914 research outputs found

    Continuous integral kernels for unbounded Schroedinger semigroups and their spectral projections

    Get PDF
    By suitably extending a Feynman-Kac formula of Simon [Canadian Math. Soc. Conf. Proc, 28 (2000), 317-321], we study one-parameter semigroups generated by (the negative of) rather general Schroedinger operators, which may be unbounded from below and include a magnetic vector potential. In particular, a common domain of essential self-adjointness for such a semigroup is specified. Moreover, each member of the semigroup is proven to be a maximal Carleman operator with a continuous integral kernel given by a Brownian-bridge expectation. The results are used to show that the spectral projections of the generating Schroedinger operator also act as Carleman operators with continuous integral kernels. Applications to Schroedinger operators with rather general random scalar potentials include a rigorous justification of an integral-kernel representation of their integrated density of states - a relation frequently used in the physics literature on disordered solids.Comment: 41 pages. Final version. Dedicated to Volker Enss on the occasion of his 60th birthda

    Simultaneously Structured Models with Application to Sparse and Low-rank Matrices

    Get PDF
    The topic of recovery of a structured model given a small number of linear observations has been well-studied in recent years. Examples include recovering sparse or group-sparse vectors, low-rank matrices, and the sum of sparse and low-rank matrices, among others. In various applications in signal processing and machine learning, the model of interest is known to be structured in several ways at the same time, for example, a matrix that is simultaneously sparse and low-rank. Often norms that promote each individual structure are known, and allow for recovery using an order-wise optimal number of measurements (e.g., â„“1\ell_1 norm for sparsity, nuclear norm for matrix rank). Hence, it is reasonable to minimize a combination of such norms. We show that, surprisingly, if we use multi-objective optimization with these norms, then we can do no better, order-wise, than an algorithm that exploits only one of the present structures. This result suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, i.e. not one that is a function of the convex relaxations used for each structure. We then specialize our results to the case of sparse and low-rank matrices. We show that a nonconvex formulation of the problem can recover the model from very few measurements, which is on the order of the degrees of freedom of the matrix, whereas the convex problem obtained from a combination of the â„“1\ell_1 and nuclear norms requires many more measurements. This proves an order-wise gap between the performance of the convex and nonconvex recovery problems in this case. Our framework applies to arbitrary structure-inducing norms as well as to a wide range of measurement ensembles. This allows us to give performance bounds for problems such as sparse phase retrieval and low-rank tensor completion.Comment: 38 pages, 9 figure

    Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

    Full text link
    Modern applications in sensitive domains such as biometrics and medicine frequently require the use of non-decomposable loss functions such as precision@k, F-measure etc. Compared to point loss functions such as hinge-loss, these offer much more fine grained control over prediction, but at the same time present novel challenges in terms of algorithm design and analysis. In this work we initiate a study of online learning techniques for such non-decomposable loss functions with an aim to enable incremental learning as well as design scalable solvers for batch problems. To this end, we propose an online learning framework for such loss functions. Our model enjoys several nice properties, chief amongst them being the existence of efficient online learning algorithms with sublinear regret and online to batch conversion bounds. Our model is a provable extension of existing online learning models for point loss functions. We instantiate two popular losses, prec@k and pAUC, in our model and prove sublinear regret bounds for both of them. Our proofs require a novel structural lemma over ranked lists which may be of independent interest. We then develop scalable stochastic gradient descent solvers for non-decomposable loss functions. We show that for a large family of loss functions satisfying a certain uniform convergence property (that includes prec@k, pAUC, and F-measure), our methods provably converge to the empirical risk minimizer. Such uniform convergence results were not known for these losses and we establish these using novel proof techniques. We then use extensive experimentation on real life and benchmark datasets to establish that our method can be orders of magnitude faster than a recently proposed cutting plane method.Comment: 25 pages, 3 figures, To appear in the proceedings of the 28th Annual Conference on Neural Information Processing Systems, NIPS 201
    • …
    corecore