
biblio.ugent.be

The UGent Ins+tu+onal Repository is the electronic archiving and dissemina+on pla:orm for all
UGent research publica+ons. Ghent University has implemented a mandate s+pula+ng that all
academic publica+ons of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restric+ons apply, these papers are available in Open
Access.

This item is the archived peer-‐reviewed author-‐version of:

Applica+on of Seman+c Web Technologies for Automa+c Mul+media Annota+on

Ruben Verborgh, Davy Van Deursen, Erik Mannens, Chris Poppe, and Rik Van de Walle

In: Proceedings of the FTRA 2010 Interna+onal Workshop on Advanced Future Mul+media
Services (AFMS-‐2010).

To refer to or to cite this work, please use the cita7on to the published version:

Ruben Verborgh, Davy Van Deursen, Erik Mannens, Chris Poppe, and Rik Van de Walle
(2010). Applica7on of Seman7c Web Technologies for Automa7c Mul7media Annota7on.
Proceedings of the FTRA 2010 Interna8onal Workshop on Advanced Future Mul8media
Services (AFMS-‐2010)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55773140?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Application of Semantic Web Technologies
for Automatic Multimedia Annotation

Ruben Verborgh, Davy Van Deursen, Erik Mannens, Chris Poppe, and Rik Van de Walle

Ghent University – IBBT, ELIS – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

{ruben.verborgh,davy.vandeursen,erik.mannens,rik.vandewalle}@ugent.be

http://multimedialab.elis.ugent.be/

Abstract

The generation of metadata, facilitating the retrieval of
multimedia items, requires a large amount of manual
work. Several processing algorithms that automate parts
of this task exist, but they lack a global vision on the
object under annotation. In this paper, we investigate
how we can apply Semantic Web knowledge to integrate
and enhance current processing algorithms in order to
answer more advanced metadata queries. We propose
a generic problem-solving platform that uses Web ser-
vices and various knowledge sources to find solutions
to complex requests. The platform employs a reasoner-
based composition algorithm, generating an execution
plan that combines several algorithms as services. It then
supervises the execution of this plan, intervening in case
of errors or unexpected behavior. We illustrate our ap-
proach by a use case in which we annotate the names of
people depicted in a photograph.

Keywords: annotation, metadata generation, Seman-
tic Web, service composition, Web services

1 Introduction

1.1 Background

The ever increasing multimedia production rate on the
Internet cannot be harnessed unless we have an effi-
cient means of retrieving relevant information. There are
many algorithms for searching textual data; searching
data types such as image and video however, is more dif-
ficult. Metadata annotations [25] facilitate retrieval by
describing each item. Unfortunately, metadata genera-
tion is a tedious task that involves a significant amount
of manual work and knowledge about the annotation
domain. For example, a person annotating press pho-
tographs needs to recognize depicted people and situa-
tions. Algorithms for detecting and recognizing human
faces exist, but they are prone to errors and lack an un-
derstanding of the photograph in its entirety. Further-
more, none of them are designed to handle composite
problems; instead, they are specialized for a specific task.

On the one hand, we can consider these algorithms
as services on the World Wide Web. In fact, the Web
has evolved from a static document-oriented information
source to a dynamic service-oriented platform providing

loosely coupled applications [10]. The main focus of Web
services is to achieve interoperability between heteroge-
neous, decentralized, and distributed applications. Fur-
thermore, there is a growing need for composing Web
services into more complex services due to increasing
user demands and inability of single Web services to
achieve a user’s goal by itself.

On the other hand, there is the Semantic Web [6]
which contains a vast amount of information about di-
verse domains in extensive knowledge bases such as
DBpedia [1] and Freebase [3]. This formalized knowledge
enables advanced reasoning about multimedia item con-
tents, if we connect it to feature extraction algorithms.

1.2 Goal

This paper describes how to apply Semantic Web knowl-
edge and technologies to multimedia annotation. We
present a generic semantic problem-solving platform,
which combines Web services to achieve a specific task
and uses the Semantic Web as knowledge source. The
platform is responsible for composing an execution plan
that answers a certain request using services. Further-
more, it supervises the execution of this plan, handling
the information collection and the interaction between
services. When errors occur, it is able to find alternative
paths that lead towards an equivalent solution.

1.3 Use case

During this paper, we will demonstrate the introduced
concepts by means of an image annotation use case. Take
the case of a publisher of a current affairs magazine who
has a digital photo archive which needs to be annotated.
Apart from the image bitmap data, no additional infor-
mation is available. As a first step, we would like to
identify the people on the photographs, which – given
the context of the magazine – will mostly be celebrities.
We dispose of the following algorithms (among others):

– a face detection algorithm;
– a face recognition algorithm.

Furthermore, we have access to the following knowledge:

– image, region, and face ontologies and rules;
– Semantic Web knowledge, particularly about

celebrities, through DBpedia.

In the next section, we will introduce the platform.

http://multimedialab.elis.ugent.be/

2

2 Architecture

Collaborator 3
semantic
capability

description

Collaborator 2
semantic
capability

description

Service 1
semantic

description

output

Supervisor

request

Blackboard

request
description

gathered
informationComposer

Semantic
Web

knowledge

Fig. 1: Blackboard-based architecture of the platform

The architecture of the problem-solving platform, de-
picted in Fig. 1, implements the blackboard architectural
pattern [8] widely used in artificial intelligence applica-
tions. It consists of the following components:

– a blackboard that contains the currently requested
and the gathered information;

– a collection of services, accompanied by a descrip-
tion, that perform a variety of specific tasks;

– a supervisor, which invokes the services that con-
tribute to the solution of the request.

The supervisor accepts a SPARQL [21] query and the
blackboard uses RDF [16] to store supplied and gath-
ered information while retaining all semantics. In our
use case, the following query could start the process on
the image Loft.jpg:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT { <Loft.jpg> foaf:depicts ?person. }
WHERE {
<Loft.jpg> a foaf:Image;

foaf:depicts ?person.
}

Listing 1: SPARQL request for image annotation

The supervisor does not naively try different services,
but follows an execution plan created by a service com-
poser. Both are assisted by formally described knowledge
to relate the services to the request and each other. Note
that such knowledge can either be application-specific
or knowledge available in the Semantic Web, as detailed
in Section 6.
An iterative process progresses towards a solution:

1. the supervisor invokes a service with the current
blackboard contents;

2. the service produces a result and sends this to the
blackboard;

3. the supervisor supplements the blackboard with de-
rived knowledge, inferred from available knowledge.

For our use case, the supervisor could invoke a face
detection algorithm on the image Loft.jpg. The algo-
rithm would then return the coordinates of the detected
regions, upon which the supervisor could infer that none
of these regions overlap.

PREFIX sr:
<http://ninsuna.elis.ugent.be/ontologies/

arseco/sparqlrequest#>
PREFIX imreg:
<http://www.w3.org/2004/02/image-regions>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT { <img.jpg> foaf:depicts ?person }
WHERE {
[a sr:Request;
sr:input [sr:bindsParameter "region";

sr:boundTo <img.jpg#xywh=5,7,42,43>];
sr:output [sr:bindsParameter "person";

sr:boundTo ?person]]
}

Listing 2: Face recognition SPARQL query

3 Services

Our platform requires a flexible interaction model for
services, as a great variety of different services needs to
be plugged in. It is of utmost importance that the seman-
tics of the concepts of the blackboard are preserved when
communicating with a service. Furthermore, we need a
formal description of the capabilities and requirements
of each service.

We access multimedia algorithms by invoking them
as SPARQL endpoints. Benefits include interoperabil-
ity, flexibility in terms of inputs and outputs, and for-
mal communication with well-defined semantics. For our
platform, it is specifically interesting that input can be
sent in RDF as part of the WHERE clause of the query, and
output can be retrieved as RDF by using a CONSTRUCT

query. An example of a face recognition service query is
shown in Listing 2.

The algorithms can be described formally as Web ser-
vices in OWL-S [18], complemented with formal input
and output relationships described in an expression lan-
guage. These descriptions should not only cover input
and output types, but should also determine the effect
of the former on the latter. The description of the use
case’s face recognition service with inputs, outputs, pre-
conditions, and postconditions is shown in Listing 3.

4 Composition

4.1 Formal definitions

When discussing the composer, it is convenient to dis-
pose of a formal definition of a service composition.
Firstly, we specify sets that appear in the definitions.

– The set of parameter names Π which is the
union of all possible input and output parameter
names of services. (e.g., image, language)

– The set of parameter values Ω which is the union
of all possible input and output values of services.
(e.g., <file.jpg>, "en-US")

– The set of variable references Ψ , containing
composer generated identifiers, used as placeholders
for unknowns. (e.g., ?image1, ?language7)

3

@prefix : <http://example.org/facerecognition#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix Process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>.
@prefix Expression: <http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#>.
@prefix N3Expression: <http://ninsuna.elis.ugent.be/ontologies/arseco/n3expression#>.

:FaceRecognitionProcess a Process:AtomicProcess;
Process:hasInput :Region;
Process:hasOutput :Face, :Person;
Process:hasPrecondition :RegionContainsFaceCondition;
Process:hasResult [a Process:Result; Process:hasEffect :DepictionEffect].

:Region a Process:Input; 1
Process:parameterType "http://www.w3.org/2004/02/image-regions#Region"ˆˆxsd:anyURI.

:Face a Process:Output; 2
Process:parameterType "http://example.org/ontologies/Face.owl#Face"ˆˆxsd:anyURI.

:Person a Process:Output; 3
Process:parameterType "http://xmlns.com/foaf/0.1/Person"ˆˆxsd:anyURI.

:RegionContainsFaceCondition a N3Expression:N3-Expression; 4
Expression:expressionBody

"""@prefix imreg: <http://www.w3.org/2004/02/image-regions#>.
@prefix face: <http://example.org/ontologies/Face.owl#Face>.
?region imreg:regionDepicts [a face:Face].""".

:PersonDepictionEffect a N3Expression:N3-Expression; 5
Expression:expressionBody

"""@prefix imreg: <http://www.w3.org/2004/02/image-regions#>.
@prefix face: <http://example.org/ontologies/Face.owl#Face>.
?region imreg:regionDepicts ?face.
?face face:isFaceOf ?person.""".

Listing 3: Input and output conditions of the face recognition service in OWL-S

Definition 1. A parameter mapping β is a function
β:Π → Ω ∪ Ψ which assigns parameter names to either
a value or a variable reference. The set of all parame-
ter mappings is B. An element (p, v) of B is written as
p 7→ v and called a parameter assignment of p to v.

Definition 2. A service invocation I is a triple
(S, βin, βout), written as βin ⇐ \ S βout, that represents
an execution of a service S with input mappings βin and
output mappings βout. The domains of βin and βout are
the service input and output parameter names, respec-
tively. The parameter value for each parameter name
must be an element of the corresponding service param-
eter domain. The set of all invocations is Φ.

Definition 3. An invocation execution I is a pro-
cess step that executes the service S of an invocation
(S, βin, βout), passing the actual values of the parame-
ters in accordance with βin. The output values returned
by the service are stored in accordance with βout.

Definition 4. A service composition C is a directed,
labeled, acyclic multigraph with

– a subset Φ∆ of the invocation set Φ as vertex set;
– a subset Ψ∆ of the variable reference set Ψ as edge

label set.

An edge with label ψ from a vertex (S1, β
1
in, β

1
out) to a

vertex (S2, β
2
in, β

2
out) is created if and only if ψ ∈ Ψ∆∩

R(β1
in) ∩ R(β2

out). That is: if an input value of the first
invocation is a variable reference produced by the second
invocation as an output value. An edge between two invo-
cations signifies a dependency of the first on the second.

In a complete composition, dependencies are satisfied
by values or other invocation outputs: ∀IS(βin, βout) ∈
Φ∆ : ∀ψ ∈ R(βin) ∩ Ψ∆ : ∃IS′(β′in, β

′
out) ∈ Φ∆ : ψ ∈

R(β′out). This means that there exists at least one invo-
cation execution order in which all parameter values are
known at the start of each execution. A composition is
partial if it does not satisfy this requirement.

Example 1. Consider the following complete composi-
tion C0 of calculus service invocations, which computes
the value of the calculation (1 + 2)(1+2)·(−1+3).
Ia := {sum 7→ ?s} ⇐\ Add {termA 7→ 1, termB 7→ 2}
Ib := {sum 7→ ?t} ⇐\ Add {termA 7→ -1, termB 7→ 3}
Ic := {product 7→ ?p} ⇐\ Multiply {factorA 7→ ?s,

factorB 7→ ?t}
Id := {result 7→ ?r} ⇐\ Exp {base 7→ ?s, exp 7→ ?p}

Ia

Ib

Ic Id

?s

?s

?t
?p

One possible execution of all invocations of C0 is:

1. Ia: execute Add, using 1 for termA and 2 for termB,
storing the value of sum (=3) as ?s;

2. Ib: execute Add, using -1 for termA and 3 for
termB, storing the value of sum (=2) as ?t;

3. Ic: execute Multiply, using ?s for factorA and ?t

for factorB, storing the value of product (=6) as ?p;
4. Ic: execute Exp, using ?s for base and ?p for exp,

storing the value of result (=729) as ?r.

4

4.2 Service matching

The first obstacle in composition creation is to determine
whether two services match. A start service Sσ matches
an end service Sε if an invocation ISσ

(βσin, β
σ
out) of Sσ

exists that enables an invocation ISε(β
ε
in, β

ε
out) of Sε.

The first invocation implies fulfillment of both the input
conditions (necessary to allow the invocation) and the
output conditions (as a result of the invocation) of Sσ.
This signifies that a match is guaranteed when the union
of the start service’s input and output conditions implies
the end service’s input conditions.

Listing 3 shows the description of a service that recog-
nizes a face in an image region. It shows the input condi-
tions, consisting of the input type declarations 1 and the
preconditions 4 . Similarly, the output conditions con-
sist of the output type declarations 2 3 and the postcon-
ditions 5 . The additional conditions 4 5 are expressed
in the Notation3 format (N3, [4]). Input and output pa-
rameters are referred to by variables in these expressions.
Here, the preconditions state that Region should depict
the face of a person; the postconditions state that the
Person’s Face is depicted in Region. These complex ex-
pressions prevent that service matchers and composers
only focus on data type matching. For example, there is
no point in passing a region of a chart to the recognition
algorithm. Therefore, semantic matching is required.

4.3 Inadequacy of point-to-point matching

Service composition comprises more than simple point-
to-point matching. Consider the following services:

1. face detection service (input: an image, output: the
list of detected image regions that contain a face);

2. face recognition service (input: a region that contains
a face, output: the depicted person’s name);

Upon seeing these, we humans know that, in order to
annotate people in an image, we need to 1) detect face
regions in the image and 2) recognize the faces in each
region. That is because we realize that the person names
returned by service 2 are connected to the image of ser-
vice 1, even though service 2 is completely unaware of
the existence of such an image. We intuitively construct
a holistic vision on the problem by combining effects of
different services on a concrete problem instance.

Composers that function by matching services point-
to-point are unable to transcend the individual service
capabilities and, as a consequence, cannot create similar
complex compositions. Although they understand the
complete functionality of the above services and are even
able to match both services, they cannot devise that this
composition recognizes faces in an image. This occurs
because they do not “remember” the semantics across
different junctions, interpreting the result of service 2 as
a person in some region, not the person in that region
of the image. This example illustrates that we require
a composer with a holistic vision on the problem, un-
derstanding that the combination of services embodies
more than a simple sum of their individual capabilities.

4.4 Reasoner-based composing process

To create a holistic composition, we employ a goal-
driven reasoner on the problem as a whole instead of
solely on the junctions. The composing process consists
of three steps:

1. each service is translated into an N3 Logic rule [5]
that simulates its functionality;

2. a reasoner determines whether the request can be
deduced from the input;

3. the compositions are reconstructed from the rules
used for deduction.

Obviously, the first action needs to execute only once.
The number of deductions found in step 2 indicates how
many possible compositions exist. The individual ac-
tions are discussed below.

Translation into rules Based on the OWL-S descrip-
tion, an N3 Logic rule is created, simulating the exe-
cution of an actual service. Instead of producing actual
content, the rule creates placeholders. The conversion
process translates input conditions into antecedents and
output conditions into consequents. Input parameters
become unbound variables; outputs parameters become
placeholder variables that will be instantiated with a
dummy value upon execution of the rule.

We complemented the rule with tracking information
necessary to reconstruct the composition later on, in-
cluding the service name and the parameters it was in-
voked with. This was achieved by adding to the conse-
quence of the rule a boundBy statement, with the out-
put mapping as subject and the service name and input
mapping as object. The parameter assignments of the
input and output mapping are formatted as a list of
mappedTo statements. The automatic translation of the
face recognition service is displayed in Listing 4.

Note that some reasoners, such as Eye [9], have an
option to display a proof of the deducted knowledge,
eliminating the need of tracking. However, such a proof
contains a lot of unnecessary details and is more difficult
to interpret than our custom tracking statements.

Reasoner deduction Now that we dispose of N3 Logic
rules for all services, we need one more rule representing
the request. Again, information to track the binding is
added, using a hasBinding statement. Listing 5 shows
the request rule representing the query of the use case.

A backward-chaining reasoner is called with the ser-
vice rules, request rule, and possibly input statements
reflecting the current state of the blackboard. We ask to
deduce all possible boundBy, hasBinding and mappedTo

statements, which are then stored for composition re-
construction. The reasoner will try to use the request
rule, as this is the only way to generate hasBinding

statements. This requires the fulfillment of the rule’s an-
tecedents, each of which can be satisfied either directly
by the inputs or by a service rule. In the latter case, the

5

@prefix : <http://example.org/facerecognition#>.
@prefix c: <http://example.org/composer#>.
@prefix imreg:
<http://www.w3.org/2004/02/image-regions#>.

@prefix face:
<http://example.org/ontologies/Face.owl#Face>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
{
?region a imreg:Region;

imreg:regionDepicts [a face:Face].
}
=>
{
?person a foaf:Person.
?face a face:Face;

face:isFaceOf ?person.
?region imreg:regionDepicts ?face.
({:Face c:mappedTo ?face.}
{:Person c:mappedTo ?person.}) c:boundBy

[a c:Invocation;
c:ofService :FaceRecognitionService;
c:withInput ({:Person c:mappedTo ?person.})].

}.

Listing 4: Automatic N3 Logic rule translation of the face
recognition service description of Listing 3

@prefix c: <http://example.org/composer#>.
@prefix var: <http://temp/variables#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
{
<Loft.jpg> a foaf:Image;

foaf:depicts ?person.
}
=>
{
_:solution c:hasBinding
({var:Person c:mappedTo ?person.}).

}.

Listing 5: N3 Logic rule translation of the use case request

fulfillment of the rule’s antecedents is necessary, again
by inputs or a rule. The output is built up recursively
using this principle.

It is important to notice that the reasoner’s knowl-
edge is not limited to the N3 rules deduced from the
service descriptions. Indeed, application-specific ontolo-
gies and rules, and knowledge available on the Semantic
Web, can also be part of the reasoner’s knowledge, re-
sulting in advanced capabilities of the rule-based com-
poser. Moreover, we should strive to create knowledge
on the highest possible level of abstraction, so that it
can be reused across many problem domains.

Composition reconstruction We then transform the
generated statements using a three-step process:

1. find all solution bindings, indicated by
hasBinding statements;

2. find all variable mappings that are unresolved,
they will lead to new invocations;

3. recursively repeat step 2 to generate the entire
composition graph.

The algorithm produces the correct result, because of
the following reasons:

– Each hasBinding statement corresponds to exactly
one possible composition. The only rule that creates
such a statement is the request rule, which can solely
be triggered if the solution bindings were successful.

– Each boundBy statement uniquely identifies the in-
vocation that executed the binding, because those
statements are created only by service rules, which
can solely be triggered if their input conditions
are satisfied.

– availableInvocations will not become empty until the
composition is finished: because the composition ex-
ists, a path that respects dependencies must exist
as well.

5 Supervision

The supervisor is a component responsible for solving a
problem using services and an execution plan composer.
Its tasks include:

1. selecting the appropriate execution plan;
2. executing this plan;
3. recovering from unanticipated output or errors;
4. displaying the solution process progress (optional);
5. formulating a response to the request.

Note that we will not consider displaying the progress
in this paper. To formulate a response to the request,
we have two options. Only the requested output could
be returned: the request parameters are bound using the
variable binding and returned, all other obtained infor-
mation is discarded. Alternatively, since often certain
intermediary results are of interest as well, the supervi-
sor could also return all the statements available on the
blackboard in addition to the response output.

In the next subsections, we elaborate on three tasks
of the supervisor: selection, execution, and recovery.

5.1 Composition selection

The supervisor firstly demands the composer to search
for complete compositions. If none were found, partial
compositions can also be considered. The compositions
are then evaluated by criteria such as the following,
which should be balanced against each other.

– Cost: the expected cost associated with the execu-
tion of the services. This cost is at least the sum of
the individual execution costs, but it can increase in
case of failure. It should be expressed as a mixture
of different quantities, such as processor time and
amount of money, as external services and employ-
ees can be involved.

– Accuracy: some services have a higher success rate
than others, usually at the expense of a higher cost.

– Performance: faster compositions should be allo-
cated to urgent tasks.

6

– Availability: some services are not always available,
which can be due to server outage or working sched-
ules if the service task involves people.

– Completeness: if the request cannot be solved en-
tirely or if the proposed solution is too expensive,
other solutions that only solve part of the problem
can be included.

5.2 Composition execution

When the supervisor receives a new request, it initializes
the blackboard and adds the input. The composer trans-
forms the blackboard and the request into in a number
of possible executions, the best of which is selected. We
have to keep track of these additional items:

– the current information kept on the blackboard;
– the variable binding, a mapping of variable identi-

fiers and values;
– the current composition, current invocation and past

invocations with results.

Since a composition consists of an invocation list, its
execution – in most basic form – comes down to the ex-
ecution of these invocations, as detailed in Algorithm 1.

Require: invocations, binding, blackboard
for all invocation ∈ invocations do

service← invocation.service
inputs ← invocation.inputMapping, replacing vari-
ables using binding
output← service.execute(inputs)
blackboard← blackboard ∪ output.statements
binding ← binding ∪ invocation.outputMapping, re-
placing variables using output

end for
return blackboard

Algorithm 1: Execution of an invocation list

The variable binding clearly plays a crucial part in the
contiguity of the execution and deserves some explana-
tion. Its concept is similar to that of a single-assignment
store [23] in programming languages, meaning that once
a variable is assigned to, its value cannot change. The
composition is in fact a declarative program whose ex-
ecution order is solely governed by data dependencies.
This declarativeness follows naturally from the fact that
a composer constructs a plan that indicates how to solve
a certain problem. In contrast, the supervisor interprets
the declarative program, determining what steps should
be performed. We can take advantage of this high level of
freedom to exploit parallel or batch execution capabili-
ties. The following definition is analogous to Definition 1
of a parameter mapping.

Definition 5. A variable binding βυ is a function
βυ:Πυ → Ωυ, which assigns variable names to a simple
value (∈ Ω ∩ Ωυ) or complex value (∈ Ωυ). The set of
all bindings is Bυ. An element (n, v) of Bv is called a
variable assignment, assigning v to n.

5.3 Failure recovery

The composer optimistically assumes correct and suc-
cessful behavior of all involved services. If we were to
withdraw this assumption, the construction of viable
compositions would be virtually impossible since every
service can be subject to failure. The supervisor there-
fore handles error recovery, a process consisting of:

1. failure detection: catching runtime errors and in-
complete service output;

2. impact determination: defining the consequences
of the failure;

3. plan adaptation: changing the plan to reach (pos-
sibly adjusted) goals in a different way.

We now examine these different steps thoroughly.

Failure detection We distinguish two kinds of failures:
errors during service execution and normal execution
with incomplete output. Since the surrounding program-
ming environment usually detects errors by an exception
mechanism, we assume that this task is trivial.

To detect incomplete or empty input, we make use of
the invocation’s output mapping. If certain parameters
of the output mapping do not appear in the output, or if
the postconditions specified in the service’s description
are not met, the output is incomplete and we should
initiate the failure recovery process.

For example, the face recognition algorithm could
block because of server downtime (error) or could fail
to recognize the face (incomplete).

Impact determination Once the point of failure
is identified, we can determine the failure impact by
searching for the invocations that – directly or indirectly
– depend on its output. At least one invocation will be
affected, since only outputs necessary for future invo-
cations are mapped. The failure repeatedly propagates
through these invocations, eventually reaching one or
several of the solution generating invocations. The af-
fected part of the composition consists of all these in-
vocations, starting at the point of failure. The affected
part in Fig. 2 spans the failed invocation and the two
rightmost invocations.

The severity of the impact indicates whether the com-
position should be adapted locally or recreated as a
whole. We designate a resumption point where normal
execution is continued. Fig. 2 shows the same failure
with different resumption points. In Fig. 2(a), this is the
second invocation from the right; in Fig. 2(b), it is the
rightmost invocation. The selection of the resumption
point is influenced by the availability of an alternative
plan and the history of attempted invocations.

For example, if face detection fails, then face recogni-
tion is also affected.

7

Plan adaptation To recover from failure, the supervi-
sor asks the composer to generate compositions for the
affected part of the plan. New compositions start with
the current state of the blackboard and end in the re-
sumption point.

Prior to the generation, the supervisor deduces as
many additional facts as possible from the blackboard
using application-specific knowledge and/or knowledge
available in the Semantic Web. The amount of avail-
able information is generally larger than that at the
time of the initial composition, since the partial exe-
cution may have yielded intermediary results. As a re-
sult, new compositions that make use of this increased
knowledge are possible. This practice can be seen as a
forward-chaining reasoning approach that, together with
the backward-chaining approach used for composition,
constitutes a hybrid mechanism. This brings the advan-
tages of forward-chaining to the execution of composi-
tions, that were created in a goal-driven way.

We only consider compositions without previously ex-
ecuted invocations – failed or successful – to avoid infi-
nite failure recovery loops and the overhead of duplicate
invocations, whose results are already known.

Fig. 2 shows two different strategies to handle the
same failure. Fig. 2(a) depicts an adaptation which tries
to correct the failure locally, substituting one service
invocation with an alternative plan. Fig. 2(b) uses an
entirely new composition instead of the old one, restart-
ing at the inputs while retaining the blackboard con-
tents. Of course, for more complex compositions, vari-
ous intermediate degrees exist. The supervisor decides
what strategy to use, based on the problem parameters,
the last failure point, and the possible history of failed
recovery attempts.

For example, in case face recognition fails, we could
try another algorithm (local) or request human assis-
tance for the entire task (global).

alternative
plan

(a) Plan adaptation with local recovery

alternative
plan

(b) Plan adaptation with global recovery

Fig. 2: Different plan adaptation strategies. Dotted lines in-
dicate the affected part.

6 Use case

The framework developed so far is a general-purpose
semantic problem-solver. The employed knowledge and
available services determine the problem domain in
which a framework instance operates. This section dis-
cusses a metadata generation use case, illustrating the
added value of Semantic Web technologies in metadata
problem solving.

We return to the image annotation use case intro-
duced in Subsection 1.3. We start by plugging in services
relevant to the problem domain. Therefore, we trans-
formed two algorithms into SPARQL endpoints and de-
scribed them using OWL-S, being:

– an implementation of the Viola-Jones face detec-
tion algorithm [29], which finds regions in an image
that contain a human face;

– an implementation of the face recognition algo-
rithm by Verstockt et al. [28], which recognizes a
face in a well-delineated region, using a training set.

We add links to relevant ontologies and rulesets de-
scribing common facts about images, people and faces.
These include both simple and complex facts relating
different concepts, such as:

– a person has exactly one face;

– a region belongs to exactly one image;

– regions can depicts faces;

– the depiction of a face of a person implies the depic-
tion of that person;

– . . .

For this use case, we direct our attention to the pho-
tograph Loft.jpg, shown in Fig. 3. It is a still of the
movie Loft, depicting the four main actors. Automated
face recognition is hampered by lens blur (person 1),
occlusion with the actor’s hand (person 1), and shad-
ows (person 3). We investigate how our semantic prob-
lem solver handles this image and how it overcomes the
aforementioned difficulties.

1
2

3
4

c©Woestijnvis NV

Fig. 3: Movie still depicting four persons

8

6.1 Execution plan

The user expresses the result as SPARQL (Listing 1)
and starts the platform. The supervisor creates a start
service from the WHERE clause and an end service from
the CONSTRUCT clause, which are sent to the active com-
poser. Although the composing process seems trivial be-
cause of the limited number of services and parameters,
Subsection 4.3 has shown the contrary. We should also
consider the presence of several other services in addi-
tion to the ones mentioned, which hinders a prima facie
composition.

First, the composer tries to find a path from the re-
quest towards the input using backwards-chaining. In
this process, it transforms the request by using the facts
in the ontologies and rules, which relate the different
concepts. From this, it can deduce that an image with a
region containing the person’s face is sufficient to meet
the request. Our composer is able to deduce that a com-
position of the face detection and face recognition ser-
vices (Fig. 4) fulfills the request.

Iσ := {param1 7→ <Loft.jpg>} ⇐ \ Input{}
ID := {regionList 7→ ?list1}

⇐ \ FaceDetection{image 7→ ?image}
IR := {face 7→ ?face1, person 7→ ?person1}

⇐\ FaceRecognition{region 7→ ?list1.item}
Iε := {} ⇐ \ Request{person 7→ ?person1}

Iσ ID IR Iε

<Loft.jpg> ?list1.item ?person1

Fig. 4: Composition from image input to person request

Note the appearance of advanced variable bindings, as
the face recognition service is executed for each of the
regions returned by the face recognition algorithm.

6.2 Supervision process

We now step through an actual execution of the request.

Face detection The invocation of the face detection
service with parameter value <Loft.jpg> succeeds and
returns the coordinates of four regions, which are iden-
tified by media fragment URIs [27]:

1. <Loft.jpg#xywh=45,121,51,51>;
2. <Loft.jpg#xywh=221,91,56,56>;
3. <Loft.jpg#xywh=535,118,43,43>;
4. <Loft.jpg#xywh=734,83,69,69>.

The four resource URIs are assigned to the ?list1 vari-
able, as instructed by the composition. Visual inspection
of this output reveals that the detector finds the faces
correctly.

Face recognition We now proceed with the face recog-
nition service invocation. The composition demands that
this is executed for every item assigned to the ?list1

variable. This results in respectively:

1. (no output);
2. dbpedia:Koen_De_Bouw;
3. (no output);
4. dbpedia:Bruno_Vanden_Broucke.

The service was able to find two of the four assign-
ments for ?person1, but the others failed. Looking at
Fig. 3, we can understand why: the correctly recognized
faces of person 2 and 4 were relatively easy because of
their orientation, illumination and contrast. The face
of person 1 is harder to recognize because it appears
slightly out of focus and the persons’s right hand rests
on his chin. The left hand of person 3 casts a shadow
on his face, decreasing the image contrast locally, inter-
fering with feature extraction. We now show how Se-
mantic Web technologies can help recognizing the two
remaining persons.

6.3 Failure recovery

Failure detection and impact determination Two
face detection invocations do not return an answer,
which the supervisor classifies as a failure. The impacted
part spans the face detection invocation and the end ser-
vice. Peculiarly, this impact is only partial in that half of
the needed values are available. Consequently, the adap-
tation only needs to find alternatives for the two failed
invocations.

Blackboard enrichment Prior to the generation of a
new plan, the supervisor tries to enrich the blackboard
by deriving new semantic knowledge. This enrichment
is a combination of semantic inference and a technique
known as sponging: looking up related information us-
ing semantic data sources. This follow-you-nose concept
works thanks to the principles of Linked Data [7]. For
our use case, the sponging process on the two found ac-
tor names on DBpedia reveals facts such as:

– their personal details;
– movies they starred in;
– their co-stars;
– . . .

Plan adaptation The question now is how this addi-
tional information can help us in repairing the composi-
tion. The relationship between the people in the photo-
graph can assist us. Our knowledge source is aware that
the statistical probability to appear in the same pho-
tograph is significantly higher with acquaintances com-
pared to random people. Furthermore, it assumes that
people know each other if a working relationship exists
between them. Also, two actors co-starring in the same
movie implies a working relationship.

9

The supervisor can now employ this knowledge to
guide the face recognition service. The latter has an op-
tional candidates parameter, by which we can suggest
faces for the recognition process. In response, the service
can temporarily boost the probability of those faces in
its internal training set, enabling a more pronounced
recognition result. The supervisor adapts the compo-
sition by adding a new invocation, adding the derived
acquaintances to the candidates parameter. Note that
the actual process is slightly more complex, but some
details were omitted for brevity.

6.4 Face recognition (bis)

The execution of the second face recognition invocation
returns the following values:

1. dbpedia:Koen_De_Graeve

OR dbpedia:Bruno_Vanden_Broucke;
3. dbpedia:Matthias_Schoenaerts.

The information acquired through sponging has
proven useful: person 3 is recognized correctly as
dbpedia:Matthias_Schoenaerts. However, the algo-
rithm still doubts between two alternatives for per-
son 1 and returns both options, indicating its un-
certainty, which can be expressed straightforwardly
in RDF. Semantic knowledge comes to the res-
cue again: it indicates that a single person can
only appear once in the same photograph. Since
dbpedia:Bruno_Vanden_Broucke already appears on
<Loft.jpg>, the supervisor deduces that person 1 must
necessarily be dbpedia:Koen_De_Graeve.

All people in the photograph are now identified and
the process terminates.

7 Related work

A number of approaches to match formally described
Web services exist; most of them are based on
OWL-S. For instance, OWL-S Matchmaker [26] and
OWL-S MX [15] use both the input and output pa-
rameters of OWL-S service descriptions to find proper
matches. In [17], a more advanced matching method is
presented based on description logic reasoning. Jung-
hans et al. propose a formal model for Web services and
requests in [14], where service matching is enhanced by
using preconditions and effects described in first order
logic rules, which is similar to our approach.

Next to service matching approaches, there also ex-
ist a number of algorithms for composing formally de-
scribed services. For instance, in [19], an ontology-based
framework is proposed for the automatic composition of
Web services. Dynamic compositions based on OWL-S
service descriptions using an HTN planning algorithm
are presented in [13]. Shin et al. [24] describe a method
which uses path finding from an initial state to a desired
state. However, they only apply this intelligence on a

point-to-point basis, so that propagations of the effects
– and thus holistic composition – are impossible. They
also determine the usefulness of a certain composition
using precision and recall. This does not apply to our
method, since a reasoner will only return compositions
that are logically sound (completeness requirement of
a composition) and thus satisfy the initial request. Re-
david et al. [22] have suggested the use of an SWRL [12]
reasoner for composing services and follow a similar ap-
proach as our work: composition using translated service
rules. However, our approach has a number of advan-
tages over theirs:

– Their approach is limited to parameters which are
characterized by an OWL class, which is a limitation
in terms of expressivity. Our approach does not have
such restrictions: all kinds of relationships between
parameters are expressible, even if the parameter has
a primitive datatype.

– Our approach does not suffer from unbound vari-
ables in the generated rules.

– Although N3Logic and SWRL are both able to rep-
resent rules, N3Logic has a number of advantages
compared to SWRL: more builtins are supported,
an efficient reasoner (i.e., Eye) is available, and last
but not least, N3Logic integrates with existing RDF
knowledge in a very natural and transparent way.

All of these systems focus either on the matching or
the composition of services, while we use a combined
approach of service matching and composition resulting
in a holistic vision on the given request. As pointed out
in Section 4, to create a holistic composition, we employ
a reasoner on the problem as a whole instead of solely
on the junctions.

Classic planning literature [11] has solved many dif-
ficult problems using forward-chaining. Fortunately, the
services required for metadata generation have no side-
effects that “change the world”; they only generate an
answer based on a request. This means that the plat-
form did not have to provide a notion of time. Also,
full forward-chaining reasoning would have proven dif-
ficult, considering the massive amount of information
available on the Semantic Web. The simultaneous use
of composer and supervisor, which uses a limited form
of forward-chaining, creates a hybrid system that profits
from forward-chaining when errors occur. A drawback of
several existing planners is that their functionality is in-
herently limited by the amount of intelligence they con-
tain. Our approach is able to take into account domain-
specific knowledge provided by the user or available on
the Semantic Web.

As for efficiency and scalability, we use the Eye rea-
soning tool, which outperforms several other generic rea-
soners [2,20]. Furthermore, we do not try to find rigorous
solutions up front, but start with a basic execution plan
which the supervisor adapts as complications arise. The
reasoner and the blackboard can also cache intermediary
results (e.g., additional knowledge derived from existing
facts and rules).

10

8 Concluding remarks

Semantic Web technologies can play a crucial role in im-
age annotation. We list three advantages over traditional
image annotation approaches:

– the use of semantically described feature extraction
algorithms, which can be plugged in as needed;

– an automatic matching and composing system, com-
bined with a supervisor that is capable of advanced
error recovery;

– algorithms benefit from domain-specific and
situation-specific knowledge, enhancing their
functionality beyond what was possible before.

The use case clearly indicates the possibilities and op-
portunities of this platform.

References

1. DBpedia, http://dbpedia.org/

2. Eye deep taxonomy benchmark results, http://

eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt

3. Freebase, http://www.freebase.com/

4. Berners-Lee, T., Connolly, D.: Notation3 (N3): A read-
able RDF syntax. W3C Recommendation (Jan 2009),
http://www.w3.org/TeamSubmission/n3/

5. Berners-lee, T., Connolly, D., Kagal, L., Scharf, Y.,
Hendler, J.: N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic
Web. Scientific American 284(5), 34 (2001)

7. Bizer, C., Heath, T., Berners-Lee, T.: Linked
Data – the story so far. International Jour-
nal on Semantic Web and Information Systems
(IJSWIS) 5(3) (2009), http://tomheath.com/papers/

bizer-heath-berners-lee-ijswis-linked-data.pdf

8. Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–
47 (Sep 1991)

9. De Roo, J.: Euler proof mechanism, http://eulersharp.

sourceforge.net/

10. Fensel, D., Bussler, C.: Semantic Web Enabled Web Ser-
vices. In: 2nd Annual Diffuse Conference (January 2002)

11. Finzi, A., Pirri, F., Reiter, R.: Open world planning in
the situation calculus. Proceedings of the National Con-
ference on Artificial Intelligence pp. 754–760 (2000)

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.:
Swrl: A Semantic Web rule language combining OWL
and RuleML. W3C Member Submission (May 2004),
http://www.w3.org/Submission/SWRL/

13. Hristoskova, A., Volckaert, B., Turck, F.D.: Dynamic
composition of semantically annotated web services
through QoS-aware HTN planning algorithms. In: ICIW
’09: Proceedings of the 2009 Fourth International Con-
ference on Internet and Web Applications and Services.
pp. 377–382. IEEE Computer Society, Washington, DC,
USA (2009)

14. Junghans, M., Agarwal, S., Studer, R.: Towards Practi-
cal Semantic Web Service Discovery. In: The Semantic
Web: Research and Applications, 7th Extended Semantic
Web Conference, ESWC 2010, Heraklion, Crete, Greece,
May 30-June 3, 2010, Proceedings. Springer (June 2010)

15. Klusch, M., Fries, B., Khalid, M.: OWLS-MX: Hybrid
OWL-S service matchmaking. In: In Proceedings of 1st
Intl. AAAI Fall Symposium on Agents and the Semantic
Web (2005)

16. Klyne, G., Carrol, J.J.: Resource description framework
(RDF): Concepts and abstract syntax. W3C Recom-
mendation (Feb 2004), http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/

17. Li, L., Horrocks, I.: A software framework for match-
making based on Semantic Web technology. In: WWW
’03: Proceedings of the 12th international conference on
World Wide Web. pp. 331–339. ACM Press, New York,
NY, USA (2003)

18. Martin, D., Burstein, M., Hobbs, J., Lassila, O.: OWL-S:
Semantic markup for web services. W3C Member Sub-
mission (Nov 2004), http://www.w3.org/Submission/

OWL-S/

19. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.:
Composing web services on the Semantic Web. The
VLDB Journal 12(4), 333–351 (2003)

20. Osmun, T.: Euler Eye installation, demo, and deep tax-
onomy benchmark, http://ruleml.org/WellnessRules/

files/WellnessRulesN3-2009-11-10.pdf

21. Prud’hommeaux, E., Seaborne, A.: SPARQL query lan-
guage for RDF. W3C Recommendation (Jan 2008), http:

//www.w3.org/TR/rdf-sparql-query/

22. Redavid, D., Iannone, L., Payne, T.: OWL-S atomic ser-
vices composition with SWRL rules. In: Proceedings of
the 4th Italian Semantic Web Workshop (Dec 2007),
http://eprints.ecs.soton.ac.uk/15658/

23. Roy, P.V., Haridi, S.: Concepts, Techniques, and Models
of Computer Programming. MIT Press, Cambridge, MA,
USA (2004)

24. Shin, D., Lee, K., Suda, T.: Automated generation of
composite Web services based on functional semantics.
Web Semantics: Science (Jan 2009)

25. Smith, J.R., Schirling, P.: Metadata standards roundup.
IEEE MultiMedia 13, 84–88 (2006)

26. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.:
Automated discovery, interaction and composition of Se-
mantic Web services. Journal of Web Semantics 1(1),
27–46 (December 2003)

27. Troncy, R., Mannens, E., Pfeiffer, S., Van Deursen, D.:
Media Fragments URI 1.0. W3C Working Draft, http:

//www.w3.org/TR/media-frags/

28. Verstockt, S., Van Leuven, S., Van de Walle, R., Der-
maut, E., Torelle, S., Gevaert, W.: Actor recognition for
interactive querying and automatic annotation in digital
video. In: IASTED International conference on Internet
and Multimedia Systems and Applications, 13th, Pro-
ceedings. pp. 149–155. ACTA Press, Honolulu, HI, USA
(2009)

29. Viola, P., Jones, M.J.: Robust real-time face detection.
International Journal of Computer Vision 57(2), 137–154
(May 2004)

http://dbpedia.org/
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://www.freebase.com/
http://www.w3.org/TeamSubmission/n3/
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/ Submission/OWL-S/
http://www.w3.org/ Submission/OWL-S/
http://ruleml.org/WellnessRules/files/WellnessRulesN3-2009-11-10.pdf
http://ruleml.org/WellnessRules/files/WellnessRulesN3-2009-11-10.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://eprints.ecs.soton.ac.uk/15658/
http://www.w3.org/TR/media-frags/
http://www.w3.org/TR/media-frags/

