ, j = 0, ..., ni, i = 1, ...,m. In

this case, for example, using conditional probability and the total probability formula,

a likelihood function could be defined formally as

L(f0; {Vj,i}) =
m∏
i=1

∫
Q

Li(q; {Vj,i})f0(q)dq =
m∏
i=1

∫
Q

ni∏
j=0

ϕ(Vj,i − C(xj,i, x0,i, ui; q))f0(q)dq.

Once one deals with a number of computational issues, specifically, the discretization

or parameterization of f0, finite dimensional approximation of the in general infinite

dimensional state equation (2.1), the efficient evaluation of a potentially high

dimensional integral, the loss of precision and underflow issues due to the fact that the

evaluation of L requires the computation of products of small numbers, etc., one could

then seek a maximum likelihood estimator for f0 by maximizing L or, more typically, an

expression involving logL(f0; {Vj,i}) to avoid having to deal with the products. Under

appropriate regularity assumptions on ϕ, f0, and the system (2.1)- (2.3), one way to do

this might be via a gradient based search. Another might be via stochastic optimization.

One could also treat direct observations of q as missing data and then use the iterative

E-M algorithm to find the MLE (see, for example, [12]).

Alternatively, one could use the likelihood function defined above and take a

Bayesian approach (see, for example, [8, 9, 10, 15, 33, 34]). One way of doing this

would be to assume f0 = f0(·; ρ) has been parameterized by a parameter vector ρ ∈R,

where R denotes a parameter set. Then assume a prior p on ρ and apply Bayes to

obtain the posterior p̂ as

p̂(ρ) = p̂(ρ|{Vj,i}) =
1

Z
L̂(ρ; {Vj,i})p(ρ) =

1

Z
L(f0(·; ρ); {Vj,i})p(ρ).

where Z is the normalizing constant given by

Z =

∫
R

L̂(ρ; {Vj,i})p(ρ)dρ =

∫
R

m∏
i=1

∫
Q

ni∏
j=0

ϕ(Vj,i − C(xj,i, x0,i, ui; q))f0(q; ρ)dqp(ρ)dρ.

Still another Bayesian approach could be used to estimate the distribution of q ∼ f0

directly where now the posterior for q, p̂ = p̂(q) serves as the estimator for f0. In this
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case we assume that εj,i, j = 0, ..., ni, i = 1, ...,m are simply independent both across

and within subjects, identically distributed with mean 0 and known common variance

σ2, and with εj,i ∼ ϕ, j = 0, ..., ni, i = 1, ...,m. If we now let p denote the prior for q,

then Bayes yields

p̂(q) = p̂(q|{Vj,i}) =
1

Z

m∏
i=1

Li(q; {Vj,i})p(q) =
1

Z

m∏
i=1

ni∏
j=0

ϕ(Vj,i − C(xj,i, x0,i, ui; q))p(q),

where the normalizing constant Z is now given by

Z =

∫
Q

m∏
i=1

Li(q; {Vj,i})p(q)dq =

∫
Q

m∏
i=1

ni∏
j=0

ϕ(Vj,i − C(xj,i, x0,i, ui; q))p(q)dq.

Both of these Bayesian approaches also have some of the same computational issues as

the MLE approach when some sort of MCMC technique such as Metropolis-Hastings or

the Gibbs Sampler is used to sample the posterior distribution.

In our study here, however, we take a statistically somewhat less sophisticated

approach. We consider the naive pooled data estimator. We do this for a number

of reasons. 1) Our primary focus here is the finite dimensional approximation of the

infinite dimensional state equation and the convergence of the corresponding estimators

and the computational challenges described above would only serve to confound our

findings, 2) The naive pooled estimator meshes especially well with the approach we

take in dealing with the randomness in the family of PDEs (i.e. abstract parabolic, and

eventually, damped hyperbolic) of particular interest to us here in the context of the

alcohol biosensor problem described earlier. 3) A reasonable argument could be made

that the data we observe is best described as pooled or averaged. We note that it in fact

turns out that the approximation and convergence results we present here are highly

relevant to the MLE and Bayesian approaches described in the previous paragraphs; we

are currently investigating that and we will report on our findings and results in those

cases elsewhere. Finally it is interesting to note that in the Bayesian approach, if the

prior f0 and the distribution of the measurement noise process, εj,i, as described by the

density ϕ are both assumed to be normal, then the naive pooled data estimator we find

here is in fact the Maximum A-Posteriori, or MAP, estimator.

In light of this, our statistical model assumes that the observed data points can be

represented by the mean output of the model plus random error. Thus, we assume that

we have random observations of the process given by a random array with components

Vj,i = E[yj,i||f0] + εj,i, j = 0, ..., ni, i = 1, ...,m, (2.4)

where in (2.4), εj,i, j = 0, ..., ni, i = 1, ...,m, represent measurement noise and are

assumed to be independent and identically distributed with mean 0 and known common

variance σ2. For f ∈ F(Q), define

vi(tj; f) = E[y(tj, x0,i, ui;q)||f ] =

∫
Q

C(xj,i, x0,i, ui; q)f(q)dq, (2.5)
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the mean behavior at time tj, j = 0, ..., ni, if q ∼ f .

The estimation problem is to estimate the pdf, f0, using a least squares approach

f̂ = arg min
f∈F(Q)

J(f ;V ) = arg min
f∈F(Q)

m∑
i=1

ni∑
j=0

(Vj,i − vi(tj; f))2. (2.6)

where the vi(tj; f) are as given in (2.5).

Solving the optimization problem given in (2.6) will typically require finite

dimensional approximation of the dynamical system given in (2.1)-(2.2), and the

parameterization of the feasible set of pdfs, F(Q). Indeed, in our treatment here, we

assume that the set of pdfs, F(Q), is parameterized by a vector of parameters θ ∈ Θ,

where Θ ⊆ Rr is a set of feasible parameters. In this case, we denote the set of pdfs by

FΘ(Q).

We approximate the estimation problem given in (2.6) by a sequence of finite

dimensional estimation problems by replacing vi(tj; f) with a finite dimensional

approximation vNi (tj; f). We obtain

f̂N = arg min
f∈FΘ(Q)

JN(f ;V ) = arg min
f∈FΘ(Q)

m∑
i=1

ni∑
j=0

(Vj,i − vNi (tj; f))2. (2.7)

We note that ultimately, we will want to dispense with the assumption that F(Q)

has been parametrized by the finite dimensional parameter θ ∈ Θ and actually estimate

the shape of f directly. In this case, F(Q) will also have to be approximated or

discretized with the level, or dimension of the parameterization having to grow in

order to establish convergence. We are currently studying this extension to the results

presented here and will discuss our findings elsewhere. Analogous to theorem 5.1 in [7],

we have the following convergence result for the f̂N ’s.

Theorem 2.1. Let Θ ⊆ Rr be compact. If

A. The maps on Θ, θ 7→ f(q; θ), for almost every q ∈ Q, and θ 7→ JN(f(·; θ);V ),

for all N and f ∈ FΘ(Q) are continuous,

B. For any sequence of densities fN ∈ FΘ(Q) with limN→∞ fN(q) = f(q), a.e.

q ∈ Q, for some f ∈ FΘ(Q), we have vNi (tj; fN) converging to vi(tj; f) for all

i ∈ {1, ...,m} and j ∈ {0, ..., ni} as N →∞, and

C. The vi(tj; f) and vNi (tj; f) are uniformly bounded for all j ∈ {0, ..., ni},
i ∈ {1, ...,m} and f ∈ FΘ(Q),

then it will follow that there exist solutions f̂N to the estimation problems over FΘ(Q),

given in (2.7), and there exists a subsequence of the f̂N ’s that converges to a solution f̂

of the estimation problem over FΘ(Q) given in (2.6).

Proof. Finding the solution to the problem in (2.7) is equivalent to finding the

parameters θ ∈ Θ such that JN(f ;V ) is minimized. Since Θ is a compact set and the

map θ → JN(f(·; θ);V ) is continuous for all N by (A), a solution f̂N to the estimation

problem (2.7) over FΘ(Q) exists.



9

Next, let {fN} ⊆ FΘ(Q) be any sequence with limN→∞ fN(q) = f(q), a.e. q ∈ Q
for some f ∈ FΘ(Q) and consider that

|JN(fN ;V )− J(f ;V )| = |
m∑
i=1

ni∑
j=0

(Vj,i − vNi (tj; fN))2

−
m∑
i=1

ni∑
j=0

(Vj,i − vi(tj; f))2|

≤
m∑
i=1

ni∑
j=0

|2Vj,i − (vi(tj; f) + vNi (tj; fN))|

· |vi(tj; f)− vNi (tj; fN)|

≤M

m∑
i=1

ni∑
j=0

|vi(tj; f)− vNi (tj; fN)|,

for some M > 0, since vi(tj; f) and vNi (tj; f) are uniformly bounded for all i ∈ {1, ...,m}
and j ∈ {0, ..., ni} (by assumption (C)), and f ∈ FΘ(Q). Then, by (B), we obtain

JN(fN ;V )→ J(f ;V ), (2.8)

as N →∞. On the other hand, since f̂N = f̂(·; θ̂N), where θ̂N ∈ Θ, is the minimizer of

JN(f ;V ), we have

JN(f̂N ;V ) ≤ JN(f ;V ), (2.9)

for all f = f(·; θ) ∈ FΘ(Q) and N = 1, 2, .... Since {θ̂N} ⊂ Θ, compact, there exists a

subsequence θ̂Nk with θ̂Nk → θ̂ as k → ∞. Thus, taking the limit as k → ∞ in (2.9)

with N replaced by Nk, and using (2.8) (with fNk = f , all k = 1, 2, ... when the limit is

taken on the right hand side of (2.9)), we obtain

J(f̂ ;V ) ≤ J(f ;V ), (2.10)

for all f ∈ FΘ(Q), where f̂ = f̂(·; θ̂). Thus, (2.10) implies that f̂ is a solution of

estimation problem given in (2.6) over FΘ(Q).

3. Abstract Parabolic Systems with Unbounded Input and Output

Let V and H be in general complex (but in many instances, real would suffice) Hilbert

spaces with V ↪→ H, i.e. V is continuously and densely embedded in H. By identifying

H with its dualH∗, we obtain the Gelfand triple V ↪→ H ↪→ V ∗. Let< ·, · >H denote the

H inner product and |·|H , ||·||V denote norms on H and V , respectively, and assume that

(Q, dQ) is a compact metric space contained in Euclidean space endowed with Lebesgue

measure. In what follows all multi-dimensional vectors, whether in Euclidean or some

abstract space, are assumed to be column vectors, unless explicitly stated otherwise. For

q ∈ Q, let a(q; ·, ·) : V × V → C be a sesquilinear form that has the following properties
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i. Boundedness There exists a constant α0 > 0 such that |a(q;ψ1, ψ2)| ≤
α0||ψ1||V ||ψ2||V , ψ1, ψ2 ∈ V , q ∈ Q,

ii. Coercivity There exist constants λ0 ∈ R and µ0 > 0 such that a(q1;ψ, ψ) +

λ0|ψ|2H ≥ µ0||ψ||2V , ψ ∈ V , q ∈ Q,

iii. Measurability For all ψ1, ψ2 ∈ V , the map q 7→ a(q;ψ1, ψ2) is measurable on

Q with respect to all measures defined in terms of the densities in FΘ(Q), where

Θ ⊆ Rr is the set of feasible parameters.

Assume further that b(q), c(q) are respectively µ and ν dimensional row vectors in

V ∗ with the maps q 7→< b(q), ψ >V ∗,V and q 7→< c(q), ψ >V ∗,V measurable on Q for

ψ ∈ V , where < ·, · >V ∗,V denotes the duality pairing between V and V ∗. We consider

the system which is written in weak form as

〈ẋ, ψ〉V ∗,V + a(q;x, ψ) = 〈b(q), ψ〉V ∗,V u, ψ ∈ V,
x(0) = x0 ∈ H,

y(t) =

∫ T

0

〈
c(q), x(t)(s)

〉
V ∗,V

ds,

(3.1)

where T > 0, and ϕ(t)(s) = ϕ(t − s)χ[0,t](s), s ∈ [0, T ]. For u ∈ L2([0, T ],Rµ), it

can be shown that (3.1) has a unique solution (see [24, 39]) x ∈ W (0, T ) := {ψ :

ψ ∈ L2([0, T ], V ), ψ̇ ∈ L2([0, T ], V ∗)} ⊆ C([0, T ], H) which depends continuously on

u ∈ L2([0, T ],Rµ). It follows that y ∈ L2([0, T ],Rν).

For q ∈ Q, under the assumptions (i),(ii), the sesquilinear form a(q; ·, ·) defines a

bounded linear operator A(q) : V → V ∗ by < A(q)ψ1, ψ2 >V ∗,V = −a(q;ψ1, ψ2) where

ψ1, ψ2 ∈ V . It can be shown further that (see [3, 5, 39]) A(q) restricted to the set

Dom(A(q)) = {φ ∈ V : A(q)φ ∈ H} is the infinitesimal generator of a holomorphic

or analytic semigroup of bounded linear operators on H. Moreover, this semigroup

can be restricted to be a holomorphic semigroup on V and extended to a holomorphic

semigroup on V ∗ by appropriately restricting or extending the domain, Dom(A(q)), of

the operator A(q) (see, for example, [3] and [39]).

For q ∈ Q, define the operators B(q) : Rµ → V ∗ by 〈B(q)u, ϕ〉V ∗,V = 〈b(q), ϕ〉V ∗,V u

and C(q) : L2([0, T ], V ) → Rν by C(q)ψ =
∫ T

0
〈c(q), ψ(s)〉V ∗,V ds, for u ∈ Rµ, ϕ ∈ V ,

and ψ ∈ L2([0, T ], V ), and rewrite the system in (3.1) as

ẋ(t) = A(q)x(t) +B(q)u(t),

x(0) = x0,

y(t) = C(q)x(t), t > 0.

(3.2)

The mild solution of (3.2) is given by the variation of constants formula as

x(t; q) = eA(q)tx0 +

∫ t

0

eA(q)(t−s)B(q)u(s)ds, t ≥ 0. (3.3)
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Moreover, since the semigroup {eA(q)t : t ≥ 0} is analytic it follows that

y(t; q) = C(q)x(t)(q) =

∫ T

0

〈
c(q), x(t)(s; q)

〉
V ∗,V

ds, t ≥ 0. (3.4)

is well defined.

3.1. The Discrete Time Formulation

Now let τ > 0 be a sampling time and consider zero-order hold inputs of the form

u(t) = uj, t ∈ [jτ, (j + 1)τ), j = 0, 1, 2, .... Setting xj = x(jτ), for j = 0, 1, 2, ..., (3.3)

and (3.4) yield that

xj+1 = Â(q)xj + B̂(q)uj, yj = Ĉ(q)x(j), j = 0, 1, 2, ... (3.5)

where now we let x0 ∈ V . Here, again by the properties of the analytic semigroup

(see [26, 39]), we have {eA(q)t : t ≥ 0}, xj ∈ V , Â(q) = eA(q)τ ∈ L(V, V ) and

B̂(q) =
∫ τ

0
eA(q)sB(q)ds ∈ L(Rµ, H). The operator Ĉ(q) appearing in (3.5) is defined

by recalling (3.4). We set

Ĉ(q)x(j) = C(q)x(j), (3.6)

where x(j) in (3.6) denotes the function in L2(0, T, V ) given by

x(j) =

j∑
i=1

xiχ[(j−1)τ,jτ). (3.7)

Now, in light of the coercivity assumption, Assumption (ii), by making the change

of variables z(t) = e−λ0tx(t) and v(t) = e−λ0tu(t), without loss of generality we may

assume that the operator A(q) is invertible with bounded inverse. Thus we have that

B̂(q) =
∫ τ

0
eA(q)sB(q)ds = A(q)−1eA(q)sB(q)

∣∣∣τ
0

= (Â(q) − I)A(q)−1B(q) ∈ L(Rµ, V ). It

follows that the recurrence given in (3.5) is a recurrence in V with Â(q) ∈ L(V, V )

and B̂(q) ∈L(Rµ, V ). Thus it now becomes possible to allow the discrete time output

operator Ĉ(q) ∈L(V,Rν) defined in (3.6) and (3.7), if so desired, to take on the much

simpler form Ĉ(q)x = 〈c(q), x〉V ∗,V . In what follows we shall assume that the output

operator takes this simpler form.

3.2. Systems with Boundary Input

Of primary interest to us here are systems of the form (3.1) or (3.2) where the input u

is on the boundary of the spatial domain. The theory developed in [13] and [27] tells

us how in this case to define the input operator B(q) and the notion of a mild solution

upon which our approach is based. Let W be a Hilbert space which is densely and

continuously embedded in H. Let ∆(q) ∈ L(W,H) and Γ(q) ∈ L(W,Rµ) and assume
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that Dom(A(q)) ⊆ N(Γ(q)) ⊆ W , Γ(q) is surjective and ∆(q) = A(q) on Dom(A(q)).

We then consider the system with input on the boundary given by

ẋ(t) = ∆(q)x(t), t > 0,

Γ(q)x(t) = u(t), t > 0,

y(t) = C(q)x(t), t > 0,

x(0) = x0.

(3.8)

In [13], Curtain and Salamon define a solution to the system (3.8) for the case where

u ∈ C([0, T ];Rµ) and x0 ∈ W with Γ(q)x0 = u(0), to be a function x ∈ C([0, T ];W ) ∩
C1([0, T ];H) that satifies (3.8) at every t ∈ (0, T ). The operator A(q) densely defined

implies that it has an adjoint operator A(q)∗ : Dom(A(q)∗) ⊆ H → H which is also

densely defined and closed. Defining Z∗ to be the Hilbert space Dom(A(q)∗) endowed

with the graph Hilbert space norm associated with A(q)∗, Z∗ will be continuously and

densely embedded in H. So, the Gelfand triple Z∗ ↪→ H ↪→ Z is obtained where

Z = Z∗∗ represents the dual space of Z∗. By definition A(q)∗ ∈ L(Z∗, H) and

consequently therefore, A(q) ∈ L(H,Z). It follows that the semigroup {eA(q)t : t ≥ 0}
can be uniquely extended to a holomorphic semigroup on Z with infinitesimal generator

A(q) : H ⊆ Z → Z, the extension A(q) to H defined via the duality pairing

< A(q)ψ, φ >Z,Z∗=< ψ,A(q)∗φ >H , for ψ ∈ H, and φ ∈ Z∗ = Dom(A(q)∗).

For each q ∈ Q, let Γ+(q) ∈ L(Rµ,W ) be any right inverse of Γ(q) ∈ L(W,Rµ),

and define the operator B(q) ∈ L(Rµ, Z) by B(q) = (∆(q) − A(q))Γ+(q). It is not

difficult to show that B(q) is well defined (i.e. that it does not depend on the particular

choice of the right inverse Γ+(q)). Then for any x0 ∈ H and u ∈ L2([0, T ];Rµ), the mild

solution, x ∈ C([0, T ];Z), of the initial boundary value problem in (3.8) is the Z-valued

function given by

x(t) = eA(q)tx0 +

∫ t

0

eA(q)(t−s)B(q)u(s)ds, t ≥ 0. (3.9)

It is shown in [13] that if (3.8) has a solution, then it is given by (3.9) where

x ∈ C([0, T ], H) ∩ H1((0, T ), Z) and moreover, we have that the estimate given by

|
∫ t

0
eA(q)(t−s)B(q)u(s)ds|H ≤ k||u||L2([0,T ];Rµ) holds.

We note that if in fact we have that W ⊂ V , which is often the case (for example,

in a one dimensional diffusion equation with either Neumann or Robin boundary input

(see our examples in Section (6) below), but may not be the case if, for example, the

boundary input is Dirichlet), then in the above formulation we may take Z∗ = V and

Z = V ∗. In this case it will follow that B(q) = (∆(q) − A(q))Γ+(q) ∈ L(Rµ, V ∗) and

consequently that the theory presented at the beginning of Section (3), and in particular,

the discrete time theory presented in Section (3.1), applies. For ease of exposition, we

will assume that this is indeed the case for what follows below. We note that all the

results continue to follow in the more general case where Z∗ = Dom(A(q)∗). It then

follows that Â(q) = eA(q)τ ∈L(V, V ) and that B̂(q) =
∫ τ

0
eA(q)sdsB(q) ∈L(Rµ, V ) and
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therefore that

B̂(q) =

∫ τ

0

eA(q)sB(q)ds = A(q)−1eA(q)sB(q)
∣∣∣τ
0

= (Â(q)− I)A(q)−1B(q),

and Ĉ(q) = C(q) ∈L(V,Rν). Note that now we have

B̂(q) = (I − Â(q))Γ+(q) +

∫ τ

0

eA(q)sds∆(q)Γ+(q) ∈L(Rµ, V ), (3.10)

and if Γ+(q) can be chosen so that R(Γ+(q)) ∈ N(∆(q)), then the expression in (3.10)

becomes B̂(q) = (I − Â(q))Γ+(q). Then, if x0 = 0 ∈ H, yi is given by

yi =
i−1∑
j=0

C(q)Â(q)i−j−1B̂(q)ui

=
i−1∑
j=0

Ki,juj, i = 1, 2, ...,

(3.11)

where the operator Ki,j = C(q)Â(q)i−j−1(I− Â(q))Γ+(q) appearing in (3.11) is the gain

that represents the contribution of the jth input channel to the ith output channel.

4. Random Regularly Dissipative Operators and Their Associated

Semigroups

In this section, we summarize the key ideas from the framework developed in [20] and

[30] which are central to our approach. We assume that q is a p-dimensional random

vector whose support is in
∏p

i=1[ai, bi] where −∞ < ᾱ < ai < bi < β̄ < ∞ for all

i = 1, 2, ..., p. Letting ~a = [ai]
p
i=1, ~b = [bi]

p
i=1 and let Θ ⊂ Rr for some r be closed and

bounded. We assume that the distribution of q can be represented by an absolutely

continuous cumulative distribution function F (q;~a,~b, ~θ), or equivalently, by a (push

forward) measure π = π(~a,~b, ~θ), where ~θ ∈ Θ. Let a(·; ·, ·) be a sesquilinear form

satisfying (i)-(iii) given in Section (3), where the assumed measurability is with respect

to all of the measures π = π(~a,~b, ~θ).

Define the Bochner spaces V = L2
π(Q;V ) and H = L2

π(Q;H). The assumptions

from Section (3) on the spaces V and H guarantee that the spaces V, H and V∗ form

the Gelfand triple V ↪→H ↪→V∗ (see [20]) where H is identified with its dual H∗ and

V∗ is identified with L2
π(Q;V ∗).

For ~a = [ai]
p
i=1, ~b = [bi]

p
i=1 satisfying −∞ < ᾱ < ai < bi < β̄ < ∞ for all

i = 1, 2, ..., p, and ~θ ∈ Θ, set ρ = (~a,~b, ~θ). Then we define the π(ρ)-averaged sesquilinear

forms a(ρ; ·, ·) : V ×V → C (note, the spaces H, V, and V∗ now of course depend

on ρ, but our notation here we will not explicitly show this dependence unless clarity

demands it) by

a(ρ;ϕ, ψ) =

∫
Q

a(q;ϕ(q), ψ(q))dπ(q; ρ) = E[a(q;ϕ(q), ψ(q))||π(ρ)], (4.1)
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where ϕ, ψ ∈ V and ρ = (~a,~b, ~θ). It is not difficult to show that Assumptions

(i)-(iii) imply that a(ρ; ·, ·) is a bounded and coercive sesquilinear form on V × V.

Consequently, this sesquilinear form defines a bounded linear map A(ρ) : V → V∗ by

< A(ρ)ϕ, ψ >V∗,V= −a(ρ;ϕ, ψ) which when appropriately restricted or extended is the

infinitesimal generator of analytic semigroups of bounded linear operators {eA(ρ)t : t ≥
0} on V, H and V∗ (see [3, 5, 39]). We assume that the maps q 7→< b(q), ψ(q) >V ∗,V

and q 7→< c(q), ψ(q) >V ∗,V are π(ρ)-measurable for any ψ ∈ V, and that ||b(q)||V ∗ ,

||c(q)||V ∗ are uniformly bounded for a.e. q ∈ Q. We then define B(ρ) : Rµ → V∗ and

C(ρ) : V → Rν by

<B(ρ)u, ψ >V∗,V =

∫
Q

〈b(q), ψ(q)〉V ∗,V dπ(q; ρ)u

= E[〈b(q), ψ(q)〉V ∗,V ||π(ρ)]u, (4.2)

C(ρ)ψ =

∫
Q

〈c(q), ψ〉V ∗,V dπ(q; ρ) = E[〈c(q), ψ(q)〉V ∗,V ||π(ρ)], (4.3)

for u ∈ Rµ and ψ ∈V.

With the definitions (4.1) - (4.3) of the operators A, B, and C, consider the

abstract evolution system given by

ẋ(t) = A(ρ)x(t) + B(ρ)u(t),

x(0) = x0 ∈ H,
y(t) = C(ρ)x(t), t > 0,

(4.4)

whose mild solution is given by

x(t) = T(t; ρ)x0 +

∫ t

0

T(t− s; ρ)B(ρ)u(s)ds, t ≥ 0, (4.5)

where T(t; ρ) = {eA(ρ)t : t ≥ 0} is the analytic semigroup generated by the operator

A(ρ). From (4.4) and (4.5), it follows that

y(t) =

∫ t

0

C(ρ)T(t− s; ρ)B(ρ)u(s)ds, t ≥ 0. (4.6)

As in Section (3), we obtain a discrete or sampled time version of (4.4). Now let x0 ∈ V ,

let τ > 0 be the sampling time, and consider zero-order hold inputs of the form u(t) = uj,

t ∈ [jτ, (j+ 1)τ), j = 0, 1, 2, .... Setting xj = x(jτ) and yj = y(jτ), j = 0, 1, 2, ..., (4.5)

and (4.6) yield

xj+1 = Â(ρ)xj + B̂(ρ)uj, yj = Ĉ(ρ)xj, j = 0, 1, 2, ..., (4.7)

with x0 ∈V and Â(ρ) = T(τ ; ρ) ∈L(V,V), B̂(ρ) =
∫ τ

0
T(s; ρ)B(ρ)ds ∈L(Rµ,V),

and Ĉ(ρ) = C(ρ) ∈ L(V,Rν). Note that the operators Â(ρ) and B̂(ρ) are bounded
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since {T(t; ρ) : t ≥ 0} is an analytic semigroup on V, H, and V∗ (see [3, 5, 24, 39]). If

A(ρ) : Dom(A(ρ)) ⊆V∗ →V∗ has bounded inverse, then B̂(ρ) =
∫ τ

0
T(s; ρ)B(ρ)ds =

Â(ρ)−1T(s; ρ)B(ρ)
∣∣τ
0

= (Â(ρ)− I)A(ρ)−1B(ρ) ∈L(Rµ,V).

It is shown in [20] and [30] that the solutions of systems (4.4) and (3.2) and (4.7)

and (3.5) agree for π-a.e. q ∈ Q. It follows that

y(t) = C(ρ)x(t) = E[y(t;q)||π(ρ)] = E[C(q)x(t;q)||π(ρ)], ∀t ≥ 0, (4.8)

and hence, from (4.8), that

yj = Ĉ(ρ)xj = E[yj(q)||π(ρ)] = E[Ĉ(q)xj(q)||π(ρ)], (4.9)

where in (4.8) and (4.9) E[·||π] denotes expectation with respect to the measure π.

5. Approximation and Convergence

In this section, we can now formally state our estimation problem and the sequence of

finite dimensional approximating problems. We will also state and prove a convergence

theorem.

5.1. The Estimation Problem

Assume that data of the form ({ũi,j}ni−1
j=0 , {ỹi,j}

ni
j=0)mi=1, has been given. Determine

ρ∗ = (~a∗,~b∗, ~θ∗) ∈ Ξ, Ξ a compact subset of R2p × Θ ⊂ R2p+r, ~a∗ = [a∗i ]
p
i=1, ~b∗ = [b∗i ]

p
i=1,

which minimizes

J(ρ) =
m∑
i=1

Ji(ρ) =
m∑
i=1

ni∑
j=0

|yi,j({ũi,k}ni−1
k=0 , ρ)− ỹi,j|2 (5.1)

where for i = 1, 2, ...,m, yi,j({ũi,k}ni−1
k=0 , ρ) is given by (4.7) with uj = ũi,j, j = 0, ..., ni,

i = 1, 2, ...,m, and (4.9).

Recalling the assumption that for i ∈ {1, 2, ..., p}, −∞ < ᾱ ≤ ai < bi ≤ β̄ < ∞,

let Q̄ =
∏p

i=1[ᾱ, β̄]. Let ρ̄ = ([ᾱ]pi=1, [β̄]pi=1,
~θ) ∈ Ξ, H̄ = L2

π(ρ̄)(Q̄;H) and V̄ =

L2
π(ρ̄)(Q̄;V ). Then, for N = 1, 2, ..., let ~aN = [aNi ]pi=1, ~bN = [bNi ]pi=1 be such that

−∞ < ᾱ ≤ aNi < bNi ≤ β̄ < ∞, and let ρN = ([~aN ,~bN , ~θ) ∈ Ξ. Set QN =
∏p

i=1[aNi , b
N
i ],

HN = L2
π(ρ̄N )(Q

N , H), VN = L2
π(ρ̄N )(Q

N , V ) and let UN be a finite dimensional subspace

of VN . Let IN : H̄ →HN be a linear map defined by IN(ψ) = ψ|QN for any ψ ∈ H̄,

let PN : HN → UN denote the orthogonal projection of HN onto UN , and define

JN : H̄ → UN by JN = PN ◦IN .

In addition, recall that we have assumed that for ρ ∈ Ξ, the probability distributions

described by π(ρ) are all absolutely continuous; that is π(ρ) ∼ f(ρ), where f(ρ) = f(·; ρ)

is a joint density for the random vector q.

Noting that in this formulation, UN is neither a subspace of H̄ nor V̄, we define

the operators AN(ρ) on UN to be what are essentially the restrictions of A(ρ) to the
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spaces UN . More precisely, we set〈
AN(ρ)vN , wN

〉
= −a(ρ; vN , wN) = −

∫
Q

a(q; vN(q), wN(q))dπ(q, ρ)

= −
∫
Q

a(q; vN(q), wN(q))f(q; ρ)dq = −E[a(q; vN(q), wN(q))||π(ρ)], (5.2)

where vN , wN ∈ UN .

Define the operators BN(ρ) : Rµ → UN and CN(ρ) : UN → Rν by

<BN(ρ)u, vN >V∗,V =

∫
Q

〈
b(q), vN(q)

〉
V ∗,V

dπ(q; ρ)u

= E[
〈
b(q), vN(q)

〉
V ∗,V
||π(ρ)]u, (5.3)

CN(ρ)vN =

∫
Q

〈
c(q), vN

〉
V ∗,V

dπ(q; ρ) = E[
〈
c(q), vN(q)

〉
V ∗,V
||π(ρ)], (5.4)

where vN ∈ UN , and u ∈ Rµ.

With these definitions, we can now state the finite dimensional approximating

problems.

Assume that data of the form ({ũi,j}ni−1
j=0 , {ỹi,j}

ni
j=0)mi=1, has been given. Determine

ρN∗ = (~aN∗,~bN∗, ~θN∗) ∈ Ξ, Ξ a compact subset of R2p × Θ ⊂ R2p+r, ~aN∗ = [aN∗i ]pi=1,
~bN∗ = [bN∗i ]pi=1, which minimizes

JN(ρ) =
m∑
i=1

ni∑
j=0

|yNi,j({ũi,k}
ni−1
k=0 , ρ)− ỹi,j|2, (5.5)

where in (5.5), for i = 1, 2, ...,m, yNi,j({ũi,k}
ni−1
k=0 , ρ) = Ĉ(ρ)NxN

i,j is given by (4.7) and

(4.9) with uj = ũi,j, j = 0, ..., ni, i = 1, 2, ...,m, xj replaced by xN
i,j ∈ UN , Â(ρ) replaced

by

ÂN(ρ) = TN(τ ; ρ) = eA
N (ρ)τ ∈L(UN ,UN),

B̂(ρ) replaced by B̂N(ρ) =
∫ τ

0
eA

N (ρ)sBN(ρ)ds ∈ L(Rµ,UN), Ĉ(ρ) replaced by

ĈN(ρ) ∈ L(UN ,Rν), and xi,0 replaced by xN
i,0 = JNxi,0 ∈ UN . It follows that for

i = 1, 2, ...,m,

xN
i,j+1 = ÂN(ρ)xN

i,j + B̂N(ρ)ũi,j, y
N
i,j = CN(ρ)xN

i,j j = 0, 1, 2, ..., (5.6)

with the operators AN(ρ), BN(ρ), and CN(ρ) appearing in (5.6) are as they have been

defined above using (5.2)-(5.4).

In the following sections we prove that there exists a subsequence of solutions to

the sequence of approximating problems that converges to the solution of our original

estimation/optimization problem.
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5.2. A Version of the Trotter-Kato Semigroup Approximation Theorem

Our convergence proof is based on a version of the Trotter-Kato semigroup

approximation theorem ([5, 21, 26]) that does not require the approximating spaces

to be subspaces of the underlying infinite dimensional state space. Banks, Burns and

Cliff [1] proved just such a result but unfortunately they do not state their hypotheses in

terms of resolvent convergence which is what we require here. Consequently we establish

the result in its requisite form here.

Let Ĥ be a Hilbert space with norm | · | and let {ĤN} be a sequence of Hilbert

spaces, each equipped with norm | · |N . Assume that for each N ∈ N, ÛN is a closed

(finite dimensional) subspace of ĤN . Assume that the operators Â on Ĥ, and for each

N ∈ N, ÂN on ÛN , are in G(M,λ0) with M and λ0 independent of N ; that is they are

the infinitesimal generators of C0-semigroups Ŝ(t) on Ĥ and ŜN(t), on ÛN , respectively,

that are uniformly (uniformly in N) exponentially bounded. (We note that if Â is

obtained from a bounded and coercive sesquilinear form and the ÛN ’s are subspaces

with ÂN defined as the restrictions of Â to ÛN , then this latter assumption is easily

verified [3, 5].)

Theorem 5.1. Let Ĥ, ĤN , and ÛN be Hilbert spaces as defined above. Let IN : Ĥ →
ĤN be an operator such that Im(IN) = ĤN and |INz|N ≤ |z|. Let pN : ĤN → ÛN be

the canonical projection of ĤN onto ÛN and define PN := pN ◦IN . Let Â ∈ G(M,λ0)

on Ĥ, and ÂN ∈ G(M,λ0) on ÛN . Suppose that for some λ ≥ λ0,

|PNRλ(Â)z −Rλ(Â
N)PNz|N → 0, as N →∞, (5.7)

for every z ∈ Ĥ, where Rλ(Â) = (λI − Â)−1 and Rλ(Â
N) = (λI − ÂN)−1 denote

respectively the resolvent operators of Â and ÂN at λ. Then

|PN Ŝ(t)z − ŜN(t)PNz|N → 0, as N →∞, (5.8)

in ĤN , for every z ∈ Ĥ uniformly in t on compact t-intervals.

Proof. For ease of exposition and without loss of generality, let λ0 = 0. Then, since

Ŝ(t)Rλ(Â) and ŜN(t)Rλ(Â
N) are both strongly differentiable in t, we have

d

dt
Ŝ(t)Rλ(Â) = ÂŜ(t)Rλ(Â) = Ŝ(t)ÂRλ(Â) = Ŝ(t)[λRλ(Â)− I]. (5.9)

Then, using an identity for ŜN(t)Rλ(Â
N) analogous to (5.9) , we obtain

d

ds
[ŜN(t− s)Rλ(Â

N)PN Ŝ(s)Rλ(Â)]

= ŜN(t− s)[PNRλ(Â)−Rλ(Â
N)PN ]Ŝ(s).

(5.10)

Then, since

ŜN(t− s)Rλ(Â
N)PN Ŝ(s)Rλ(Â)|s=ts=0

= Rλ(Â
N)[PN Ŝ(t)− ŜN(t)PN ]Rλ(Â),

(5.11)
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(5.10) and (5.11) imply that

Rλ(Â
N)[PN Ŝ(t)−ŜN(t)PN ]Rλ(Â)

=

∫ t

0

ŜN(t− s)[PNRλ(Â)−Rλ(Â
N)PN ]Ŝ(s)ds.

(5.12)

Equation (5.12) and |ŜN(t− s)| ≤M (recall λ0 = 0), for any u ∈ Ĥ, yield

|Rλ(Â
N)[PN Ŝ(t)−ŜN(t)PN ]Rλ(Â)u|N

≤M

∫ t

0

|[PNRλ(Â)−Rλ(Â
N)PN ]Ŝ(s)u|Nds.

(5.13)

By (5.7), we know that the integrand in (5.13) converges to 0 for a fixed s, and also

it is bounded by 2M2|u|/λ, and therefore, by the Lebesque Dominated Convergence

Theorem, the right-hand side of (5.13) converges to 0 as N →∞, where the convergence

is uniform in t on compact t-intervals.

Letting v = Rλ(Â)u, and using the fact that D(Â) is dense in Ĥ, we have that

|Rλ(Â
N)[PN Ŝ(t)− ŜN(t)PN ]v|N → 0, as N →∞, (5.14)

for all v ∈ Ĥ. Then, since |Ŝ(t)| ≤M , (5.7) implies that

|Rλ(Â
N)ŜN(t)PNv−ŜN(t)PNRλ(Â)v|N

= |ŜN(t)[Rλ(Â
N)PNv − PNRλ(Â)v]|N → 0,

(5.15)

and similarly, |ŜN(t)| ≤M and ((5.7)) imply that

|Rλ(Â
N)PN Ŝ(t)v−PN Ŝ(t)Rλ(Â)v|N

= |[Rλ(Â
N)PN − PNRλ(Â)]Ŝ(t)v|N → 0.

(5.16)

Combining (5.15), (5.16), and the triangle inequality we get

|Rλ(Â
N)[ŜN(t)PN − PN Ŝ(t)]v + [PN Ŝ(t)− ŜN(t)PN ]Rλ(Â)v|N → 0, (5.17)

as N → ∞. Then, because of (5.14), and again by the triangle inequality, we obtain

that

|[PN Ŝ(t)− ŜN(t)PN ]Rλ(Â)v|N → 0, as N →∞. (5.18)

Letting w = Rλ(Â)v, we have w ∈ Dom(Â2); and since Dom(Â2) is dense in Ĥ, it

follows from (5.7), (5.17) and (5.18) that

|ŜN(t)PNz − PN Ŝ(t)z|N → 0, as N →∞,

for all z ∈ Ĥ uniformly in t on compact t-intervals.
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5.3. Application to the Density Estimation Problem

Let {ρN}, ρ ∈ Ξ be such that fN(q) → f(q), for almost every q ∈ Q, where

fN(q) = f(q; ρN) and f(q) = f(q; ρ). Let H̄, V̄, HN , VN , UN , IN : H̄ → HN ,

PN : HN → UN , and JN : H̄ → UN be as they were defined earlier. Set A = A(ρ)

and consider it to be an operator on H̄ and V̄ by extending f(·, ρ), which is defined on

Q, to Q̄ by setting it equal to zero on Q̄ \ Q and let AN = AN(ρN). Then it follows

from Assumptions (i) - (iii) that A is in G(M,λ0) on H̄ and AN is in G(M,λ0) on HN

with M and λ0 independent of N .

In the statement of Theorem (5.1), set Ĥ = H̄, ĤN = HN , ÛN = UN , PN = JN ,

Â = A, and ÂN = AN . To apply Theorem (5.1) and conclude that in this case, (5.8)

holds, we need only verify (5.7). In order to do this, we require the following two

additional assumptions

iv. There exist positive real numbers γ and δ such that for any ρ ∈ Ξ, we have

0 < γ ≤ f(q; ρ) ≤ δ <∞ for π(ρ)-a.e. q ∈ Q.

v. For all w ∈ V̄, there exists uN ∈ UN such that ||uN − JNw||VN → 0 as N →∞.

We are now able to prove the following theorem.

Theorem 5.2. Let assumptions (i) - (v) be satisfied and let {ρN}, ρ ∈ Ξ be such that

fN(q) → f(q), for almost every q ∈ Q̄, where fN(q) = f(q; ρN) and f(q) = f(q; ρ).

Then, with the definitions above, the conditions of Theorem (5.1) (and in particular the

resolvent convergence specified in (5.7)) are satisfied. Consequently, it follows that

||TN(t; ρN)PNz − JNT(t; ρ)z||HN → 0, as N →∞, (5.19)

for every z ∈H, uniformly in t on compact t-intervals where TN = {TN(t; ρN) : t ≥ 0}
is the semigroup on HN given by TN(t; ρN) = eA

N t = eA
N (ρN )t and T = {T(t; ρ) : t ≥

0} is the semigroup on H and H̄ given by T(t; ρ) = eAt = eA(ρ)t.

Proof. First, note that if we can show resolvent convergence for every z ∈ V̄, then since

V̄ is dense in H̄, and JNRλ0(A) and Rλ0(AN)JN are uniformly bounded, the desired

resolvent convergence for every z ∈ H̄ will have been demonstrated. In what follows,

for any ρ = (~a,~b, ~θ) ∈ Ξ, f(·; ρ) is defined on Q =
∏p

i=1[ai, bi], but it can be extended

to be defined on Q̄ by setting it equal to zero on Q̄ \Q. We will use this fact frequently

below without further remark.

Let z ∈ V̄ and define w = Rλ0(A)z, and wN = Rλ0(AN)JNz. Suppose also that

uN ∈ UN be as in Assumption (v) for w = Rλ0(A)z.

Then, by triangle inequality, we have

||JNw − wN ||VN ≤ ||JNw − uN + uN − wN ||VN

≤ ||JNw − uN ||VN + ||uN − wN ||VN .
(5.20)
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Thus, (5.20), Assumption (v) and the continuous embedding of VN in HN imply that

it is enough to show that ||uN − wN ||VN → 0 as N → ∞. Let zN = wN − uN . Then,

since wN ∈ UN ⊂VN),

a(ρN ;wN , zN) =
〈
−ANwN , zN

〉
HN

=
〈
(λ0I −AN)Rλ0(AN)JNz, zN

〉
HN − λ0

〈
wN , zN

〉
HN

=
〈
JNz, zN

〉
HN − λ0

〈
wN , zN

〉
HN .

(5.21)

Also, since w ∈ Dom(A),

a(ρ;w,IN+

zN) =
〈
−Aw,IN+

zN
〉
H̄

=
〈

(λ0I −A)Rλ0(A)z,IN+

zN
〉
H̄
− λ0

〈
w,IN+

zN
〉
H̄

=
〈
z,IN+

zN
〉
H̄
− λ0

〈
w,IN+

zN
〉
H̄
,

(5.22)

where IN+
denotes the Moore-Penrose generalized inverse [11] of IN . We note that for

ψ ∈HN , IN+
ψ is the function in H̄ that agrees with ψ on QN and is zero on Q̄ \QN .

Then, from (5.21) and (5.22), we obtain

a(ρN ;wN , zN)−a(ρ;w,IN+

zN) =
〈
INz, zN

〉
HN − λ0

〈
wN , zN

〉
HN

−
〈
z,IN+

zN
〉
H̄

+ λ0

〈
w,IN+

zN
〉
H̄
.

(5.23)

Recalling Assumptions (i) and (ii) for the form a(·; ·, ·) on V ×V , let α̃0, µ̃0, λ̃0 denote the

boundedness and coercivity coefficients for the forms a(·; ·, ·). Then, using boundedness,

coercivity, Assumptions (iv) and (v), Young’s and the Cauchy Schwarz Inequalities, and

the continuous embeddings of the space V in the space H (i.e. that there exist a constant

k such that | · |H ≤ k|| · ||V ) and (5.23), for any ε > 0, we obtain

µ̃0||zN ||VN ≤ a(ρN ; zN , zN) + λ̃0|zN |HN

= a(ρN ;wN , zN)−a(ρN ;uN , zN) + λ̃0|zN |2HN

= a(ρN ;wN , zN)−a(ρ;w,IN+

zN)

+ a(ρ;w,IN+

zN)−a(ρN ;uN , zN) + λ̃0|zN |2HN

=
〈
INz, zN

〉
HN − λ̃0

〈
wN , zN

〉
HN −

〈
z,IN+

zN
〉
H̄

+ λ̃0

〈
w,IN+

zN
〉
H̄

+

∫
Q̄

(a(q;w, zN)f(q)− a(q;uN , zN)fN(q))dq + λ̃0|zN |2HN

=

∫
Q̄

(
〈
z, zN

〉
H

(fN(q)− f(q))dq

+ λ̃0

∫
Q̄

(
〈
w, zN

〉
H
f(q)−

〈
uN , zN

〉
H
fN(q))dq

+

∫
Q̄

(a(q;w, zN)f(q)− a(q;uN , zN)fN(q))dq
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=

∫
Q̄

(
〈
z, zN

〉
H

(fN(q)− f(q))dq + λ̃0

∫
Q̄

〈
w, zN

〉
H

(f(q)− fN(q))dq

+ λ̃0

∫
Q̄

〈
w − uN , zN

〉
H
fN(q)dq +

∫
Q̄

(a(q;w, zN)(f(q)− fN(q))dq

+

∫
Q̄

a(q;w − uN , zN)fN(q)dq

≤
∫
Q̄

|z|H |zN |H |fN(q)− f(q)|dq + λ̃0

∫
Q̄

|w|H |zN |H |f(q)− fN(q)|dq

+ λ̃0

∫
Q̄

|w − uN |H |zN |HfN(q)dq + α0

∫
Q̄

||w||V ||zN ||V |f(q)− fN(q)|dq

+ α0

∫
Q̄

||w − uN ||V ||zN ||V fN(q)dq

≤ εk2

2α

∫
QN
||zN ||2V fN(q)dq +

1

2ε

∫
Q̄

|z|2H |fN(q)− f(q)|2dq

+
λ̃0εk

2

2α

∫
QN
||zN ||2V fN(q)dq +

λ̃0k
2

2ε

∫
Q̄

||w||2V |fN(q)− f(q)|2dq

+
λ̃0εk

2

2

∫
QN
||zN ||2V fN(q)dq +

λ̃0k
2

2ε

∫
QN
||w − uN ||2V fN(q)dq

+
α0ε

2α

∫
QN
||zN ||2V fN(q)dq +

α0

2ε

∫
Q̄

||w||2V |fN(q)− f(q)|2dq

+
α0ε

2

∫
QN
||zN ||2V fN(q)dq +

α0

2ε

∫
QN
||w − uN ||2V fN(q)dq. (5.24)

Then, letting c̃ = µ̃0− ε
2α

(
k2(λ̃0 + 1) + (α + 1)(λ̃0k

2 + α0)
)

, it follows from (5.24) that

c̃||zN ||2VN ≤
1

2ε

∫
Q̄

|z|2H |fN(q)−f(q)|2dq +
λ̃0k

2 + α0

2ε

∫
QN
||w − uN ||2V fN(q)dq

+
λ̃0k

2 + α0

2ε

∫
Q̄

||w||2V |fN(q)− f(q)|2dq

=
1

2ε

∫
Q̄

|z|2H |fN(q)−f(q)|2dq +
λ̃0k

2 + α0

2ε
||JNw − uN ||2VN

+
λ̃0k

2 + α0

2ε

∫
Q̄

||w||2V |fN(q)− f(q)|2dq.

(5.25)

Choosing ε positive, but sufficiently small in (5.25), it follows from Assumption (v) and

the hypotheses of the theorem that

||wN − uN ||VN = ||zN ||VN → 0 as N →∞. (5.26)

Thus (5.26) together with (5.20), and Assumption (v) yield resolvent convergence and

the theorem is proved.
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We note that in the proof of Theorem (5.2) we were in fact able to establish resolvent

convergence in the VN norm. Consequently we may conclude that the semigroup

convergence in (5.19) is in the VN norm as well. Moreover, it is not difficult to establish

the following corollary to Theorem (5.2).

Corollary 5.1. Under the same hypotheses of Theorem (5.2), we have

||xN
i,j(ρ

N)− JNxi,j(ρ)||VN → 0, as N →∞,
|yNi,j(ρN)− yi,j(ρ)|Rν → 0, as N →∞,

(5.27)

for every i = 1, 2, ...,m, uniformly in j, for j = 0, 1, 2, ..., ni, where xN
i,j(ρ

N) and yNi,j(ρ
N)

are given in (5.6) and xi,j(ρ) and yi,j(ρ) are given in (4.7).

The assumption that the feasible parameter set Ξ is closed and bounded in R2p+r,

together with (5.27) in the statement of Corollary (5.1) and Theorem (2.1) then yield

the following result.

Theorem 5.3. If, in addition to Assumptions (i)-(v), we assume that the maps

ρ 7→ f(q; ρ) from Ξ to R are continuous for π(ρ) a.e. q ∈ Q̄, then each of the

approximating estimation problems admits a solution, ρN∗. Moreover, the sequence

{ρN∗} has a convergent subsequence, {ρNk∗} with ρNk∗ → ρ∗ and ρ∗ a solution to the

original estimation problem.

It is also possible to establish a consistency result for the estimator ρ∗ =

(~a∗,~b∗, ~θ∗) ∈ Ξ. We require the following additional assumptions:

(a) The measurement noise {εj,i} is i.i.d. with respect to a probability space

{Ω,Σ, P} with E[εj,i||P ] = 0 and V ar[εj,i||P ] = σ2,

(b) The feasible set of parameters Ξ is compact (i.e. closed and bounded since it is

finite dimensional) and has nonempty interior,

(c) For i = 1, 2, ..., ni = n and nτ = T for some positive integer n and some T > 0,

where τ is the sampling time defined in Section 3,

(d) That ỹi,j = yi,j({ũi,k}ni−1
k=0 , ρ0) + εj,i, for some ρ0 ∈ int{Ξ}, where for i =

1, 2, ...,m, yi,j({ũi,k}ni−1
k=0 , ρ) is given by (4.7) with uj = ũi,j, j = 0, ..., ni, i = 1, 2, ...,m,

and (4.9), and

(e) For each i = 1, 2, ...,m, ρ0 ∈ Ξ is the unique minimizer of Ji,0 in Xi where

Ji,0(ρ) = σ2 +

∫ T

0

(y(t; ũi, ρ0)− y(t; ũi, ρ))2dt, (5.28)

and y(t; ũi, ρ) is given by (4.4) -(4.6)with u = ũi.

Then a straight forward application of Theorem 4.2 in [7] can then be used to

establish the following lemma and theorem (see [32]).

Lemma 5.1. If in addition to Assumptions (i)-(iv) and (a) (e) above we assume that

the maps ρ 7→ f(q; ρ) from Ξ to R are continuous for π(ρ) a.e. q ∈ Q̄, then there exists

an event A ∈ Σ with P (A) = 1 such that for all ω ∈ A and J as given in (5.1) we have

1

m

n∑
i=1

{ 1

n
Ji(ρ)− Ji,0(ρ)} → 0,
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as n,m → ∞ and τ → 0, with nτ = T , uniformly in ρ for ρ ∈ Ξ, where Ji is given by

(5.1) and Ji,0 by (5.28).

Theorem 5.4. (Consistency of the estimator ρ∗) Let ρ∗ ∈ Ξ be as defined in (5.1) in

Section 5.1. Then under the assumptions of Lemma (5.1)the estimator ρ∗ = (~a∗,~b∗, ~θ∗) ∈
Ξ is consistent for ρ0. That is ρ∗ rightarrowρ0 in probability with repsect to the

probability measure P , as m,n→∞, and τ → 0 with nτ = T .

6. Examples and Numerical Results

6.1. The Adjoint Method

The approximating optimization problems are solved numerically by using an iterative

gradient-based scheme. Once a basis for the space N is chosen, matrix forms of the

operators ÂN , B̂N , and ĈN can be computed. The gradient of JN(ρ), with respect

to the 2p + r parameters in ρ can be computed accurately (in fact exactly with the

exception of finite precision arithmetic round-off) and efficiently (which is especially

important if the dimension of the approximating system (5.6) and/or the number of

parameters is large) using the adjoint method (see [23]). For each i = 1, ...,m, set

vNi,j = 2[ĈN ]T (ĈNxN
i,j − ỹi,j) ∈ RK

N
, j = 0, ..., ni where KN is the number of basis

elements for UN . Then for each i = 1, ...,m, the adjoint systems are defined to be

zNi,j−1 = [ÂN ]T zNi,j + vNi,j−1, zi,ni = vNi,ni , j = ni, ni − 1, ..., 2, 1. (6.1)

The gradient of JN at ρ = (~a,~b, ~θ) can then be computed from

~∇JN(ρ) =
m∑
i=1

ni∑
j=1

[zNi,j]
T

(
∂ÂN

∂ρ
xN
i,j−1

− (AN)−1

(
∂AN

∂ρ
(AN)−1(ÂN − I)BN ũi,j−1

− ∂ÂN

∂ρ
BN ũi,j−1 − (ÂN − I)

∂BN

∂ρ
ũi,j−1

))
+

m∑
i=1

ni∑
j=0

(
yNj − ỹi,j

)T ∂ĈN

∂ρ
xN
i,j.

(6.2)

Using (6.1) and (6.2) to compute the gradient requires the calculation of the tensor ∂ÂN

∂ρ
.

This can be done using the sensitivity equations. For t ≥ 0 set ΦN(t) = eA
N (t) from

which differentiation yields

Φ̇N(t) = ANΦN(t), ΦN(0) = I. (6.3)

Then, setting ΨN(t) = ∂ΦN (t)
∂ρ

, differentiating (6.3) with respect to ρ, and interchanging

the order of differentiation, we obtain

Ψ̇N(t) = ANΨN(t) +
∂AN

∂ρ
ΦN(t), ΨN(0) = 0. (6.4)
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Combining (6.3) and (6.4), and solving the resulting system, we obtain[
ΨN(t)

ΦN(t)

]
= exp

([
AN ∂AN/∂ρ

0 AN

]
τ

)[
0

I

]
(6.5)

Setting t = τ in (6.5), we obtain that ∂ÂN

∂ρ
= ΨN(τ).

To illustrate our approach, we consider the case of a one dimensional heat/diffusion

equation on the interval [0, 1] with random (thermal) diffusivity and two different sets

of boundary conditions. Consider the partial differential equation, boundary conditions

and output operator given by

∂x

∂t
(t, η) = q1

∂2x

∂η2
(t, η), 0 < η < 1, t > 0, (6.6)

ΓDx(t, ·) = x(t, 0) = 0, t > 0, (6.7)

ΓRx(t, ·) = q1
∂x

∂η
(t, 0)− x(t, 0) = 0, t > 0, (6.8)

Γ1x(t, ·) =
q1

q2

∂x

∂η
(t, 1) = u(t) t > 0, (6.9)

x(0, η) = 0, 0 < η < 1, (6.10)

y(t) = x(t, η0), t > 0, (6.11)

where 0 < η0 < 1. In the examples below, we consider the parameterized family of

probability density functions defined as follows.

Definition 6.1. Let ϕ(q; θ), q ∈ Rn be a member in an exponential family [12], and let

Φ denote its cumulative distribution function. Let θ represent a vector of parameters,

and let D ⊂ Rn be a bounded region to which ϕ will be restricted. Then define

ΦD(θ) =
∫
D
ϕ(q; θ)dq. Then the family of pdfs, f(·, ρ) given by

f(q; ρ) =
ϕ(q; θ)χD(q)

ΦD(θ)
=

1

ΦD(θ)
h(q)c(θ)exp

(
k∑
i=1

wi(θ)ti(q)

)
χD(q)

where the parameters ρ include the parameters θ and parameters ~a and ~b to describe

the domain D, is called a truncated exponential family.

It is clear that this family of densities satisfies Assumption (iv) and the hypotheses

of Theorem (5.1).

All of the numerical results presented here use simulation data. Our studies

involving actual experimental/clinical data are discussed elsewhere (see [32]). The

simulated data was generated by first sampling the target distribution to obtain 100

samples q of q. A spline based Galerkin approximation to the system (6.6) -(6.11)

using a 128 equally spaced point grid on [0, 1] was then solved using each q-sample. The

resulting 100 output signals were then averaged at each time point. The approximating

estimation problems were all solved on either MAC or PC laptops using the Matlab
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optimization toolbox routine FMINCON for constrained optimization. Gradients were

computed using either FMINCON built-in finite differencing or the adjoint method,

(6.1)-(6.5). Which method was used had only a negligible effect on the results. The

input signal used was u(t) = |cos(t)|χ[0,2](t), t ∈ [0, 20], and the sampling interval was

τ = 0.1. In all of our examples below, the admissible parameter space Q is assumed to

be either in R+ in the case of the uni-variate examples, or in the fist quadrant of the

plane R2 in the bivariate examples. Consequently when the approximating optimization

problems were solved, the lower bounds for the supports of the random parameters, a

and c, were constrained to be strictly positive. This is based on the requirements of

the physical model (6.6)-(6.11) and the assumption that properties (i)-(iii) in Section 3

hold.

6.2. Examples 6.1,6.2 and 6.3; One Random Parameter; Truncated Uniform,

Exponential and Normal Distributions

In this series of examples we consider the system (6.6),(6.7),(6.9)-(6.11) with q1 random

and q2 = 1. In this case we have q = q1 ∈ Q = [a, b], W = {ϕ ∈ H2(0, 1),ΓDϕ = 0},
H = H1

L(0, 1) = {ϕ ∈ H1(0, 1),ΓDϕ = 0}, Dom(A(q)) = {ϕ ∈ V : Γ1ϕ = 0}, and

Γ(q) = Γ1. It follows that

a(q;ϕ, ψ) = q

∫ 1

0

ϕ′(η)ψ′(η)dη, ϕ, ψ ∈ V,

and 〈b(q), ψ〉V ∗,V = 〈b, ψ〉V ∗,V = ψ(1) = δ(· − 1), ψ ∈ V , and 〈c(q), ψ〉V ∗,V =

〈c, ψ〉V ∗,V = ψ(1/3), ψ ∈ V , where in this case η0 = 1/3. Standard arguments [3, 5]

show that Assumptions (i)-(iii) are satisfied.

To carry out the finite dimensional discretization, we let n,m be positive integers

and set N = (n,m). In this case we have either D = [a, b] (uniform and normal) or

D = [0, R] (exponential). In what follows we describe the q or Q discretization for the

uniform and normal cases; the exponential is similar. The basis for the approximating

subspaces UN were taken to be tensor products of the standard linear spline basis

elements ϕni corresponding to the uniform mesh {0, 1
n
, 2
n
, ..., n−1

n
, 1} on [0, 1], and the

characteristic function basis χmj for the interval [a, b]. The jth element corresponds to

the jth sub-interval [a+(j−1) b−a
m

), a+j b−a
m

), j = 1, 2, ...,m. In this way UN = span{ξNi,j},
i = 1, 2, ..., n, j = 1, 2, ...,m where ξNi,j(η, q) = ϕni (η)χmj (q), η ∈ [0, 1], q ∈ [a, b]

with dim(UN) = nm. Using standard estimates [29] it is not difficult to show that

Assumption (v) holds.

Re-numbering ξNi,j’s so that ξNi,j = ξNk where k = (i − 1)n + j and letting

ΨN
k = [ψNi ]nmi=1 ∈ Rnm, the matrix representation for the operators AN are given by

[AN ] = −(MN)−1KN with

MN
r,s = MN

r,s(a, b, θ) =
〈
ξNr , ξ

N
s

〉
H

=

∫ b

a

∫ 1

0

ξNr ξ
N
s f(q; a, b, θ)dηdq =

∫ b

a

χmj χ
m
l f(q; a, b, θ)dq

∫ 1

0

ϕni ϕ
n
kdη,
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KN
r,s = KN

r,s(a, b, θ) = a(q; ξNr , ξ
N
s ) =

∫ b

a

q

∫ 1

0

∂ξNr
∂η

∂ηNs
∂η

f(q; a, b, θ)dηdq

=

∫ b

a

qχmj χ
m
l f(q; a, b, θ)dq

∫ 1

0

ϕn′i ϕ
n′
k dη,

where r = (j − 1)n+ i, s = (l − 1)n+ k, i, k = 1, 2, ..., n, j, l = 1, 2, ...,m.

We also have

BN
r = BN

r (a, b, θ) =

∫ b

a

ξNr (1, q)f(q; a, b, θ)dq = ϕni (1)

∫ b

a

χmj f(q; a, b, θ)dq,

CN
s (a, b, θ) =

∫ b

a

ξNs (1/3, q)f(q; a, b, θ)dq − ϕnk(1/3)

∫ b

a

χml (q)f(q; a, b, θ)dq,

r, s = 1, 2, ..., nm, r = (j − 1)n+ i, s = (l − 1)n+ k, i, k = 1, 2, ..., n, j, l = 1, 2, ...,m.

With the density f = f0(·; ρ) = f0(·; (a, b, θ)) as given in Definition (6.1) above, if

we define

f1(α, β; ρ) =

∫ β

α

f(q; ρ)dq and f2(α, β; ρ) =

∫ β

α

qf(q; ρ)dq,

it is a straightforward, albeit somewhat tedious, exercise to compute the partial

derivatives ∂fi
∂α

, ∂fi
∂β

, ∂fi
∂θ

, ∂fi
∂a

, ∂fi
∂b

, i = 0, 1, 2. These partial derivatives show up in

the matrices that appear in the adjoint equations (6.1)-(6.5). We tested our scheme on

truncated uniform (ρ = (a, b)), exponential (ρ = (R, θ)) and normal (ρ = (a, b, µ, σ))

distributions. Our results are shown in Table (6.1) and Figure (6.1) below. In panels

(a) - (c) of Figure (6.1), we have plotted the converged estimated population models

together with the data and the 75% credible band for the truncated uniform, exponential

and normal densities. The credible bands can be obtained directly from the solution to

the population model. Indeed, q is sampled using the estimated distribution and then

C(q)xN
j (·,q) is evaluated at the sample q’s where xN

j is given by (5.6). Now the q

dependence of the solution to the population model is only valid π almost everywhere and

our convergence framework is an L2 (in q) theory. Consequently, pointwise evaluation

is, strictly speaking, undefined. However, the results appear to be useful so we have

included them. We are currently working on an extension of the results presented here

that involves introducing parabolic regularization in q. This will potentially allow us to

justify pointwise evaluation in q of the population model to obtain credible band. It is

interesting to note that the credible band for the exponential distribution is quite wide,

almost to the point of making the population model not that useful. This is because the

exponential distribution, especially one with a mean and variance of µ = 1/θ = 3, has a

rather ”fat” tail. Panels (d) and (f) of Figure (6.1) show the converging estimated pdfs

for the truncated exponential and normal distributions, respectively. Panel (e) shows

how the output of the population model compares to the data when the resolution of

the finite element discretizations of q and η and the truncation point of the densities
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are varied. It appears from the figure that it is the q discretization that determines the

rate of convergence, while a rather coarse η discretization seems to suffice. We believe

that this explains the slow convergence of θ (the exponential parameter) and σ (the

standard deviation of the normal) observed in Table (6.1) and panel (f) of Figure (6.1).

The truncation of the density appears to have only a negligible effect. We are currently

investigating whether using smoother first order splines for the q elements produces

improved estimates and more rapid convergence.

N Uniform Exponential Normal

n m a∗ b∗ θ∗ R∗ a∗ b∗ µ∗ σ∗

4 4 1.76 4.27 2e-5 3.61 2.61 5.44 4.05 0.62

8 8 1.91 4.05 4e-5 3.81 2.29 5.42 4.01 0.40

16 16 1.94 4.00 0.20 4.34 2.17 5.42 4.01 0.37

32 32 1.95 3.99 0.30 5.95 2.15 5.42 4.00 0.35

64 64 1.96 3.99 0.30 11.08 2.14 5.42 4.00 0.35

True Values 2 4 1/3 — — — 4 0.25

Table 6.1: Convergence results for Examples 6.1, 6.2 and 6.3; estimation of the

parameters in truncated uniform, exponential and normal distributions.

Figure 6.1: Top row, starting from the left: Data, converged estimated population

model and 75% credible band for (a) Example 6.1 Truncated uniform distribution; (b)

Example 6.2 Truncated exponential distribution; (c) Example 6.3 Truncated normal

distribution. Bottom row, starting from the left: (d) Example 6.2 Converged pdfs for

truncated exponential distribution; (e) Example 6.2 Data and Estimated population

model for various values of R, n and m; (f) Example 6.3 Converged pdfs for truncated

normal distribution.
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6.3. Example 6.4; Two Random Parameters; Truncated Bi-variate Normal Distribution

In this example we consider the system (6.5)-(6.11), but instead of the Dirichlet

boundary condition (6.2) at η = 0, we take the Robin boundary condition (6.3) at

η = 0. In this case, q = [q1, q2] is the vector of random parameters with q ∈ D =

Q = [a, b] × [c, d], H = L2(0, 1), V = H1(0, 1), W = H2(0, 1), and Dom(A(q)) = {ϕ ∈
H2(0, 1) : ΓRϕ = 0,Γ1ϕ = 0} and Γ(q) = Γ1. The sesquilinear form on V ×V is given by

a(q;ϕ, ψ) = q1

∫ 1

0
ϕ′ψ′dη + ϕ(0)ψ(0) with < b(q), ψ >V ∗,V = q2ψ(1) = q2δ(· − 1), ψ ∈ V ,

and < c(q), ψ >V ∗,V =< c, ψ >V ∗,V = ψ(0), ψ ∈ V where we have set η0 = 0. In this

case N = (n,m1,m2), where n is again the level of discretization of the space variable

η and mi is the level of discretization of qi, i = 1, 2. Once again the approximating

subspaces were constructed using tensor products, UN = span{ξNi,j,k}, i = 0, 1, 2, ..., n,

j = 1, 2, ...,m1, k = 1, 2, ...,m2 where ξNi,j,k(η, q1, q2) = ϕni (η)χm1
j (q1)χm2

k (q2), η ∈ [0, 1],

q1 ∈ [a, b], q2 ∈ [c, d] with dim(UN) = (n+ 1)m1m2.
In this example the truncated exponential family was based on the bivariate normal.

Once again, it is possible to compute all the partial derivatives (although of course their
evaluation requires the numerical evaluation of single and double integrals) that are
required to form the matrices that appear in the state and adjoint equations (6.1)-(6.5).
We obtained simulated data by generating samples for q from a N(µ̄, Σ̄) distribution

with µ̄ =

[
12

10

]
and Σ̄ =

[
9 3

3 5

]
.

n m1 m2 a∗ b∗ c∗ d∗ µ∗ σ∗

4 8 8 5.88 18.15 4.85 14.63

[
11.72

9.88

] [
12.13 5.76

5.76 7.35

]

8 8 8 5.67 18.35 5.17 14.46

[
11.68

9.87

] [
10.15 4.04

4.04 5.97

]

16 8 8 5.79 18.17 5.06 14.66

[
11.67

9.86

] [
9.29 3.03

3.03 5.21

]

Table 6.2: Convergence results for Example 6.4; estimation of the parameters in

truncated bivariate normal distribution.

Our results are shown in Table (6.2) and Figure (6.2), where it can be seen that

we obtained reasonably good approximations to the actual parameters that we used to

simulate the data. We parameterized the covariance matrix as Σ = LTL, where the

2 × 2 matrix L is upper triangular with L11 and L22 both positive so as to guarantee

that at each step in the optimization, Σ is positive definite symmetric. The plot of the

optimal joint density in the left hand panel of Figure (6.2) correspond to n = 16 and

m1 = m2 = 8. In the right hand panel of Figure (6.2) we have plotted the output of the

fit population model and the 75% credible band. Once again, we believe that the rate of

convergence could be improved by using linear splines rather than piece-wise constant

elements to discretize the random parameters q.
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Figure 6.2: Left hand panel: Example 6.4 Estimated bivariate normal joint density with

n = 16 and m1 = m2 = 8; Right hand panel: Example 6.4 Data, estimated population

model and 75% credible band for truncated bivariate normal distribution.

7. Concluding Remarks

We are currently working on a number of applications and extensions of the results

presented here. Specifically, we are looking at applying our approach to actual

experimental and clinical BrAC and TAC data collected in both the lab/clinic and

the field using two different transdermal alcohol biosensors from a number of different

individuals that include several drinking episodes occurring over a time period of several

days. We are developing deconvolution schemes based on population models fit using

the approach discussed here that, given an output signal, will provide a population

based estimate for the input together with credible bands obtained directly from the

deconvolved input signal and not requiring simulation. We are also looking at extensions

of the ideas presented here to the solution of the LQR and LQG compensator problems

wherein the infinite dimensional linear regularly dissipative dynamics and quadratic

performance index involve random parameters.

In our treatment here, we assumed that the probability measures describing the

distribution of the random parameters were defined in terms of parameterized families

of joint density functions. We are looking at developing numerical schemes and an

associated convergence theory for estimating the shape of the density directly. We also

hope to be able to apply the convergence theory based on the Prohorov metric on a

space of measures developed in [7] more directly to the class of problems that we have

discussed here. More precisely, we would like to be able to eliminate the assumption

that the measures are defined in terms of a density, and estimate the measure directly.

We believe that such a theory may be possible by assuming that our approximating

subspaces are required to satisfy additional regularity (i.e. smoothness) assumptions; in

particular that they are required to be contained in the domain of the operator. Then by

making use of a slightly different version of the Trotter-Kato semigroup approximation

theorem (see, for example, [1]) we believe it may now be possible to verify the hypotheses

of the more general convergence theorem established in [7] for the estimation of the

probability measures directly, rather than by estimating an associated density.
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