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Abstract

By suitably extending a Feynman–Kac formula of Simon (Canad. Math. Soc. Conf. Proc.

28 (2000) 317), we study one-parameter semigroups generated by (the negative of) rather

general Schrödinger operators, which may be unbounded from below and include a magnetic

vector potential. In particular, a common domain of essential self-adjointness for such a

semigroup is specified. Moreover, each member of the semigroup is proven to be a maximal

Carleman operator with a continuous integral kernel given by a Brownian-bridge expectation.

The results are used to show that the spectral projections of the generating Schrödinger

operator also act as Carleman operators with continuous integral kernels. Applications to

Schrödinger operators with rather general random scalar potentials include a rigorous

justification of an integral-kernel representation of their integrated density of states—a

relation frequently used in the physics literature on disordered solids.
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0. Introduction

In non-relativistic quantum physics [19,20,47] a spinless (charged) particle with d-

dimensional Euclidean configuration space Rd ; which is subjected to a scalar
potential V ; as well as to a magnetic field derived from a vector potential A; is
characterized by a Schrödinger operator H � HðA;VÞ: The latter is a linear, self-
adjoint, second-order partial-differential operator acting on a dense domain in the

Hilbert space L2ðRdÞ of Lebesgue square-integrable functions c on Rd [7,14]. The
spectrum of H corresponds physically to the possible values EAR of the particle’s
energy. Useful information on a given Schrödinger operator H can be obtained by

studying its semigroup fe�tHgtX0: As was convincingly demonstrated by Carmona

[11] and Simon [40,42], this, in turn, can be done very efficiently by using the
Feynman–Kac(–Itô) formula [10,13,40,46], which provides a probabilistic represen-

tation of e�tHc in terms of a Brownian-motion expectation. Until present, the most
systematic study along these lines is that of Simon [42]. It covers mostly situations
without a magnetic field and where the scalar potential V is assumed to be Kato
decomposable. The latter assumption assures in particular that the operator H is

bounded from below and, hence, that fe�tHgtX0 is a family of bounded operators.

Part of the regularity results in [42] were recently generalized to allow for rather

general magnetic fields and an arbitrary open subset of Rd as the configuration space
[10]. For additional regularity results see [23].
Some physically interesting situations, however, are modelled by scalar potentials

which are not Kato decomposable and lead to Schrödinger operators that are
unbounded from below. Here we only mention the Stark effect of atoms, electronic
properties of disordered solids and the physically different, but mathematically
closely related problem of classical diffusion in random media. For the first situation
one uses a scalar potential with a term linear in the position [5,14], and for the latter
two situations the realizations of a suitable random scalar potential
[12,21,22,29,32,36,46]. Gaussian random potentials are very popular examples
thereof in the physics literature on disordered systems [17,33,39]. Since H is
unbounded from below in these cases, the associated Schrödinger semigroup
fe�tHgtX0 consists of unbounded operators. Among other things, the unbounded-
ness of the operator exponentials e�tH brings up new kinds of questions concerning
domains, common cores for different t; etc. In fact, there are interesting analytic
results on semigroups of unbounded linear operators even on abstract Hilbert and
Banach spaces for more than two decades [18,25,31,35] (see also Theorem 4.9 in
[15]). However, it was only recently that Simon [43] singled out a maximal class of
negative scalar potentials such that H is unbounded from below, but given an
arbitrarily large (time) parameter t40 the operator exponential e�tH still acts as an
integral operator on functions c; which have sufficiently fast decay at infinity, and
e�tHc is given by a Feynman–Kac formula.
The present paper is in the spirit of Simon’s note [43]. By suitably extending his

Feynman–Kac formula we aim to achieve a better understanding of rather general

unbounded Schrödinger semigroups fe�tHgtX0 on L2ðRdÞ; which have remained
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widely unexplored up to now. To this end we consider a large class of scalar
potentials which allows for the same fall-off towards minus infinity at infinity as was
considered in [43]. In addition, the presence of rather general magnetic fields is
admitted. Under these assumptions, we prove continuity of the Feynman–Kac–Itô

integral kernel kt of e�tH and of the image function e�tHc; provided that t40 and c
has sufficiently fast decay at infinity. Moreover, we extend the Feynman–Kac–Itô

representation of e�tHc to all c in the domain of the possibly unbounded operator

e�tH : This yields an alternative characterization of its domain and renders e�tH the
maximal Carleman operator induced by the integral kernel kt: A theorem of

Nussbaum [35] is applied to identify a common operator core for e�tH for all tX0:
Lemma 1.7 and Theorem 1.10 summarize these results. Semigroup properties of the

family fe�tHgtX0 are compiled in Theorem 1.12. Similar to Theorem B.7.8 in [42], we

infer in Theorem 1.14 the existence and continuity of integral kernels for certain
bounded functions of H; thereby allowing one to evaluate related traces in terms of
integral kernels. In particular, all this is true for any spectral-projection operator
wI ðHÞ of H associated with a Borel set ICR which is bounded from above, see
Corollary 1.16. Finally, the functional calculus is extended to integral kernels in
Corollary 1.18. Applications to Schrödinger operators with rather general random
scalar potentials yield a rigorous justification of some statements which are
frequently used in the physics literature on disordered systems. Corollary 1.27
delivers an integral-kernel representation of the integrated density of states and
Corollary 1.29, respectively, its particularization to Gaussian random scalar
potentials in Corollary 1.31, concerns properties of the integral kernel of the
averaged semigroup.
The paper is organized as follows. Section 1 contains the basic notions, the precise

formulations of the results mentioned in the previous paragraph and various
comments. Sections 2–5 are devoted to the proofs.

1. Results and comments

1.1. Basic notation and definitions

As usual, let N :¼ f1; 2; 3;yg denote the set of natural numbers. Let R;
respectively C; denote the algebraic field of real, respectively, complex numbers and

let Zd be the simple cubic unit-lattice in d dimensions, dAN: We fix a Cartesian co-

ordinate system in d-dimensional Euclidean space Rd and define an open cube in Rd

as a translate of the d-fold Cartesian product I 	?	 I of an open interval IDR: In

particular, LcðxÞ stands for the open cube in Rd with edge length c40 and centre

x ¼ ðx1;y; xdÞARd : The Euclidean scalar product x 
 y :¼
Pd

j¼1 xjyj of x; yARd

induces the Euclidean norm jxj :¼ ðx 
 xÞ1=2:
We denote the volume of a Borel subset LDRd with respect to the d-dimensional

Lebesgue measure as jLj :¼
R
L dx ¼

R
Rd dx wLðxÞ; where wL stands for the indicator
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function of L: In particular, if L is the strictly positive half-line, Y :¼ w�0;N½ denotes

the left-continuous Heaviside unit-step function.

The Banach space LpðRdÞ; pA½1;N�; consists of all Borel-measurable complex-

valued functions f :Rd-C which are identified if their values differ only on a set of

Lebesgue measure zero and which possess a finite norm jj f jjp :¼
R
Rd dx j f ðxÞjp

� �1=p

oN; if poN; and jj f jj
N

:¼ ess supxARd j f ðxÞjoN; if p ¼ N: We recall that

L2ðRdÞ is a separable Hilbert space with scalar product /
; 
S given by /f ; gS :¼R
Rd dxf �ðxÞgðxÞ: Here the star denotes complex conjugation and the function f � is

defined pointwise by f �ðxÞ :¼ ð f ðxÞÞ�: We write fALp
locðRdÞ; if f wLAL

pðRdÞ for any
bounded Borel set LCRd : The uniform local Lebesgue spaces L

p
unif ;locðRdÞ consist of

all those fALp
locðRdÞ for which supxAZd jj f wL1ðxÞjjpoN: The Kato class [3,23,28,48]

over Rd may be defined as the vector space KðRdÞ :¼ fAL1
locðRdÞ: limtk0

�
Ktð f Þ¼0g; where Ktð f Þ :¼ supxARd

R t

0
ds
R
Rd dxe�jxj2 j f ðx þ x

ffiffi
s

p
Þj: It obeys the inclu-

sion KðRdÞDL1
unif ;locðRdÞ with equality if d ¼ 1: We say that f belongs to KlocðRdÞ;

if f wLAKðRdÞ for any bounded Borel set LCRd : Moreover, f is called

Kato decomposable, in symbols fAK7ðRdÞ; if supf0; f gAKlocðRdÞ and

supf0;�f gAKðRdÞ: Finally, CN

0 ðRdÞ is the vector space of all functions f :Rd-C

which are arbitrarily often differentiable and have compact supports supp f :

The absolute value of a closed operator F : domðFÞ-L2ðRdÞ; with dense domain

of definition domðFÞDL2ðRdÞ and Hilbert adjoint F �; is the positive operator jF j
:¼ ðF �FÞ1=2: The (uniform) norm of a bounded operator F : L2ðRdÞ-L2ðRdÞ is

defined as jjF jj :¼ supfjjFf jj2 : fAL2ðRdÞ; jj f jj2 ¼ 1g:

Definition 1.1. Let dAN: A vector potential A is a Borel-measurable, Rd-valued

function on Rd and a scalar potential V is a Borel-measurable, R-valued function on

Rd : Furthermore,

(A) a vector potential A is said to satisfy property (A), if both its square jAj2 and its

divergence r 
 A lie in the intersection L2
locðRdÞ-KlocðRdÞ: Here, r ¼

ð@1;y; @dÞ stands for the gradient, which is supposed to act in the sense of

distributions on CN

0 ðRdÞ;
(C) a vector potential A is said to satisfy property (C), if there exist real constants

Bjk ¼ �Bkj; where j; kAf1;y; dg; such that

AkðxÞ ¼
1

2

Xd

j¼1
xjBjk ð1:1Þ

for all xARd and all kAf1;y; dg: In other words, A generates a spatially
constant magnetic field given by the skew-symmetric d 	 d-matrix with entries
Bjk ¼ @jAk � @kAj ;
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(V) a scalar potential V is said to satisfy property (V), if it can be written as a sum

V ¼ V1 þ V2 ð1:2Þ

with V1 being locally square-integrable and Kato decomposable,

V1AL2
locðRdÞ-K7ðRdÞ; ð1:3Þ

and V2 obeying a sub-quadratic growth limitation in the following sense: for
every e40 there exists a finite constant ve40 such that

jV2ðxÞjpejxj2 þ ve ð1:4Þ

for Lebesgue-almost all xARd :

Remarks 1.2. (i) For one space dimension, d ¼ 1; there is no loss of generality in
assuming A ¼ 0 on account of gauge equivalence.

(ii) If dp3; then L2
locðRdÞDKlocðRdÞ:

(iii) Due to gauge equivalence we have contented ourselves in formulating the
constant-magnetic-field condition (C) in the Poincaré gauge (1.1).
(iv) Property (C) implies property (A).
(v) Property (V) allows for a larger class of potentials than those considered

in [43]. This is because (V) requires weaker local regularity properties. Yet, the
crucial sub-quadratic growth limitation of VðxÞ towards minus infinity as jxj-N is
identical.
(vi) Even though a quadratic growth limitation instead of the stronger

condition (1.4) would still yield a self-adjoint Schrödinger semigroup, we do
not consider such situations, because the corresponding Feynman–Kac(–Itô)
formula would not hold for an arbitrarily large time parameter t; cf. Section 5.13
in [27].

We base the definition of Schrödinger operators on the following proposition,
whose proof is an application of Theorem 2.5 in [24].

Proposition 1.3. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). Then the differential operator

CN

0 ðRdÞ{j/
1

2

Xd

j¼1
ði@j þ ÂjÞ2jþ V̂j ð1:5Þ

is essentially self-adjoint on L2ðRdÞ: Here i ¼
ffiffiffiffiffiffiffi
�1

p
denotes the imaginary unit and a

superposed hat on a function indicates the corresponding multiplication operator.

Definition 1.4. The self-adjoint closure of (1.5) on L2ðRdÞ is called the (magnetic)
Schrödinger operator and denoted by HðA;VÞ:
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As suggested in [43], we introduce vector spaces of LpðRdÞ-functions with a decay
at infinity which is faster than that of some Gaussian function. These spaces are

tailored for the, in general, unbounded Schrödinger semigroup fe�tHðA;VÞgtX0 with V

having property (V).

Definition 1.5. For each pA½1;N� we set

L
p
GðRdÞ :¼ cALpðRdÞ : there exists rA�0;N½ such that

�
Z
Rd

dx erjxj
2

jcðxÞjpoN



: ð1:6Þ

Remarks 1.6. (i) Hölder’s inequality yields the chain of inclusions

LN

G ðRdÞDL
q
GðR

dÞDL
p
GðR

dÞDL1
GðRdÞ; ð1:7Þ

if 1pppqpN:

(ii) The space L
p
GðRdÞ is dense in LpðRdÞ for any pA½1;N� thanks to the inclusion

CN

0 ðRdÞCL
p
GðRdÞ: ð1:8Þ

1.2. Continuous integral kernels for unbounded Schrödinger semigroups and their

spectral projections

As a preparation for the Feynman–Kac–Itô formula (1.17) in Theorem 1.10 we

need to recall the Brownian bridge in Rd associated with the starting point xARd ; the

endpoint yARd and the closed time interval ½0; t�; where t40 is fixed but arbitrary. It

may be defined as the Rd -valued stochastic process whose d Cartesian components
are independent and have continuous realizations ½0; t�{s/bjðsÞAR; jAf1;y; dg:
Moreover, the jth component bj is distributed according to the Gaussian probability

measure characterized by the mean function ½0; t�{s/xj þ ðyj � xjÞs=t and the

covariance function ½0; t� 	 ½0; t�{ðs; s0Þ/minfs; s0g � ss0=t; see e.g. [37,40,46]. We

denote the joint (product) probability measure of b :¼ ðb1;y; bdÞ by m0;tx;y: Given

t40; a vector potential A with property (A) and a scalar potential V with property
(V), then the Euclidean action functional

StðA;V ; bÞ :¼ i

Z t

0

dbðsÞ 
 AðbðsÞÞ þ i

2

Z t

0

dsðr 
 AÞðbðsÞÞ þ
Z t

0

dsVðbðsÞÞ ð1:9Þ

associated with these potentials is well defined for m0;tx;y-almost all paths b of the

Brownian bridge. The first integral on the right-hand side of (1.9) is a stochastic line
integral to be understood in the sense of Itô. The other two integrals with random

integrands are meant in the sense of Lebesgue. The m0;tx;y-almost-sure existence of the
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integrals in (1.9) follows e.g. from Sections 2 and 6 in [10] and the estimateZ
m0;tx;yðdbÞ

Z t

0

dsV2ðbðsÞÞ
����

����ptve þ e
Z t

0

ds

Z
m0;tx;yðdbÞjbðsÞj2oN: ð1:10Þ

The latter is valid for all e40 and relies on (1.4), Fubini’s theorem and an explicit
computation. As to the applicability of (1.4) in this estimate, we have used the basic

fact that for m0;tx;y-almost every path b of the Brownian bridge the set

fsA½0; t� : bðsÞALg of time instances, for which b stays in a given Lebesgue-null set

LCRd ; is itself of Lebesgue measure zero in ½0; t�; that is,
R t

0 ds wLðbðsÞÞ ¼ 0: We will

make use of this fact in the following without further notice.

Lemma 1.7. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). Finally, let t40: Then

(i) the function kt :R
d 	 Rd-C; ðx; yÞ/ktðx; yÞ; where

ktðx; yÞ :¼ e�jx�yj2=ð2tÞ

ð2ptÞd=2

Z
m0;tx;yðdbÞe�StðA;V ;bÞ ð1:11Þ

is well defined in terms of a Brownian-bridge expectation, Hermitian in the sense that

ktðx; yÞ ¼ k�
t ðy; xÞ for all x; yARd ; continuous and obeys the semigroup property

ktþt0 ðx; zÞ ¼
Z
Rd

dy ktðx; yÞkt0 ðy; zÞ ð1:12Þ

for all x; zARd and all t040;

(ii) for every d40 there exists a finite constant a
ðdÞ
t 40; independent of x; yARd ; such

that the estimate

jktðx; yÞjpa
ðdÞ
t exp � jx � yj2

4t
þ djxj2 þ djyj2

( )
ð1:13Þ

holds for all x; yARd ;
(iii) the function kt obeys

ktðx; 
ÞALN

G ðRdÞ for all xARd ð1:14Þ

and thus has the Carleman property (1.15). Moreover, the mapping Rd-L2ðRdÞ;
x/ktðx; 
Þ is strongly continuous.

Remarks 1.8. (i) The lemma is proven in Section 2.
(ii) Concerning the asserted continuity of kt; the proof will even show that the

function �0;N½	Rd 	 Rd{ðt; x; yÞ/ktðx; yÞ is continuous.
(iii) The estimate (1.13) corresponds to Theorem 2.1 in [43].
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(iv) Part (iii) of Lemma 1.7 continues to hold with ktðx; 
Þ replaced by ktð
; xÞ
thanks to the Hermiticity of kt (for all x; yARd).
(v) While (1.14) follows (directly) from the estimate (1.13), the weaker Carleman

property of kt;

ktðx; 
ÞAL2ðRdÞ for Lebesgue-almost all xARd ; ð1:15Þ

is already a consequence of the semigroup property, the Hermiticity and the
continuity of kt:

Definition 1.9. Let HðA;VÞ be the Schrödinger operator of Definition 1.4 and let

tAR: Then the operator exponential e�tHðA;VÞ is densely defined, self-adjoint and
positive by the spectral theorem and the functional calculus for unbounded functions
of unbounded self-adjoint operators (see e.g. Chapter 5 in [7]).

We are now in a position to give a probabilistic representation of e�tHðA;VÞ by a
Feynman–Kac–Itô formula.

Theorem 1.10. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). Moreover, let t40 and let e�tHðA;VÞ be given by Definition

1.9. Then

(i) the domain of e�tHðA;VÞ is given by

domðe�tHðA;VÞÞ ¼ cAL2ðRdÞ :
Z
Rd

dy ktð
; yÞcðyÞAL2ðRdÞ
� 


ð1:16Þ

with kt defined in (1.11). Moreover, L2
GðRdÞDdomðe�tHðA;VÞÞ is an operator core for

e�tHðA;VÞ;

(ii) e�tHðA;VÞ is the maximal Carleman operator induced by the continuous integral

kernel (1.11) in the sense that

e�tHðA;VÞc ¼
Z
Rd

dy ktð
; yÞcðyÞ ð1:17Þ

for all cAdomðe�tHðA;VÞÞ and that kt has the Carleman property (1.15);

(iii) the image e�tHðA;VÞc of any cAdomðe�tHðA;VÞÞ has a continuous representative

in L2ðRdÞ given by the right-hand side of (1.17). If even cAL2
GðRdÞ; then, in addition,

e�tHðA;VÞcALN

G ðRdÞ:

Remarks 1.11. (i) The proof of Theorem 1.10 is deferred to Section 3.
(ii) For the theory of Carleman operators we refer to [4,45,49]. We follow mostly

the terminology and conventions of [49].

(iii) The right-hand side of (1.17) maps even any cAL1
GðRdÞ (and hence any

cALp
GðRdÞ for all pA½1;N�) to an element of LN

G ðRdÞ: This fact is well known for the
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free case A ¼ 0 and V ¼ 0: It extends to the general situation of Theorem 1.10
simply by the basic estimate (1.13).
(iv) Theorem 1.10 extends the main result of [43], where the Feynman–Kac–Itô

formula (1.17) was proven for A ¼ 0 and cAL2
GðRdÞ under somewhat more

restrictive assumptions on the scalar potential V ; see Remark 1.2(v).
(v) If V2 ¼ 0; then the scalar potential V ¼ V1 is Kato decomposable and

HðA;V1Þ therefore bounded from below. Regularity properties of the associated

bounded Schrödinger semigroup fe�tHðA;V1ÞgtX0 are well known and have been

studied in great detail, see the seminal paper [42] and also [23] for the non-magnetic
case A ¼ 0: Part of these results were extended to situations with rather general
vector potentials in [10].

So far we have been concerned with the (possibly unbounded) operator

exponential e�tHðA;VÞ for a fixed but arbitrary time parameter tA�0;N½: Next we
compile some semigroup properties of the family fe�tHðA;VÞgtX0:

Theorem 1.12. Assume the situation of Theorem 1.10. Then the family fe�tHðA;VÞgtX0

is a strongly continuous (one-parameter) semigroup of self-adjoint operators generated

by the Schrödinger operator HðA;VÞ in the following sense:
(i) the semigroup law

e�ðtþt0ÞHðA;VÞc ¼ e�tHðA;VÞe�t0HðA;VÞc ð1:18Þ

holds for all t; t0A½0;N½ and all cAL2
GðRdÞ;

(ii) the orbit mapping uc : ½0;N½-L2ðRdÞ; t/ucðtÞ :¼ e�tHðA;VÞc is strongly

continuous (at t ¼ 0 only from the right) for all cAL2
GðRdÞ;

(iii) for every jACN

0 ðRdÞ the orbit mapping uj is strongly differentiable (at t ¼ 0

only from the right) and the unique solution of the linear initial-value problem

d

dt
FðtÞ ¼ �HðA;VÞFðtÞ; Fð0Þ ¼ j; ð1:19Þ

for a strongly differentiable (at t ¼ 0 only from the right) mapping

F : ½0;N½-domðHðA;VÞÞ; t/FðtÞ:

Remarks 1.13. (i) The proof of Theorem 1.12 is given in Section 3.
(ii) Interesting analytic results on semigroups of unbounded operators on abstract

Hilbert and Banach spaces were previously obtained in e.g. [18,25,31,35].

In many situations it is useful to know that not only e�tHðA;VÞ has a continuous
integral kernel but also certain bounded functions of HðA;VÞ:

Theorem 1.14. Assume the situation of Theorem 1.10 and let FALNðRÞ be a bounded

function with an at least exponentially fast decay at plus infinity in the sense that the
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inequality

jFðEÞjpgminf1; e�tEg ð1:20Þ

holds for Lebesgue-almost all EAR with some constants g; tA�0;N½: Furthermore, let

FðHðA;VÞÞ be defined by the spectral theorem and the functional calculus. Then

(i) FðHðA;VÞÞ is a bounded Carleman operator induced by the continuous integral

kernel f :Rd 	 Rd-C; ðx; yÞ/f ðx; yÞ; where

f ðx; yÞ :¼ /ktð
; xÞ; e2tHðA;VÞFðHðA;VÞÞktð
; yÞS ð1:21Þ

with arbitrary tA�0; t=2½; in the sense that

FðHðA;VÞÞc ¼
Z
Rd

dy f ð
; yÞcðyÞ ð1:22Þ

for all cAL2ðRdÞ and that f has the Carleman property (1.15);

(ii) the left-hand side of (1.22) has a continuous representative in L2ðRdÞ; which is

given by the right-hand side of (1.22);

(iii) for every wALN

G ðRdÞ the product FðHðA;VÞÞŵ is a Hilbert–Schmidt operator

with squared norm given by

Tracefŵ�jFðHðA;VÞÞj2ŵg ¼
Z
Rd

dxjwðxÞj2
Z
Rd

dyj f ðx; yÞj2: ð1:23Þ

Here ŵ denotes the bounded multiplication operator uniquely corresponding to w; and

ŵ� denotes its Hilbert adjoint.

Remarks 1.15. (i) The right-hand side of (1.21) is well defined and continuous

in ðx; yÞARd 	 Rd by Lemma 1.7(iii), Remark 1.8(iv), the boundedness of

e2tHðA;VÞFðHðA;VÞÞ and the continuity of the L2ðRdÞ-scalar product /
; 
S: More-
over, (1.21) is independent of the chosen tA�0; t=2½:
(ii) The proof of Theorem 1.14 is given in Section 4 and rests on a more general

result, which is formulated as Lemma 4.1. This lemma is in the spirit of Theorem
B.7.8 in [42], but, among others, we have relaxed a boundedness assumption in a
suitable way. Theorem 1.14 itself may be viewed as a generalization of Theorem
B.7.1(d) in [42] from Kato-decomposable scalar potentials to ones with property (V)
and to vector potentials with property (A). But, whereas Theorem B.7.1(d) in [42]

relies on resolvent techniques and requires the power-law decay jFðEÞjpconst:ð1þ
jEjÞ�a with a4d=2 for energies E in the spectrum of H; we work with the semigroup
and thus need the decay property (1.20).

Corollary 1.16. Assume the situation of Theorem 1.14 and let ICR be a Borel set in

the real line which is bounded from above, sup IoN: Then Theorem 1.14 holds with

F ¼ wI ; that is, for the spectral projection wI ðHðA;VÞÞ associated with the energy

regime I of the Schrödinger operator HðA;VÞ: Denoting the corresponding continuous
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integral kernel (1.21) by pI ; Eq. (1.23) takes the form

Trace½ŵ�wI ðHðA;VÞÞŵ� ¼
Z
Rd

dxjwðxÞj2pI ðx; xÞ ð1:24Þ

for all wALN

G ðRdÞ:

Remark 1.17. The proof of Corollary 1.16 is given in Section 4.

Finally, we note that the functional calculus extends to integral kernels.

Corollary 1.18. Assume the situation of Theorem 1.14. Then

f ðx; yÞ ¼
Z
R

dpðE; x; yÞFðEÞ ð1:25Þ

holds for all x; yARd and all F obeying (1.20). In addition, (1.25) holds for the function

F given by FðEÞ ¼ e�tE with some arbitrary tA�0;N½; in which case one has to set

f ¼ kt: The right-hand side of (1.25) is to be understood as a Lebesgue–Stieltjes

integral with respect to the complex ‘‘distribution’’ function R{E/pðE;x; yÞ :¼
p��N;E½ðx; yÞ:

Remark 1.19. The proof of Corollary 1.18 is given in Section 4.

1.3. Applications to random Schrödinger operators

The results of the previous subsection are nicely illustrated by random
Schrödinger operators. In fact, certain random potentials of wide-spread use in
the physics literature on disordered systems lead to Schrödinger operators which are
almost surely unbounded from below and hence to Schrödinger semigroups which
are almost surely unbounded from above.

Definition 1.20. A random scalar potential V on Rd is a random field V :O	 Rd-R;

ðo; xÞ/V ðoÞðxÞ; on a complete probability space ðO;A;PÞ which is measurable
with respect to the product of the sigma-algebra A of event sets in O and the sigma-

algebra of Borel sets in Rd : Furthermore, a random scalar potential V is said to
satisfy property

(S) if there exist two reals p14pðdÞ and p24p1d=½2ðp1 � pðdÞÞ� such that

sup
xAZd

E½jjVwL1ðxÞjj
p2
p1
�oN: ð1:26Þ

Here, E½X � :¼
R
O PðdoÞX ðoÞ denotes the expectation of a (complex-valued)

random variable X on O; and the real pðdÞ is defined as follows: pðdÞ :¼ 2 if
dp3; pðdÞ :¼ d=2 if dX5 and pð4Þ42; otherwise arbitrary;
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(E) if it is Rd-ergodic with respect to the group of translations in Rd ; see [29];
(I) if

sup
xAZd

E½jjVwL1ðxÞjj
2Wþ1
2Wþ1�oN; ð1:27Þ

where WAN is the smallest integer with W4d=4;
(L) if the finiteness condition

Lt :¼ ess sup
xARd

E½e�tVðxÞ�oN ð1:28Þ

holds for all t40;

(G) if V is a Gaussian random field [2,34] which is Rd-homogeneous, has zero mean,
E½Vð0Þ� ¼ 0; and a covariance function x/CðxÞ :¼ E½VðxÞVð0Þ� that is
continuous at the origin where it obeys 0oCð0ÞoN:

Remarks 1.21. (i) While property (S) will assure the applicability of the results in the
previous subsection, property (I), respectively (L), is mainly a technical one needed
for the existence of the integrated density of states in Proposition 1.25, respectively
for the existence of the disorder-averaged semigroup in Corollary 1.29.

(ii) Given (E), property (I) simplifies to E½jVð0Þj2Wþ1�oN and property (L) to

Lt ¼ E½e�tVð0Þ�oN: Property (L) implies neither (S) nor (I) and vice versa.
Moreover, if da4; property (I) in general does not imply property (S), even if
property (E) is supposed. Given (E), a simple sufficient criterion for both (S) and (I)
to hold is the finiteness

E½jVð0Þjp�oN ð1:29Þ

of the pth absolute moment for some real p4maxf3; d þ 1g: To prove this claim for
property (S), we choose p1 ¼ p2 ¼ p in (1.26). For (I) the claim follows from
2Wpmaxf2; dg:
(iii) If V has property (G), then the standard Gaussian identity

E exp

Z
Rd

zðdxÞVðxÞ
� 
� �

¼ exp
1

2

Z
Rd

zðdxÞ
Z
Rd

zðdyÞCðx � yÞ
� 


ð1:30Þ

holds for all (finite) complex Borel measures z on Rd : Accordingly, property (G)
implies properties (S), (I) and (L), see Remark 3.9(iii) in [26] for details. It also
implies property (E), if the covariance function C decays at infinity.

In order to apply the results of the previous subsection we need

Lemma 1.22. Let V be a random scalar potential with property (S). Then for P-almost

every oAO the realization V ðoÞ :Rd-R; x/V ðoÞðxÞ is a scalar potential with

property (V).
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Remark 1.23. The proof of the lemma is given in Section 5.

For a vector potential with property (A) and a random scalar potential with
property (S) we thus infer from Proposition 1.3 and Definition 1.4 the existence of
the random (magnetic) Schrödinger operator HðA;VÞ given by the realizations

HðA;V ðoÞÞ; which are essentially self-adjoint on CN

0 ðRdÞ for P-almost all oAO:
As an obvious consequence of Lemma 1.22 we note

Corollary 1.24. Let A be a vector potential with property (A) and let V be a random

scalar potential with property (S). Then the results of Lemma 1.7, Theorems 1.10, 1.12,
1.14 and Corollaries 1.16 and 1.18 apply for P-almost every oAO to the realization

HðA;V ðoÞÞ of the random Schrödinger operator.

Corollary 1.24 is the basis for the rigorous derivations of two frequently used
relations in the physics literature on disordered systems.

Integrated density of states: The first of these two relations is an integral-kernel
representation of the integrated density of states of random Schrödinger operators.
To formulate this representation, we first recall one possible definition of the
integrated density of states in

Proposition 1.25. Let A be a vector potential with property (C) and let V be a random

scalar potential with properties (S), (E) and (I). Let GCRd be a bounded open cube and

let #wG denote the bounded multiplication operator associated with the indicator function

of G: Then the expectation value

NðEÞ :¼ 1

jGj EfTrace½#wGw��N;E½ðHðA;VÞÞ#wG�g ð1:31Þ

is well defined for every energy EAR in terms of the spatially localized spectral

projection associated with the half-line � �N;E½ of the random Schrödinger operator

HðA;VÞ: Furthermore it is independent of G: The integrated density of states
E/NðEÞ is the unbounded left-continuous distribution function of a positive Borel

measure on the real line R:

Proof. We refer to Theorem 3.1 in [26] for the case dX2 and to Theorem 5.20 in [36]
for the case d ¼ 1: &

Remark 1.26. Mostly, NðEÞ is defined as the almost surely non-random quantity
arising in the infinite-volume limit from the number of eigenvalues per volume

(counting multiplicities) of a finite-volume restriction of HðA;V ðoÞÞ below E: This
definition coincides with the one in Proposition 1.25 above, as is shown in Corollary
3.3 of [26] under the present assumptions on A and V :

On account of Corollary 1.24 and (1.31) we conclude
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Corollary 1.27. Let A be a vector potential with property (C) and let V be a random

scalar potential with properties (S), (E) and (I). Then the equality

NðEÞ ¼ E½pðE; 0; 0Þ� ð1:32Þ

holds for all EAR; where pðoÞðE; 
; 
Þ ¼ p
ðoÞ
��N;E½ denotes the continuous integral kernel

of the spectral projection w��N;E½ðHðA;V ðoÞÞÞ: We recall that pðoÞðE; 
; 
Þ exists for P-

almost all oAO according to Corollary 1.24.

Remarks 1.28. (i) The corollary is proven in Section 5.
(ii) The representation (1.32) for the integrated density of states has been known

previously from a rigorous point of view only under additional assumptions on the
random scalar potential. For example, Remark VI.1.5 in [12] and Remark 3.4 in [26]
require from the outset the P-almost sure existence of continuous integral kernels for
the spectral projections. A sufficient criterion for this requirement is that V is P-
almost surely Kato decomposable [10,42]. Earlier derivations of the representation
(1.32) by different authors require even stronger conditions on V ; see Theorems 5.18
and 5.23 in [36]. The latter theorem, however, covers differential operators more
general than Schrödinger operators.
(iii) To our knowledge, Corollary 1.27 provides the first rigorous derivation of the

representation (1.32) for a wide class of random scalar potentials. As we have seen,
this class includes also random potentials leading to Schrödinger operators which are
P-almost surely unbounded from below. For example, this is the case if V has
properties (G) and (E) [12,29,36]. For such a choice of V the relation (1.32) is
frequently taken for granted in the physics literature on disordered systems, see e.g.
[17,33,39].
(iv) Corollary 1.27 strengthens Corollary 3.3 in [26] in the sense that Eq. (3.6) in

[26] may be replaced by Eq. (3.7) in [26] without an additional assumption.

Disorder-averaged semigroup: The second application, for which Corollary 1.24
provides a rigorous justification, concerns, loosely speaking, the expectation value of

the random operator exponential e�tHðA;VÞ:

Corollary 1.29. Let A be a vector potential with property (A) and let V be a random

scalar potential with properties (S) and (L). Moreover, let t40 and let k
ðoÞ
t denote the

continuous integral kernel of e�tHðA;V ðoÞÞ: We recall that k
ðoÞ
t exists for P-almost all

oAO according to Corollary 1.24. Then

(i) the disorder-averaged integral kernel kt :R
d 	 Rd-C; ðx; yÞ/ktðx; yÞ :¼

E½ktðx; yÞ� is well defined, Hermitian in the sense that ktðx; yÞ ¼ kt
�ðy; xÞ for all

x; yARd ; continuous and dominated by the free heat kernel according to

jktðx; yÞjpLt

e�jx�yj2=ð2tÞ

ð2ptÞd=2
ð1:33Þ
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for all x; yARd : In particular, ktðx; 
ÞALN

G ðRdÞ for all xARd : The mapping

Rd-L2ðRdÞ; x/ktðx; 
Þ is strongly continuous;

(ii) the function kt induces a bounded, self-adjoint and positive Carleman operator Tt

on L2ðRdÞ in the sense that

Ttc :¼
Z
Rd

dy ktð
; yÞcðyÞ ð1:34Þ

for all cAL2ðRdÞ and that kt has the Carleman property (1.15);

(iii) the image Ttc of any cAL2ðRdÞ has a continuous representative in L2ðRdÞ given

by the right-hand side of (1.34). If even cAL2
GðRdÞ; then one has in addition

TtcALN

G ðRdÞ and the equality

Ttc ¼ E½e�tHðA;VÞc� ð1:35Þ

holds.

Remarks 1.30. (i) The corollary is proven in Section 5.
(ii) In view of the equality in (1.35), the operator Tt may be called the averaged

semigroup (operator). One should note, however, that the one-parameter family
fTtgtX0 is not a semigroup in general.

(iii) Assuming also properties (C) and (E), the diagonal of the kernel kt is constant
and given by the (two-sided) Laplace transform

ktð0; 0Þ ¼
Z
R

dNðEÞe�tE ð1:36Þ

of the integrated density of states. This follows from Lemma 5.1(ii), Corollary 1.18,
integration by parts and Fubini’s theorem. The latter two steps rely both on
Lemma 4.2.

The content of Corollary 1.29 is often used in the physics literature on disordered
solids and random media for the special case where V is a homogeneous Gaussian
random potential, that is, a random scalar potential with property (G). For this
choice of V ; the random Schrödinger operator HðA;VÞ is P-almost surely
unbounded from below [12,29,36], but complies with the assumptions of Corollary

1.29 according to Remark 1.21(iii). The corresponding Carleman kernel kt in
Corollary 1.29 can then be made more explicit by applying Fubini’s theorem and the

standard Gaussian identity (1.30) with the finite measure z on Rd defined for m0;tx;y-

almost every Brownian-bridge path b by its sojourn times zðLÞ :¼
R t

0 ds wLðbðsÞÞ in
Borel sets LDRd : This leads to

Corollary 1.31. Let A be a vector potential with property (A) and let V be a random

scalar potential with property (G). Finally, let t40: Then the assertions of Corollary
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1.29 hold with

ktðx; yÞ ¼ e�jx�yj2=ð2tÞ

ð2ptÞd=2

Z
m0;tx;yðdbÞe�StðA;0;bÞ

	 exp
1

2

Z t

0

ds

Z t

0

ds0CðbðsÞ � bðs0ÞÞ
� 


ð1:37Þ

for all x; yARd :

Remark 1.32. The integral kernel (1.37) obeys the inequality

jktðx; yÞjpe�jx�yj2=ð2tÞktð0; 0ÞjA¼0; ð1:38Þ

which is sharper, but less explicit than estimate (1.33), when particularized to a
Gaussian random potential. As to the validity of (1.38) we note that by the
diamagnetic inequality it suffices to consider the situation with A ¼ 0: The latter was
treated in [33] by adapting an argument in the proof of Lemma 3.4 in [16].

2. Proof of Lemma 1.7

This section contains the probabilistic arguments which enter Lemma 1.7.

Proof of Lemma 1.7. To begin with, we establish the bound (1.13). In so doing we

also show that the Brownian-bridge functional b/expf�StðA;V ; bÞg is m0;tx;y-

integrable and hence (1.11) well defined. To this end, we successively apply the
triangle and the Cauchy–Schwarz inequality to the (absolute square of the)
Brownian-bridge expectation in (1.11)

Z
m0;tx;yðdbÞe�StðA;V ;bÞ

����
����
2

p
Z

m0;tx;yðdbÞje�StðA;V ;bÞj
� �2

¼
Z

m0;tx;yðdbÞe�Stð0;V ;bÞ
� �2

p
Z

m0;tx;yðdbÞe�Stð0;2V1;bÞ
Z

m0;tx;yðdbÞe�Stð0;2V2;bÞ: ð2:1Þ

It follows from Eq. (1.3.5) in [46] thatZ
m0;tx;yðdbÞe�Stð0;2V1;bÞpC0ðtÞ expfjx � yj2=ð4tÞg ð2:2Þ

thanks to V1AK7ðRdÞ by property (V). Here C0ðtÞ is strictly positive and

continuous in tA�0;N½: Moreover, it is independent of x; yARd : As to the second
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expectation in the last line of (2.1), inequality (1.4) and the proof of Theorem 2.1 in

[43] give for all l40 and all eA�0; ðlt2Þ�1½ the estimateZ
m0;tx;yðdbÞe�Stð0;lV2;bÞp

Z
m0;tx;yðdbÞeStð0;ljV2j;bÞpU ðlet2Þeltvee2letðjxj

2þjyj2Þ; ð2:3Þ

where U ðxÞ :¼
R 1
0 ds½1� 4xsð1� sÞ��d=2 is increasing in x and finite for all xA½0; 1½:

Together with (2.2) and (2.1), estimate (2.3) with l ¼ 2 establishes (1.13) for all

dA�0; t�1½ by identifying d with 2et: For arbitrary dXt�1 estimate (1.13) then follows

from the monotonicity of d/edjxj
2þdjyj2 :

Next, we prove the properties of kt claimed in part (i) of the lemma. The
Hermiticity and the semigroup property of kt are a consequence of the time-reversal
invariance and the Markov property of the Brownian bridge, respectively. This
follows from the line of reasoning in the proof of Eqs. (1.3.6) and (1.3.7) in [46]. For
the proof of the continuity of kt we refer to Corollary 2.3.
Finally, we turn to the proof of part (iii). The claim (1.14) is immediate from the

estimate (1.13). The semigroup property (1.12) and the Hermiticity give

jjktðx; 
Þ � ktðz; 
Þjj22 ¼ k2tðx; xÞ � k2tðz; xÞ � k2tðx; zÞ þ k2tðz; zÞ ð2:4Þ

for all x; zARd : This equality together with the continuity of k2t establishes the

strong continuity of the mapping Rd-L2ðRdÞ; x/ktðx; 
Þ: &

Lemma 2.2 below is our basic technical result for deducing the already claimed
continuity of kt: It will also enter the proof of the Feynman–Kac–Itô formula in the
next section. For both purposes Lemma 2.2 will provide an approximation
argument. We use it to deduce the desired properties from corresponding ones of
Schrödinger semigroups with regularized scalar potentials which are Kato
decomposable.

Definition 2.1. Given any real R40 and a scalar potential V with property (V), we

define a regularized scalar potential VRAL2
locðRdÞ-K7ðRdÞ by setting

VR :¼ V1 þ V2;R; ð2:5Þ

where its truncated part x/V2;RðxÞ :¼ YðR � jxjÞV2ðxÞ lies in LNðRdÞ:

Lemma 2.2. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). For t40; R41 and x; yARd define the regularized kernel

k
ðRÞ
t ðx; yÞ :¼ e�jx�yj2=ð2tÞ

ð2ptÞd=2

Z
m0;tx;yðdbÞe�StðA;VR;bÞ: ð2:6Þ
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Then for every triple t1; t2; *rA�0;N½ with t1pt2 there exists rA�0;N½ such that one

has the uniform-type-of convergence

lim
R-N

sup
x;yARd

sup
tA½t1;t2�

½erjxj
2� *rjyj2 jktðx; yÞ � k

ðRÞ
t ðx; yÞj� ¼ 0: ð2:7Þ

Proof. Given a Hölder exponent pA�1;N½; we denote by p0 :¼ ð1� p�1Þ�1 its
conjugate exponent. Moreover, we let tA½t1; t2� arbitrary. Then the triangle and the
Hölder inequality yield

Z
m0;tx;yðdbÞ½e�StðA;V ;bÞ � e�StðA;VR;bÞ�

����
����

p
Z

m0;tx;yðdbÞe�Stð0;V1;bÞje�Stð0;V2;bÞ � e�Stð0;V2;R;bÞj

p
Z

m0;tx;yðdbÞe�Stð0;pV1;bÞ
� �1

p
Z

m0;tx;yðdbÞje�Stð0;V2;bÞ � e�Stð0;V2;R;bÞjp
0

� �1
p0

: ð2:8Þ

The first expectation in the last line of (2.8) is bounded according to

Z
m0;tx;yðdbÞe�Stð0;pV1;bÞ

� �1=p

pC1 expfjx � yj2=ð4t1pÞg; ð2:9Þ

confer (2.2). Here C1 � C1ðp; t1; t2Þ is a finite constant. In order to bound the second
expectation in the last line of (2.8) we employ the elementary inequality jer �
er0 jpjr � r0jemaxfr;r0g for r; r0AR together with jV2;RjpjV2j and the Cauchy–Schwarz

inequality. This gives

Z
m0;tx;yðdbÞje�Stð0;V2;bÞ � e�Stð0;V2;R;bÞjp

0

p
Z

m0;tx;yðdbÞeStð0;p0jV2j;bÞjStð0;V2 � V2;R; bÞjp
0

p
Z

m0;tx;yðdbÞeStð0;2p0jV2j;bÞ
� �1=2 Z

m0;tx;yðdbÞjStð0;V2 � V2;R; bÞj2p0
� �1=2

: ð2:10Þ

The first expectation in the last line of (2.10) can be estimated as in (2.3),

Z
m0;tx;yðdbÞeStð0;2p0 jV2j;bÞpC

2p0

2 expf4p0et2ðjxj2 þ jyj2Þg; ð2:11Þ

where eA�0; ð2p0t22Þ
�1½ is arbitrary and C2 � C2ðp; e; t2Þ is another finite constant.

Here we have used the monotonicity of the right-hand side of (2.3) in t: To bound the
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second expectation in the last line of (2.10) we observe that

jV2ðxÞ � V2;RðxÞjpðejxj2 þ veÞYðjxj � RÞpðeþ veÞ
jxj4

R2
ð2:12Þ

for all e40 and Lebesgue-almost all xARd : Here we have exploited R41 and the

‘‘Chebyshev’’ inequality Yðx� 1Þpx2; xAR: By the Jensen and the triangle
inequality, Fubini’s theorem and upon standardizing the Brownian bridge according

to bðsÞ ¼: t1=2b̃ðs=tÞ þ x þ ðy � xÞs=t; estimate (2.12) yieldsZ
m0;tx;yðdbÞjStð0;V2 � V2;R; bÞj2p0

p
ðeþ veÞt

R2

� �2p0Z t

0

ds

t

Z
m0;tx;yðdbÞjbðsÞj8p0

¼ ðeþ veÞt
R2

� �2p0Z 1

0

ds
Z

m0;10;0ðdb̃Þjt1=2b̃ðsÞ þ x þ ðy � xÞsj8p0 : ð2:13Þ

This result and several applications of the elementary inequality

jr þ r0jap2aðjrja þ jr0jaÞ ð2:14Þ

for a40 and r; r0ARd show that there exist two further finite constants C3 � C3ðp; eÞ
and C4 � C4ðp; eÞ such that

Z
m0;tx;yðdbÞjStð0;V2 � V2;R; bÞj2p0

� �1=ð2p0Þ
p

t2
R2

½C3t22 þ C4ðjxj4 þ jyj4Þ�: ð2:15Þ

Combining (2.8)–(2.11) and (2.15), we obtain

Z
m0;tx;yðdbÞ½e�StðA;V ;bÞ � e�StðA;VR;bÞ�

����
����

p
C1C2t2

R2
½C3t22 þ C4ðjxj4 þ jyj4Þ� exp jx � yj2

4t1p
þ 2et2ðjxj2 þ jyj2Þ

( )
ð2:16Þ

for all tA½t1; t2�; all eA�0; ð2p0t22Þ
�1½ and all x; yARd : Another application of (2.14)

and choosing p ¼ 2t2=t1X2 then yields

sup
tA½t1;t2�

½erjxj
2� *rjyj2 jktðx; yÞ � k

ðRÞ
t ðx; yÞj�

p
C1C2t2

R2ð2pt1Þd=2
½C3t22 þ C4ðjxj4 þ jyj4Þ�

	 expf�½1=ð4t2Þ � 4r� 8et2�jx � yj2 � ð *r� 4r� 10et2Þjyj2g ð2:17Þ

ARTICLE IN PRESS
K. Broderix et al. / Journal of Functional Analysis 212 (2004) 287–323 305



for all r; *r40; all eA�0; ð2t2 � t1Þ=ð4t32Þ½ and all x; yARd : The assertion of the lemma

now follows by choosing r and e so small that 4rþ 10et2ominf *r; ð4t2Þ�1g: &

Lemma 2.2 possesses an immediate corollary, which completes the proof of
Lemma 1.7.

Corollary 2.3. The function

�0;N½	Rd 	 Rd-C; ðt; x; yÞ/ktðx; yÞ ð2:18Þ

is continuous under the assumptions of Lemma 1.7.

Proof. Since by assumption VR lies in K7ðRdÞ and both jAj2 and r 
 A lie in

KlocðRdÞ; Theorem 6.1 in [10] for the case dX2; respectively, Proposition 1.3.5 in
[46] for the case d ¼ 1; guarantee the continuity of the function

�0;N½	Rd 	 Rd-C; ðt; x; yÞ/k
ðRÞ
t ðx; yÞ ð2:19Þ

for all R40: But according to Lemma 2.2 the kernel k� is the locally uniform limit of

k
ðRÞ
� as R-N: Hence, k� inherits the continuity properties of k

ðRÞ
� : &

3. Proofs of Theorems 1.10 and 1.12

Given the two probabilistic Lemmas 1.7 and 2.2, the additional arguments needed
to prove Theorems 1.10 and 1.12 are purely analytic. First, we exploit the fact that
the function kt; as defined in Lemma 1.7, is a Carleman kernel [49].

Lemma 3.1. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). For t40 we denote by Kt the integral operator induced by

the kernel kt with domain

domðKtÞ :¼ cAL2ðRdÞ :
Z
Rd

dy ktð
; yÞcðyÞAL2ðRdÞ
� 


ð3:1Þ

and action

Ktc :¼
Z
Rd

dy ktð
; yÞcðyÞ ð3:2Þ

for all cAdomðKtÞ: Then Kt is a maximal Carleman operator, hence closed, and its

domain is dense thanks to the inclusion

L2
GðRdÞDdomðKtÞ: ð3:3Þ
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Moreover, the image Ktc of any cAdomðKtÞ has a continuous representative in L2ðRdÞ
given by the right-hand side of (3.2). If even cAL2

GðRdÞ; then, in addition,

KtcALN

G ðRdÞ:

Proof of Lemma 3.1. By Lemma 1.7(i) and (iii) we know that kt is a Hermitian
Carleman kernel. Thus, Theorem 6.13(a) in [49] yields the closedness of the induced
maximal Carleman operator Kt: The inclusion (3.3) is implied by Remark 1.6(i) and

the inclusion KtL
2
GðRdÞDLN

G ðRdÞ; which we prove next. To do so, we note that

(1.13) implies

sup
xARd

½erjxj
2

jktðx; yÞj�pa
ðdÞ
t eð4rþ5dÞjyj

2

ð3:4Þ

for all r; d40 with rþ do1=ð16tÞ and all yARd : In deriving (3.4) we have also used
the elementary inequality (2.14) with r ¼ x � y; r0 ¼ y and a ¼ 2:

Consequently, given any cAL2
GðRdÞ; we get

ess sup
xARd

jerjxj
2

ðKtcÞðxÞjpa
ðdÞ
t

Z
Rd

dy eð4rþ5dÞjyj
2

jcðyÞj: ð3:5Þ

Now, choosing r and d small enough, the right-hand side of (3.5) is finite since

L2
GðRdÞDL1

GðRdÞ by Remark 1.6(i).

In order to complete the proof of the lemma we have to show the continuity of
Ktc for all cAdomðKtÞ: To this end we observe

jðKtcÞðxÞ � ðKtcÞðx0Þjpjjcjj2jjktðx; 
Þ � ktðx0; 
Þjj2 ð3:6Þ

by the triangle and the Cauchy–Schwarz inequality for all x; x0ARd : The desired
result now follows from the strong continuity of x/ktðx; 
Þ in Lemma 1.7(iii). &

We will eventually prove Theorem 1.10 by showing the operator equality Kt ¼
e�tHðA;VÞ: As an initial step we recall Definition 2.1 and employ Lemma 2.2 in order

to establish strong convergence of the regularized operator exponentials e�tHðA;VRÞ to

Kt on L2
GðRdÞ as R-N:

Lemma 3.2. Let t40; cAL2
GðRdÞ and suppose the assumptions of Theorem 1.10. Then

lim
R-N

jje�tHðA;VRÞc� Ktcjj2 ¼ 0 ð3:7Þ

holds.

Proof. We recall from Theorem 6.1 in [10] for the case dX2; respectively, from
Eq. (6.6) in [40] or from Eqs. (1.3.3), (1.3.4) and Exercise 1.4.2 in [46] for the case
d ¼ 1; the Feynman–Kac–Itô formula for the bounded semigroup with the
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regularized potential

e�tHðA;VRÞc ¼
Z
Rd

dy k
ðRÞ
t ð
; yÞcðyÞ; ð3:8Þ

valid for all cAL2ðRdÞ: Now, given any cAL2
GðRdÞ there exists *r40 such that

jje *rj
j2cjj1oN by Remark 1.6(i). Lemma 2.2 then yields the existence of r40 such

that the right-hand side of the estimate

jje�tHðA;VRÞc� Ktcjj22 ¼
Z
Rd

dx

Z
Rd

dy½kðRÞ
t ðx; yÞ � ktðx; yÞ�cðyÞ

����
����
2

p
Z
Rd

dx e�2rjxj
2

Z
Rd

dy e *rjyj2 jcðyÞj
�

	 erjxj
2� *rjyj2 jkðRÞ

t ðx; yÞ � ktðx; yÞj
�2

p sup
x;yARd

ðerjxj
2� *rjyj2 jkðRÞ

t ðx; yÞ � ktðx; yÞjÞ
" #2

	 ½p=ð2rÞ�d=2jje *rj
j2cjj21 ð3:9Þ

vanishes as R-N: &

Remark 3.3. One can even show that the convergence in Lemma 3.2 holds with

respect to the LpðRdÞ-norm for arbitrary pA½1;N�; if one requires cALp
GðRdÞ; see

also Remark 1.11(iii).

The next lemma concerns a certain stability of strong-resolvent convergence. It
will be the basis for an argument similar to the one provided by Theorem 3.1 in [43].

Lemma 3.4. For nAN let An and A be self-adjoint operators acting on a complex

Hilbert space and let G :R-R be a continuous function. Define GðAnÞ for nAN and

GðAÞ via the spectral theorem and the functional calculus as self-adjoint operators.

Then strong-resolvent convergence of An to A as n-N implies strong-resolvent

convergence of GðAnÞ to GðAÞ:

Proof. For zAC with Im za0 we define the bounded continuous function Rz :R-C;

l/RzðlÞ :¼ ðl� zÞ�1: Hence, the composition Rz 3 G is also a bounded and
continuous function on R: Therefore, ðRz 3 GÞðAnÞ ¼ RzðGðAnÞÞ converges strongly
to ðRz 3 GÞðAÞ ¼ RzðGðAÞÞ as n-N by Theorem VIII.20(b) in [38] or Theorem 9.17
in [49]. &
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Having these auxiliary results at our disposal, we can proceed to prove—as an
intermediate step—Theorem 1.10(ii), which is analogous to the claim of Remark 1
after Theorem 1.2 in [43].

Lemma 3.5. Let t40: Under the assumptions of Theorem 1.10 one has

L2
GðRdÞDdomðe�tHðA;VÞÞ and the Feynman–Kac–Itô formula

e�tHðA;VÞc ¼ Ktc ð3:10Þ

holds for all cAL2
GðRdÞ: In particular, e�tHðA;VÞ and thus Kt are both symmetric on

L2
GðRdÞ:

Proof of Lemma 3.5. The Schrödinger operators HðA;VÞ and HðA;VRÞ; R40; are

all essentially self-adjoint on CN

0 ðRdÞ according to Proposition 1.3 and Definition

1.4. Moreover, HðA;VRÞ converges strongly to HðA;VÞ on CN

0 ðRdÞ as R-N: This
can be inferred from (1.4) and the estimate

jjHðA;VRÞj� HðA;VÞjjj22 ¼
Z
Rd

dxjV ðRÞ
2 ðxÞ � V2ðxÞj2jjðxÞj2

p
Z
Rd

dx Yðjxj � RÞðejxj2 þ veÞ2jjðxÞj2; ð3:11Þ

which is valid for all e40 and all jACN

0 ðRdÞ: The right-hand side of (3.11)

vanishes, if R is large enough. Therefore, Theorem VIII.25(a) in [38] implies that
HðA;VRÞ converges to HðA;VÞ in strong-resolvent sense as R-N; and thus,

thanks to Lemma 3.4, e�tHðA;VRÞ converges to e�tHðA;VÞ as R-N in strong-resolvent

sense for all t40: Since the operators e�tHðA;VRÞ and e�tHðA;VÞ are self-adjoint, strong-

resolvent convergence is equivalent to e�tHðA;VÞ being the strong-graph limit of

e�tHðA;VRÞ as R-N by Theorem VIII.26 in [38]. Thus, by definition of this limit, the
graph

Gt :¼ fðc;fÞAL2ðRdÞ 	 L2ðRdÞ : cAdomðe�tHðA;VÞÞ;f ¼ e�tHðA;VÞcg ð3:12Þ

of e�tHðA;VÞ consists of all pairs ðc;fÞAL2ðRdÞ 	 L2ðRdÞ for which there exists a

sequence fcRgR with cRAdomðe�tHðA;VRÞÞ ¼ L2ðRdÞ such that

lim
R-N

ðjjcR � cjj2 þ jje�tHðA;VRÞcR � fjj2Þ ¼ 0: ð3:13Þ

According to Lemma 3.2 the convergence in (3.13) holds for every cAL2
GðRdÞ; if we

set cR ¼ c and f ¼ Ktc; that is,

Gt+fðc;fÞAL2ðRdÞ 	 L2ðRdÞ : cAL2
GðRdÞ;f ¼ Ktcg: ð3:14Þ
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This implies L2
GðRdÞDdomðe�tHðA;VÞÞ and (3.10). Moreover, the restriction of the

self-adjoint operator e�tHðA;VÞ to L2
GðRdÞ yields a symmetric operator. &

Having settled Lemma 3.5, we are in a position to establish Theorem 1.12 on the

semigroup properties of the family fe�tHðA;VÞgtX0:

Proof of Theorem 1.12. (i) The validity of the semigroup law (1.18) on L2
GðRdÞ relies

on the functional calculus for unbounded functions of unbounded self-adjoint
operators, see e.g. Chapter 5 in [7], on Lemma 3.5 and on the inclusion

KtL
2
GðRdÞDLN

G ðRdÞ; which was proven in Lemma 3.1. The latter two ensure that

both sides of (1.18) are well defined on L2
GðRdÞ:

(ii) Strong continuity of the orbit mapping uc for cAL2
GðRdÞ follows from the

functional calculus, too, in that

jjucðt þ hÞ � ucðtÞjj22 ¼
Z
R

/c;PðdEÞcSðe�ðtþhÞE � e�tEÞ2 ð3:15Þ

for all tA½0;N½ and all hA½�t;N½: Here P denotes the projection-valued spectral
measure of the Schrödinger operator H :¼ HðA;VÞ; that is, PðIÞ :¼ wIðHÞ for Borel
sets IDR: Indeed, the integral in (3.15) vanishes in the limit h-0 by the dominated-
convergence theorem, because we may assume hA½�t; h0� with some h0A�0;N½ so
that the function R{E/ð1þ 2e�ðtþh0ÞEÞ2 dominates the integrand of (3.15) and is

/c;Pð
ÞcS-integrable due to cAL2
GðRdÞ: In the special case t ¼ 0; this procedure

gives the only meaningful right-sided limit hk0:

(iii) First we claim CN

0 ðRdÞCdomðHe�tHÞ: Since CN

0 ðRdÞCdomðe�tHÞ; this

follows from Theorem 5.2.9(c) in [7], if

Z
R

/j;PðdEÞjSðEe�tEÞ2oN ð3:16Þ

for all jACN

0 ðRdÞ: The latter holds true, because ðEe�tEÞ2pE2 þ e�2t0E for all EAR

with some t04t and because CN

0 ðRdÞCdomðHÞ-domðe�t0HÞ: Next we compute the
strong derivative of uj for jACN

0 ðRdÞ: To this end, we consider the squared norm

jjh�1ðe�ðtþhÞHj� e�tHjÞ þ He�tHjjj22

¼
Z
R

/j;PðdEÞjS½h�1ðe�ðtþhÞE � e�tEÞ þ Ee�tE �2 ð3:17Þ

for hA� � t; 1�\f0g and claim that it vanishes in the limit h-0: (In the
special case t ¼ 0; the limit gives the only meaningful right-sided derivative.)
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This follows from the dominated-convergence theorem and the h-independent

upper bound 2E2ð2þ e�2tE þ 2e�2ðtþ1ÞEÞ for the integrand in (3.17). This bound is

/j;Pð
ÞjS-integrable as a function of E because of jACN

0 ðRdÞCdomðHÞ
and (3.16).
It remains to show that uj is the unique solution of the initial-value problem (1.19).

To this end, let F be an arbitrary solution of (1.19) and fix t40 arbitrary. By the

above reasoning one has d
ds

e�ðt�sÞHg ¼ He�ðt�sÞHg in the strong sense for arbitrary

sA�0; t½ and arbitrary gACN

0 ðRdÞ: As a consequence, one finds

d

ds
/e�ðt�sÞHg;FðsÞS ¼ /He�ðt�sÞHg;FðsÞS�/e�ðt�sÞHg;HFðsÞS ¼ 0 ð3:18Þ

by the assumptions on F and the self-adjointness of H: Hence, the fundamental
theorem of calculus implies

0 ¼
Z t

0

ds
d

ds
/e�ðt�sÞHg;FðsÞS ¼ /g;FðtÞS�/e�tHg;Fð0ÞS

¼/g;FðtÞS�/g; e�tHjS ¼ /g;FðtÞ � ujðtÞS: ð3:19Þ

The denseness of CN

0 ðRdÞ in L2ðRdÞ completes the proof of uniqueness. &

An immediate consequence of the just-proven Theorem 1.12 is

Corollary 3.6. Assume the situation of Theorem 1.10. Then L2
GðRdÞ is an operator core

for e�tHðA;VÞ for all t40:

Proof. By Theorem 1.12 and the symmetry of e�tHðA;VÞ on L2
GðRdÞ; see Lemma 3.5,

all three assumptions of Theorem 1 in [35] are fulfilled by choosing there a ¼
tA�0;N½; St ¼ e�tHðA;VÞ with domðStÞ ¼ L2

GðRdÞ and D ¼ L2
GðRdÞ: In this context,

we recall from Lemma 3.5 that e�tHðA;VÞ is symmetric on L2
GðRdÞ and from Theorem

1.12 that the mapping ½0;N½{t //c; ucðtÞS is continuous—and hence Borel

measurable—for every cAL2
GðRdÞ due to the strong continuity of the orbit mapping

uc: Therefore the claim follows from Theorem 1 in [35]. &

The remaining part of the proof of Theorem 1.10 is provided by

Lemma 3.7. Assume the situation of Theorem 1.10 and let Kt be defined as in Lemma

3.1. Then one has the equality

Kt ¼ e�tHðA;VÞ: ð3:20Þ
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Proof. We follow [4] or [45] and introduce the restriction K0
t :¼ KtjdomðK0

t Þ of the

maximal Carleman operator Kt to the subspace

domðK0
t Þ :¼ fcAdomðKtÞ : ktcAL1ðRdÞg; ð3:21Þ

where the function Rd{x/ktðxÞ :¼ jjktðx; 
Þjj2 ¼ ½k2tðx; xÞ�1=2 is well defined and

continuous because of Lemma 1.7(iii). Estimate (1.13) in Lemma 1.7 and Remark

1.6(i) imply L2
GðRdÞDdomðK0

t Þ: Thus, the Feynman–Kac–Itô formula from Lemma

3.5 leads to

e�tHðA;VÞjL2
GðR

d Þ ¼ KtjL2
GðR

d Þ ¼ K0
t jL2

GðR
d ÞDK0

t : ð3:22Þ

Here, as usual, the notation ADB means that the operator B is an extension of the

operator A: By Theorem 10.1 in [45] the operator K0
t is symmetric, hence closable.

Taking the closure of (3.22) with respect to the graph norm and exploiting Corollary

3.6, we get e�tHðA;VÞDK0
t : Since K0

t is symmetric, so is its closure K0
t : Therefore we

conclude

e�tHðA;VÞ ¼ K0
t ; ð3:23Þ

because self-adjoint operators are maximally symmetric. Furthermore, we observe

the equalities K0
t ¼ ðK0

t Þ
� ¼ ðK0

t Þ
� ¼ Kt; which hold according to (3.23), Theorem

VIII.1(c) in [38] and Theorem 10.1 in [45]. This completes the proof. &

Finally, we gather our previous results to complete the

Proof of Theorem 1.10. Corollary 3.6 has established that L2
GðRdÞ is an operator

core for e�tHðA;VÞ: The remaining assertions of Theorem 1.10 follow from Lemmas
3.7, 3.1 and 1.7(iii). &

4. Proofs of Theorem 1.14 and Corollaries 1.16 and 1.18

The following lemma is in the spirit of Theorem B.7.8 in [42], but, among others,
we do not assume that the operator M is bounded.

Lemma 4.1. Let M be the maximal self-adjoint Carleman operator induced by the

Borel-measurable and Hermitian integral kernel m :Rd 	 Rd-C in the sense that

CN

0 ðRdÞCdomðMÞ :¼ cAL2ðRdÞ :
Z
Rd

dy mð
; yÞcðyÞAL2ðRdÞ
� 


;

Mc ¼
Z
Rd

dy mð
; yÞcðyÞ ð4:1Þ

ARTICLE IN PRESS
K. Broderix et al. / Journal of Functional Analysis 212 (2004) 287–323312



for all cAdomðMÞ; mðx; yÞ ¼ m�ðy; xÞ for Lebesgue-almost all pairs ðx; yÞARd 	 Rd

and m has the Carleman property (1.15). Assume further that x/mð
; xÞ defines a

strongly continuous mapping from Rd to L2ðRdÞ: Finally, let B be a bounded operator

on L2ðRdÞ such that MB and MB� are also bounded and that MBM admits a bounded

closed extension MBM to all of L2ðRdÞ: Then

(i) MBM is a bounded Carleman operator induced by the continuous

integral kernel b :Rd 	 Rd-C; ðx; yÞ/bðx; yÞ :¼ /mð
; xÞ;Bmð
; yÞS in the sense

that

MBMc ¼
Z
Rd

dybð
; yÞcðyÞ ð4:2Þ

for all cAL2ðRdÞ and that b has the Carleman property (1.15).

(ii) the left-hand side of (4.2) has a continuous representative in L2ðRdÞ; which is

given by the right-hand side of (4.2);

(iii) for any wALNðRdÞ with
R
Rd	Rd dx dyjwðxÞj2jmðx; yÞj2oN the product MBMŵ

is a Hilbert–Schmidt operator with squared norm given by

Trace½ŵ�jMBMj2ŵ� ¼
Z
Rd

dxjwðxÞj2
Z
Rd

dyjbðx; yÞj2: ð4:3Þ

Here ŵ is the bounded multiplication operator uniquely corresponding to w; and ŵ�

denotes its Hilbert adjoint.

Proof. The strong continuity of the mapping Rd-L2ðRdÞ; x/mð
; xÞ; the triangle
and the Cauchy–Schwarz inequality imply the continuity of the functionM :Rd-R;
x/MðxÞ :¼ jjmð
; xÞjj2 because jMðxÞ �Mðx0Þjpjjmð
; xÞ � mð
; x0Þjj2: Now, for

every jACN

0 ðRdÞ and every cAL2ðRdÞ the Cauchy–Schwarz inequality provides the
estimate

Z
Rd	Rd

dx dyjcðyÞj jmðy; xÞj jjðxÞjpjjcjj2jjjjj2jjMwsupp jjj2oN ð4:4Þ

due to the continuity of M: Therefore, (4.1) and Fubini’s theorem yield

/Mj;cS ¼
Z
Rd

dx j�ðxÞ/mð
; xÞ;cS; ð4:5Þ

where the scalar product in the integrand is well defined, because, by hypothesis,

mð
; xÞAL2ðRdÞ for all xARd : Next, we consider a sequence ðcnÞnANCCN

0 ðRdÞ with
limn-N jjcn � cjj2 ¼ 0 and supnANfjjcnjj2gp2jjcjj2: From the boundedness of
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MBM; the continuity of the scalar product /
; 
S and (4.5) we conclude

/j;MBMcS ¼ lim
n-N

/j;MBMcnS

¼ lim
n-N

/Mj;BMcnS

¼ lim
n-N

Z
Rd

dx j�ðxÞ/mð
; xÞ;BMcnS

¼ lim
n-N

Z
Rd

dx j�ðxÞ/MB�mð
; xÞ;cnS: ð4:6Þ

Since

sup
nAN

j/MB�mð
; xÞ;cnSjp2jjMB�jj jjcjj2MðxÞ ð4:7Þ

for all xARd ; MB� is bounded and M is continuous, the dominated-convergence
theorem and the continuity of the scalar product yield

/j;MBMcS ¼
Z
Rd

dx j�ðxÞ/MB�mð
; xÞ;cS ð4:8Þ

for all jACN

0 ðRdÞ and all cAL2ðRdÞ: Moreover, the function

Rd{x//MB�mð
; xÞ;cS belongs to LN

locðRdÞ; confer (4.7), so that the lemma of

Du Bois–Reymond—also known as the fundamental lemma of the calculus of
variations, see e.g. Lemma 3.26 in [1]—implies

ðMBMcÞðxÞ ¼/MB�mð
; xÞ;cS

¼
Z
Rd

dy

Z
Rd

dz mðy; zÞðB�mð
; xÞÞðzÞ
� ��

cðyÞ

¼
Z
Rd

dy/mð
; xÞ;Bmð
; yÞScðyÞ ð4:9Þ

for Lebesgue-almost all xARd and all cAL2ðRdÞ: To get the last equality, we have
also used the Hermiticity, mðx; yÞ ¼ m�ðy; xÞ for Lebesgue-almost all pairs

ðx; yÞARd 	 Rd : This proves (4.2).
The Carleman property (1.15) for b follows from part (iii) of the lemma (to be

proven below). Indeed, since m is Hermitian and since M is continuous, one may

choose w ¼ wL in (4.3) for an arbitrary bounded Borel subset LCRd : This completes
the proof of part (i).
The proof of assertion (ii) follows from the first equality in (4.9), the fact that the

mapping Rd-L2ðRdÞ; x/mð
; xÞ; is strongly continuous, MB� is bounded and
/
; 
S is continuous.
For the proof of assertion (iii) we exploit our assumption on w; the maximality of

the Carleman operator M; (4.1) and Theorem VI.23 in [38] to conclude that Mŵ is
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Hilbert–Schmidt. Therefore, MBMŵ ¼ MBMŵ is Hilbert–Schmidt, too, by the
boundedness of MB and the Hölder inequality for Schatten norms, see e.g.

Theorem 2.8 in [41]. Thanks to wALNðRdÞ and Eq. (4.2) we have MBMŵc ¼R
Rd dybð
; yÞwðyÞcðyÞ for all cAL2ðRdÞ: Hence (4.3) follows from an anew

application of Theorem VI.23 in [38]. &

After these preparations it is easy to deduce Theorem 1.14 as a special case.

Proof of Theorem 1.14. We apply Lemma 4.1 with the choices M ¼ e�tHðA;VÞ and

B ¼ e2tHðA;VÞFðHðA;VÞÞ; where tA�0; t=2½:
This is allowed, because Theorem 1.10 ensures that e�tHðA;VÞ is a maximal

Carleman operator with the required properties, recall Remark 1.6(ii), Lemma 1.7
and Remark 1.8(iv).
Furthermore, we observe from (1.20) and the functional calculus for

unbounded functions of unbounded self-adjoint operators, see e.g. Chapter 5

in [7], that the operator product B ¼ e2tHðA;VÞFðHðA;VÞÞ is bounded. The
functional calculus also guarantees that the two operator products MB and MB�

are bounded and that the equality MBM ¼ FðHðA;VÞÞ holds on domðMÞ:
The latter implies the boundedness of MBM ¼ FðHðA;VÞÞ; because
FALNðRÞ:
Finally, the finiteness of the integral

R
Rd	Rd dx dyjwðxÞj2jktðx; yÞj2 for all

wALN

G ðRdÞ follows from the estimate (1.13) with sufficiently small d40; inequality
(2.14) and Remark 1.6(i). Thus, all assumptions of Lemma 4.1 are fulfilled and

Theorem 1.14 holds with f ¼ b and for all wALN

G ðRdÞ: &

Next we show how to deduce Corollary 1.16 from Theorem 1.14.

Proof of Corollary 1.16. Clearly, choosing F ¼ wI in Theorem 1.14 is in
accordance with (1.20) because of sup IoN: Therefore, part (i) of this
theorem yields the existence and continuity of the integral kernel pI of
wI ðHðA;VÞÞ: To derive (1.24) we note that the operator ŵ�wIðHðA;VÞÞŵ is trace

class by Theorem 1.14(iii) and w2I ¼ wI : Moreover, thanks to wALN

G ðRdÞ the

L2ðRd 	 RdÞ-function ðx; yÞ/w�ðxÞpIðx; yÞwðyÞ is an integral kernel for

ŵ�wIðHðA;VÞÞŵ: Recalling that LcðxÞ is the open cube in Rd with edge length

c40 and centre xARd ; an application of Theorem 3.1 in [8], see also [6] or [9], gives
the equality

Trace½ŵ�wI ðHðA;VÞÞŵ�

¼
Z
Rd

dx lim
ck0

c�2d

Z
LcðxÞ	LcðxÞ

dx0 dy0w�ðx0ÞpI ðx0; y0Þwðy0Þ: ð4:10Þ
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The continuity of pI and the Lebesgue differentiation theorem, see e.g. Sections I.1.3
and I.1.8 in [44], now complete the proof because

lim
ck0

c�2d

Z
LcðxÞ	LcðxÞ

dx0 dy0w�ðx0ÞpI ðx0; y0Þwðy0Þ

¼ pI ðx; xÞ lim
ck0

c�d

Z
LcðxÞ

dx0wðx0Þ
�����

�����
2

¼ pI ðx; xÞjwðxÞj2 ð4:11Þ

for Lebesgue-almost all xARd : &

Now we are concerned with the second corollary to Theorem 1.14.

Proof of Corollary 1.18. We fix x; yARd : In the first case we apply the functional
calculus to the right-hand side of (1.21). This gives

f ðx; yÞ ¼
Z
R

dWtðE; x; yÞe2tEFðEÞ ð4:12Þ

for any tA�0; t=2½ with the complex spectral ‘‘distribution’’ function WtðE;x; yÞ :¼
/ktð
; xÞ; w��N;E½ðHðA;VÞÞktð
; yÞS:Here, t40 is the constant required to exist for F

in (1.20). In particular, for F ¼ w��N;E0½ with E0AR; Eq. (4.12) takes the form

pðE0; x; yÞ ¼
Z E0

�N

dWtðE; x; yÞe2tE : ð4:13Þ

This equation holds for arbitrary t40; because t can be chosen arbitrarily large in
this particular case. Taken together, (4.12) and (4.13) yield claim (1.25).
In the second case we may write

ktðx; yÞ ¼ /kt=2ð
; xÞ; kt=2ð
; yÞS ¼
Z
R

dWt=2ðE; x; yÞ ¼
Z
R

dpðE; x; yÞe�tE ð4:14Þ

for all t40: Here, the first equality is due to the Hermiticity and the semigroup
property of the kernel kt; the second equality is just the definition of Wt=2 and the last

equality follows from (4.13). &

For convenience, we formulate and prove simple estimates on the integral kernel
of a spectral projection in the remainder of this section. We will only need these
estimates for the applications to random Schrödinger operators.

Lemma 4.2. Assume the situation of Corollary 1.16. Then the diagonal

of the continuous integral kernel pI of the spectral projection wI ðHðA;VÞÞ obeys the
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estimates

0ppIðx; xÞpet sup I ktðx; xÞ ð4:15Þ

for all xARd with any tA�0;N½:

Proof. Fix xARd arbitrary, pick jACN

0 ðRdÞ and define jðeÞ
x by jðeÞ

x ðyÞ :¼ e�djððy �
xÞ=eÞ for every yARd and every eA�0; 1�: Then fjðeÞ

x geA�0;1�CL2ðRdÞ is a family of

approximating delta functions at xARd : By the continuity of pI and the dominated-
convergence theorem one gets the representation

pIðx; xÞ ¼ lim
ek0

/jðeÞ
x ; wIðHðA;VÞÞjðeÞ

x S: ð4:16Þ

The same arguments yield

ktðx; xÞ ¼ lim
ek0

/jðeÞ
x ; e�tHðA;VÞjðeÞ

x S ð4:17Þ

for any tA�0;N½: Claim (4.15) now follows from the functional calculus and the
elementary inequalities

0pwI ðEÞpetðsup I�EÞ ð4:18Þ

for all EAR: &

5. Proofs of Lemma 1.22 and Corollaries 1.27 and 1.29

Proof of Lemma 1.22. We mimic the proof of [30], see also Proposition V.3.2 in [12].
By the definition of pðdÞ in property (S) and since ðd=2Þp1=½p1 � pðdÞ�op2; we can
find nA�0; 2½ and rA�pðdÞ; p1½ such that

d

n
p1

p1 � r
o p2: ð5:1Þ

Next, we pick a constant cA�0;N½ and define

V
ðoÞ
2 ðxÞ :¼ V ðoÞðxÞYðcð1þ jxjnÞ � jV ðoÞðxÞjÞ; ð5:2aÞ

V
ðoÞ
1 ðxÞ :¼ V ðoÞðxÞ � V

ðoÞ
2 ðxÞ ð5:2bÞ

for all oAO and all xARd : Clearly, for every oAO the realization V
ðoÞ
2 satisfies (1.4)

for all e40: We will show below that V
ðoÞ
1 ALr

unif ;locðRdÞ for P-almost all oAO: This
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proves the lemma, because Lr
unif ;locðRdÞDKðRdÞ; see e.g. Eq. (A.21) in [42] for dX2

and note KðRÞ ¼ L1
unif ;locðRÞ:

In this proof we use the abbreviation LðyÞ :¼ L1ðyÞ for the open unit cube in Rd

with centre yARd : To prove P½V1ALr
unif ;locðRdÞ� ¼ 1 we apply the ‘‘Chebyshev–

Markov’’ inequality Yðx� 1Þpjxjk with k ¼ p1 � r40 to obtain for all oAO the
estimate

jjV ðoÞ
1 wLðyÞjjrr ¼

Z
LðyÞ

dxjV ðoÞðxÞjrY jV ðoÞðxÞj
cð1þ jxjnÞ � 1

� �
p

c̃ rjjV ðoÞwLðyÞjjp1p1

ð1þ jyjnÞp1�r ð5:3Þ

for all yAZd with some constant c̃A�0;N½; which is independent of yAZd : This
implies

X
yAZd

P½jjV1wLðyÞjjr41�p
X
yAZd

E Y
c̃jjVwLðyÞjjp1=r

p1

ð1þ jyjnÞðp1�rÞ=r
� 1

 !" #

p c̃ q
X
yAZd

E½jjVwLðyÞjjp1q=r
p1

�
ð1þ jyjnÞðp1�rÞq=r

: ð5:4Þ

In order to get the second inequality in (5.4), we used the ‘‘Chebyshev–Markov’’
inequality with k ¼ q; where q is chosen such that

d

n
p1

p1 � r
o

p1q

r
o p2: ð5:5Þ

The numerator in the second line of (5.4) is uniformly bounded in yAZd due to the
right inequality in (5.5), Jensen’s inequality and property (S). The left inequality in
(5.5) then assures that the series in the second line of (5.4) is summable, which implies
by the first Borel–Cantelli lemma

P½jjV1wLðyÞjjr41 for infinitely many yAZd � ¼ 0: ð5:6Þ

This delivers

P sup
yAZd

jjV1wLðyÞjjr ¼ N

" #
¼P½jjV1wLðy0Þjjr ¼ N for some y0AZd �

p
X
yAZd

P½jjV1wLðyÞjjr ¼ N�

p
X
yAZd

P½jjVwLðyÞjjp1 ¼ N�

¼ 0; ð5:7Þ
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where we have used the countable subadditivity of P for the first inequality and
jV1jpjV j as well as rop1 for the second inequality. The last equality in (5.7) follows
from property (S). Thus, we have shown

P½V1ALr
unif ;locðRdÞ� ¼ 1: & ð5:8Þ

For the proof of Corollaries 1.27 and 1.29 we need suitable measurability
properties of the involved integral kernels, which we establish in

Lemma 5.1. Let A be a vector potential with property (A) and let V be a random scalar

potential with property (S). Then there exists O0AA with PðO0Þ ¼ 1 such that for

every oAO0

(i) the operator exponential e�tHðA;V ðoÞÞ has a continuous integral kernel k
ðoÞ
t for any

t40 and the mapping

O0	�0;N½	Rd 	 Rd - C;

ðo; t; x; yÞ / k
ðoÞ
t ðx; yÞ

ð5:9Þ

is A0#Bð�0;N½Þ#BðRdÞ#BðRdÞ-measurable;

(ii) the spectral projection w��N;E½ðHðA;V ðoÞÞÞ has a continuous integral kernel

pðoÞðE; 
; 
Þ for any EAR and the mapping

O0 	 R	 Rd 	 Rd - C;

ðo;E; x; yÞ / pðoÞðE; x; yÞ
ð5:10Þ

is A0#BðRÞ#BðRdÞ#BðRdÞ-measurable.
Here, A0 is the restriction of the sigma-algebra A of O to O0; and given any Borel

set BDRd we denote by BðBÞ the sub-sigma-algebra of Borel sets in Rd which are

contained in B:

Proof. The existence and continuity of the integral kernels is guaranteed by
Corollary 1.24, Lemma 1.7, Theorem 1.10 and Corollary 1.16 (see also Corollary
1.18). The measurability claimed in (i) follows from the Brownian-bridge

representation (1.11) for k
ðoÞ
t : The claim of (ii) follows from (i), Corollary 1.18

and the invertibility of the Laplace transformation. &

Proof of Corollary 1.27. We fix EAR arbitrary. Lemma 5.1(ii) guarantees the
existence, continuity and suitable measurability properties of the integral kernel

pðoÞðE; 
; 
Þ of the spectral projection w��N;E½ðHðA;V ðoÞÞÞ for all oAO0AA with

PðO0Þ ¼ 1: Eq. (1.24) and Proposition 1.25 imply that

NðEÞ ¼ E

Z
G

dx

jGj pðE; x; xÞ
� �

ð5:11Þ
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is finite. Now the claim follows from Fubini’s theorem, because pðoÞðE; x; xÞX0 for

all oAO0 and all xARd ; see Lemma 4.2, and because E½pðE; x; xÞ� is independent of
xARd due to the Rd -ergodicity of V : &

Proof of Corollary 1.29. We fix t40 arbitrary. Lemma 5.1(i) guarantees the

existence, continuity and suitable measurability properties of the integral kernel k
ðoÞ
t

of the operator exponential e�tHðA;V ðoÞÞ for all oAO0AA with PðO0Þ ¼ 1: Jensen’s

inequality, Fubini’s theorem and property (L) imply for m0;tx;y-almost every path b of

the Brownian bridge the estimate

E exp �
Z t

0

dsVðbðsÞÞ
� 
� �

p
Z t

0

ds

t
E½expf�tVðbðsÞÞg�pLtoN; ð5:12Þ

which shows that the integral kernel kt is well defined and obeys the inequality

jktðx; yÞjpE½jktðx; yÞj�pLt

e�jx�yj2=ð2tÞ

ð2ptÞd=2
ð5:13Þ

for all x; yARd ; thereby proving (1.33). The Hermiticity of kt is inherited from that of

kt; see Lemma 1.7(i). The estimate (5.13) also yields ktðx; 
ÞALN

G ðRdÞ for all xARd ;

and hence the Carleman property (1.15) for kt: We defer the proof of the continuity

of kt to the end, but exploit its consequences right now. Jensen’s inequality, Fubini’s
theorem and the almost-surely applicable Markov property (1.12) yield the estimate

jjktðx; 
Þ � ktðz; 
Þjj22p
Z
Rd

dy E½jktðx; yÞ � ktðz; yÞj2�

¼ k2tðx; xÞ � k2tðz; xÞ � k2tðx; zÞ þ k2tðz; zÞ; ð5:14Þ

showing that the continuity of k2t implies the strong continuity of the mapping

Rd-L2ðRdÞ; x/ktðx; 
Þ:
The estimate (5.13) delivers

jTtcjpLte
�tHð0;0Þjcj ð5:15Þ

for all cAL2ðRdÞ; where Tt is defined in (1.34). Consequently, Tt is a bounded

Carleman operator on L2ðRdÞ: Moreover, Tt is self-adjoint because of the

Hermiticity of kt and an interchange of integrations thanks to (5.13) and Fubini’s
theorem. The continuity of any image Ttc follows from the strong continuity of

ktðx; 
Þ by proceeding along the lines of Eq. (3.6) in the proof of Lemma 3.1.

Now let cAL2
GðRdÞ so that the equality Ttc ¼ E½e�tHðA;VÞc� follows from (1.17)

and an interchange of integrations. This interchange is again allowed by Fubini’s

theorem and (5.13). The inequalities (5.13) and (2.14) imply that TtcALN

G ðRdÞ for all
cAL2

GðRdÞ: Remark 1.11(iii) applies accordingly.
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Next we establish the positivity of Tt: Given any cAL2
GðRdÞ; one deduces from the

just-proven equality (1.35), estimate (5.13) and Fubini’s theorem that /c;TtcS ¼
E½/c; e�tHðA;VÞcS�X0; where the lower bound follows from the positivity of

e�tHðA;V ðoÞÞ for P-almost all oAO: Now, the denseness of L2
GðRdÞ in L2ðRdÞ; the

boundedness of Tt and the continuity of the scalar product yield /c;TtcSX0 for all

cAL2ðRdÞ:
Finally, we turn to the postponed proof of the continuity of the mapping Rd 	

Rd-C; ðx; yÞ/ktðx; yÞ: This continuity will follow from Lemma 5.1(i) and the
dominated-convergence theorem, provided we show

E sup
x;yAK

jktðx; yÞj
" #

oN ð5:16Þ

for any bounded set KCRd 	 Rd : In order to do so, let us fix oAO0 and x; yAK
arbitrary. By using (1.11), the triangle inequality, Jensen’s inequality and Fubini’s
theorem, we get

jkðoÞ
t ðx; yÞjp ð2ptÞ�d=2

Z t

0

ds

t

Z
m0;tx;yðdbÞe�tV ðoÞðbðsÞÞ

¼ ð2ptÞ�d=2

Z 1

0

ds
Z
Rd

dz gsðz � mx;yðsÞÞe�tV ðoÞðzÞ; ð5:17Þ

where the equality follows from an explicit computation with mx;yðsÞ :¼ x þ ðy � xÞs
and

gsðzÞ :¼
expf�jzj2=½2ð1� sÞst�g

½2pð1� sÞst�d=2
: ð5:18Þ

Next, we apply Hölder’s inequality with the conjugated exponents pA�1;N½ and
p0 :¼ ð1� p�1Þ�1 to the integral with respect to z in (5.17), which yields the upper
bound

Z
Rd

dz e�ptV ðoÞðzÞe�pjzj
� �1=p Z

Rd

dz ep0 jzjjgsðz � mx;yðsÞÞjp
0

� �1=p0

: ð5:19Þ

The second integral in (5.19) is bounded from above by

ep0maxfjxj;jyjg
Z
Rd

dz ep0 jzjjgsðzÞjp
0
pep0maxfjxj;jyjg½ð1� sÞst�ð1�p0Þd=2

Ip0 ; ð5:20Þ
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where Ip0 :¼ ð2pÞ�d=2 R
Rd dze�p0ðjzj2�jzj

ffiffi
t

p
Þ=2oN for any p041: This gives the estimate

E sup
x;yAK

jktðx; yÞj
" #

p ð2ptÞ�d=2
I
1=p0

p0 sup
zAK

ejzj
� �Z 1

0

ds½ð1� sÞst��d=ð2pÞ

	 E

Z
Rd

dz e�ptVðzÞe�pjzj
� �1=p
" #

: ð5:21Þ

The expectation value on the right-hand side of (5.21) is finite for any p41 by
Jensen’s inequality, property (L) and Fubini’s theorem. Therefore (5.16) follows from
the boundedness of K and by choosing p4maxf1; d=2g: &
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