302 research outputs found

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM

    No full text
    Low-complexity non-coherently detected Differential Amplitude and Phase-Shift Keying (DAPSK) schemes constitute an ideal candidate for wireless communications. In this paper, we derive the soft-output probability formulas required for the soft-decision based demodulation of DAPSK, which are then invoked for Turbo Coded (TC) transmissions. Furthermore, the achievable throughput characteristics of the family of M-ary DAPSK schemes are provided. It is shown that the proposed 4-ring based TC assisted 64-ary DAPSK scheme achieves a coding gain of about 4.2 dBs in comparison to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme at a bit error ratio of 10?5

    Performance Analysis of Coherent and Noncoherent Modulation under I/Q Imbalance

    Full text link
    In-phase/quadrature-phase Imbalance (IQI) is considered a major performance-limiting impairment in direct-conversion transceivers. Its effects become even more pronounced at higher carrier frequencies such as the millimeter-wave frequency bands being considered for 5G systems. In this paper, we quantify the effects of IQI on the performance of different modulation schemes under multipath fading channels. This is realized by developing a general framework for the symbol error rate (SER) analysis of coherent phase shift keying, noncoherent differential phase shift keying and noncoherent frequency shift keying under IQI effects. In this context, the moment generating function of the signal-to-interference-plus-noise-ratio is first derived for both single-carrier and multi-carrier systems suffering from transmitter (TX) IQI only, receiver (RX) IQI only and joint TX/RX IQI. Capitalizing on this, we derive analytic expressions for the SER of the different modulation schemes. These expressions are corroborated by comparisons with corresponding results from computer simulations and they provide insights into the dependence of IQI on the system parameters. We demonstrate that the effects of IQI differ considerably depending on the considered system as some cases of single-carrier transmission appear robust to IQI, whereas multi-carrier systems experiencing IQI at the RX require compensation in order to achieve a reliable communication link

    An error bound analysis for M-DPSK in frequency-selective Rayleigh fading channel with diversity reception

    Get PDF

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM for Amplify-and-Forward based Cooperative Communications

    No full text
    Multilevel Differential Amplitude and Phase-Shift Keying (DAPSK) schemes do not require any channel estimation, which results in low complexity. In this treatise we derive the soft-output probability formulas required for a soft-decision based demodulation of high-order DAPSK, in order to facilitate iterative detection by exchanging extrinsic information with an outer Turbo Code (TC). Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. Compared to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme, the 4-ring based TC assisted 64-ary DAPSK arrangement has a power-efficiency improvement of 2.3 dB at a bit error rate (BER) of 10-5 . Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. More specifically, when using a TC block length of 400 modulated symbols, the 64 DAPSK (4, 16) scheme is 7.56 dB away from its capacity curve, while it had a reduced gap as low as 2.25 dB, when using a longer TC block length of 40 000 modulated symbols. Finally, as a novel application example, the soft-decision M-DAPSK scheme was incorporated into an Amplify-and-Forward (AF) based cooperative communication system, which attains another 4.5 dB SNR improvement for a TC block length of 40 000 modulated symbols

    Differential Diversity Reception of MDPSK over Independent Rayleigh Channels with Nonidentical Branch Statistics and Asymmetric Fading Spectrum

    Full text link
    This paper is concerned with optimum diversity receiver structure and its performance analysis of differential phase shift keying (DPSK) with differential detection over nonselective, independent, nonidentically distributed, Rayleigh fading channels. The fading process in each branch is assumed to have an arbitrary Doppler spectrum with arbitrary Doppler bandwidth, but to have distinct, asymmetric fading power spectral density characteristic. Using 8-DPSK as an example, the average bit error probability (BEP) of the optimum diversity receiver is obtained by calculating the BEP for each of the three individual bits. The BEP results derived are given in exact, explicit, closed-form expressions which show clearly the behavior of the performance as a function of various system parameters.Comment: 5 pages, 3 figures, to present at ISIT200

    Differential Modulation for Short Packet Transmission in URLLC

    Full text link
    One key feature of ultra-reliable low-latency communications (URLLC) in 5G is to support short packet transmission (SPT). However, the pilot overhead in SPT for channel estimation is relatively high, especially in high Doppler environments. In this paper, we advocate the adoption of differential modulation to support ultra-low latency services, which can ease the channel estimation burden and reduce the power and bandwidth overhead incurred in traditional coherent modulation schemes. Specifically, we consider a multi-connectivity (MC) scheme employing differential modulation to enable URLLC services. The popular selection combining and maximal ratio combining schemes are respectively applied to explore the diversity gain in the MC scheme. A first-order autoregressive model is further utilized to characterize the time-varying nature of the channel. Theoretically, the maximum achievable rate and minimum achievable block error rate under ergodic fading channels with PSK inputs and perfect CSI are first derived by using the non-asymptotic information-theoretic bounds. The performance of SPT with differential modulation and MC schemes is then analysed by characterizing the effect of differential modulation and time-varying channels as a reduction in the effective SNR. Simulation results show that differential modulation does offer a significant advantage over the pilot-assisted coherent scheme for SPT, especially in high Doppler environments.Comment: 15 pages, 9 figure
    corecore