11,042 research outputs found

    Specifying and Placing Chains of Virtual Network Functions

    Full text link
    Network appliances perform different functions on network flows and constitute an important part of an operator's network. Normally, a set of chained network functions process network flows. Following the trend of virtualization of networks, virtualization of the network functions has also become a topic of interest. We define a model for formalizing the chaining of network functions using a context-free language. We process deployment requests and construct virtual network function graphs that can be mapped to the network. We describe the mapping as a Mixed Integer Quadratically Constrained Program (MIQCP) for finding the placement of the network functions and chaining them together considering the limited network resources and requirements of the functions. We have performed a Pareto set analysis to investigate the possible trade-offs between different optimization objectives

    Service Chain (SC) Mapping with Multiple SC Instances in a Wide Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is usually referred as SC mapping. In a Wide Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC, one single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with SC mapping with multiple SC instances to minimize network resource consumption. Exact mathematical modeling of this problem results in a quadratic formulation. We propose a two-phase column-generation-based model and solution in order to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to solution very close to the minimum bandwidth consumption

    Application of semantic web technologies for automatic multimedia annotation

    Get PDF

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is called SC mapping. In a Wide-Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC; then, a single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with the problem of SC mapping with multiple SC instances to minimize network resource consumption. We first propose an Integer Linear Program (ILP) to solve this problem. Since ILP does not scale to large networks, we develop a column-generation-based ILP (CG-ILP) model. However, we find that exact mathematical modeling of the problem results in quadratic constraints in our CG-ILP. The quadratic constraints are made linear but even the scalability of CG-ILP is limited. Hence, we also propose a two-phase column-generation-based approach to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to a solution very close to the minimum bandwidth consumption. Further, this approach also helps us to analyze the effects of number of VNF replicas and number of NFV nodes on bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671

    Virtual-Mobile-Core Placement for Metro Network

    Full text link
    Traditional highly-centralized mobile core networks (e.g., Evolved Packet Core (EPC)) need to be constantly upgraded both in their network functions and backhaul links, to meet increasing traffic demands. Network Function Virtualization (NFV) is being investigated as a potential cost-effective solution for this upgrade. A virtual mobile core (here, virtual EPC, vEPC) provides deployment flexibility and scalability while reducing costs, network-resource consumption and application delay. Moreover, a distributed deployment of vEPC is essential for emerging paradigms like Multi-Access Edge Computing (MEC). In this work, we show that significant reduction in networkresource consumption can be achieved as a result of optimal placement of vEPC functions in metro area. Further, we show that not all vEPC functions need to be distributed. In our study, for the first time, we account for vEPC interactions in both data and control planes (Non-Access Stratum (NAS) signaling procedure Service Chains (SCs) with application latency requirements) using a detailed mathematical model
    corecore