257,801 research outputs found

    Diogene-CT: tools and methodologies for teaching and learning coding

    Get PDF
    AbstractComputational thinking is the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. It is nowadays considered a fundamental skill for students and citizens, that has the potential to affect future generations. At the roots of computational-thinking abilities stands the knowledge of computer programming, i.e. coding. With the goal of fostering computational thinking in young students, we address the challenging and open problem of using methods, tools and techniques to support teaching and learning of computer-programming skills in school curricula of the secondary grade and university courses. This problem is made complex by several factors. In fact, coding requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we introduce a new paradigm called ACME ("Code Animation by Evolved Metaphors") that stands at the foundation of the Diogene-CT code visualization environment and methodology. We develop consistent visual metaphors for both procedural and object-oriented programming. Based on the metaphors, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of the Computing Education Research (CER). It might be considered as a new kind of tools named as code visualization environments

    Diogene-CT: tools and methodologies for teaching and learning coding

    Get PDF
    Computational thinking is the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. It is nowadays considered a fundamental skill for students and citizens, that has the potential to affect future generations. At the roots of computational-thinking abilities stands the knowledge of computer programming, i.e. coding. With the goal of fostering computational thinking in young students, we address the challenging and open problem of using methods, tools and techniques to support teaching and learning of computer-programming skills in school curricula of the secondary grade and university courses. This problem is made complex by several factors. In fact, coding requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we introduce a new paradigm called ACME (“Code Animation by Evolved Metaphors”) that stands at the foundation of the Diogene-CT code visualization environment and methodology. We develop consistent visual metaphors for both procedural and object-oriented programming. Based on the metaphors, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of the Computing Education Research (CER). It might be considered as a new kind of tools named as code visualization environments

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering

    The Community College of Philadelphia: Educating Teachers for a Changing World

    Get PDF

    Computing as the 4th “R”: a general education approach to computing education

    Get PDF
    Computing and computation are increasingly pervading our lives, careers, and societies - a change driving interest in computing education at the secondary level. But what should define a "general education" computing course at this level? That is, what would you want every person to know, assuming they never take another computing course? We identify possible outcomes for such a course through the experience of designing and implementing a general education university course utilizing best-practice pedagogies. Though we nominally taught programming, the design of the course led students to report gaining core, transferable skills and the confidence to employ them in their future. We discuss how various aspects of the course likely contributed to these gains. Finally, we encourage the community to embrace the challenge of teaching general education computing in contrast to and in conjunction with existing curricula designed primarily to interest students in the field

    Integrating Technology With Student-Centered Learning

    Get PDF
    Reviews research on technology's role in personalizing learning, its integration into curriculum-based and school- or district-wide initiatives, and the potential of emerging digital technologies to expand student-centered learning. Outlines implications

    Technology Solutions for Developmental Math: An Overview of Current and Emerging Practices

    Get PDF
    Reviews current practices in and strategies for incorporating innovative technology into the teaching of remedial math at the college level. Outlines challenges, emerging trends, and ways to combine technology with new concepts of instructional strategy
    • …
    corecore