Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

JOURNAL OF

sCIsncE@DlnECT’ Functional

sl Analysis
ELSEVIER Journal of Functional Analysis 212 (2004) 287-323 —_—

http://www.elsevier.com/locate/jfa

Continuous integral kernels for unbounded
Schrodinger semigroups and their spectral
projections

Kurt Broderix,>™ Hajo Leschke,” and Peter Miiller®*"!

& Institut fiir Theoretische Physik, Georg-August-Universitdt, Tammannstra3e 1,
D-37077 Gottingen, Germany

® Institut fiir Theoretische Physik, Universitdit Erlangen-Niirnberg, StaudtstraBe 7,
D-91058 Erlangen, Germany

Received 1 September 2002; accepted 14 January 2004

Communicated by Richard B. Melrose
Dedicated to Volker Enss on the occasion of his 60th birthday

Abstract

By suitably extending a Feynman—Kac formula of Simon (Canad. Math. Soc. Conf. Proc.
28 (2000) 317), we study one-parameter semigroups generated by (the negative of) rather
general Schrodinger operators, which may be unbounded from below and include a magnetic
vector potential. In particular, a common domain of essential self-adjointness for such a
semigroup is specified. Moreover, each member of the semigroup is proven to be a maximal
Carleman operator with a continuous integral kernel given by a Brownian-bridge expectation.
The results are used to show that the spectral projections of the generating Schrédinger
operator also act as Carleman operators with continuous integral kernels. Applications to
Schrédinger operators with rather general random scalar potentials include a rigorous
justification of an integral-kernel representation of their integrated density of states—a
relation frequently used in the physics literature on disordered solids.
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0. Introduction

In non-relativistic quantum physics [19,20,47] a spinless (charged) particle with d-
dimensional Euclidean configuration space R?, which is subjected to a scalar
potential V', as well as to a magnetic field derived from a vector potential A, is
characterized by a Schrédinger operator H = H(A, V). The latter is a linear, self-
adjoint, second-order partial-differential operator acting on a dense domain in the
Hilbert space Lz(Rd) of Lebesgue square-integrable functions y on R? [7,14]. The
spectrum of H corresponds physically to the possible values E€R of the particle’s
energy. Useful information on a given Schrédinger operator H can be obtained by
studying its semigroup {e~*# }i>0- As was convincingly demonstrated by Carmona
[11] and Simon [40,42], this, in turn, can be done very efficiently by using the
Feynman—-Kac(-It6) formula [10,13,40,46], which provides a probabilistic represen-
tation of e~y in terms of a Brownian-motion expectation. Until present, the most
systematic study along these lines is that of Simon [42]. It covers mostly situations
without a magnetic field and where the scalar potential V' is assumed to be Kato
decomposable. The latter assumption assures in particular that the operator H is
bounded from below and, hence, that {e~#} _ is a family of bounded operators.
Part of the regularity results in [42] were recently generalized to allow for rather
general magnetic fields and an arbitrary open subset of R as the configuration space
[10]. For additional regularity results see [23].

Some physically interesting situations, however, are modelled by scalar potentials
which are not Kato decomposable and lead to Schrédinger operators that are
unbounded from below. Here we only mention the Stark effect of atoms, electronic
properties of disordered solids and the physically different, but mathematically
closely related problem of classical diffusion in random media. For the first situation
one uses a scalar potential with a term linear in the position [5,14], and for the latter
two situations the realizations of a suitable random scalar potential
[12,21,22,29,32,36,46]. Gaussian random potentials are very popular examples
thereof in the physics literature on disordered systems [17,33,39]. Since H is
unbounded from below in these cases, the associated Schrodinger semigroup
{e7""},., consists of unbounded operators. Among other things, the unbounded-
ness of the operator exponentials e~ brings up new kinds of questions concerning
domains, common cores for different ¢, etc. In fact, there are interesting analytic
results on semigroups of unbounded linear operators even on abstract Hilbert and
Banach spaces for more than two decades [18,25,31,35] (see also Theorem 4.9 in
[15]). However, it was only recently that Simon [43] singled out a maximal class of
negative scalar potentials such that H is unbounded from below, but given an
arbitrarily large (time) parameter ¢>0 the operator exponential e~ still acts as an
integral operator on functions ¥, which have sufficiently fast decay at infinity, and
e "My is given by a Feynman-Kac formula.

The present paper is in the spirit of Simon’s note [43]. By suitably extending his
Feynman—Kac formula we aim to achieve a better understanding of rather general
unbounded Schrédinger semigroups {e~"#},_, on L*(R%), which have remained
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widely unexplored up to now. To this end we consider a large class of scalar
potentials which allows for the same fall-off towards minus infinity at infinity as was
considered in [43]. In addition, the presence of rather general magnetic fields is
admitted. Under these assumptions, we prove continuity of the Feynman—-Kac-It6
integral kernel k, of e=# and of the image function e~y provided that >0 and
has sufficiently fast decay at infinity. Moreover, we extend the Feynman-Kac-Ito
representation of e~y to all  in the domain of the possibly unbounded operator
e "M This yields an alternative characterization of its domain and renders e 7 the
maximal Carleman operator induced by the integral kernel k,. A theorem of
Nussbaum [35] is applied to identify a common operator core for e~ for all 1>0.
Lemma 1.7 and Theorem 1.10 summarize these results. Semigroup properties of the
family {e~"#'},_; are compiled in Theorem 1.12. Similar to Theorem B.7.8 in [42], we
infer in Theorem 1.14 the existence and continuity of integral kernels for certain
bounded functions of H, thereby allowing one to evaluate related traces in terms of
integral kernels. In particular, all this is true for any spectral-projection operator
y;(H) of H associated with a Borel set /<R which is bounded from above, see
Corollary 1.16. Finally, the functional calculus is extended to integral kernels in
Corollary 1.18. Applications to Schrodinger operators with rather general random
scalar potentials yield a rigorous justification of some statements which are
frequently used in the physics literature on disordered systems. Corollary 1.27
delivers an integral-kernel representation of the integrated density of states and
Corollary 1.29, respectively, its particularization to Gaussian random scalar
potentials in Corollary 1.31, concerns properties of the integral kernel of the
averaged semigroup.

The paper is organized as follows. Section 1 contains the basic notions, the precise
formulations of the results mentioned in the previous paragraph and various
comments. Sections 2-5 are devoted to the proofs.

1. Results and comments
1.1. Basic notation and definitions

As usual, let N:={1,2,3,...} denote the set of natural numbers. Let R,
respectively C, denote the algebraic field of real, respectively, complex numbers and
let Z be the simple cubic unit-lattice in d dimensions, deN. We fix a Cartesian co-
ordinate system in d-dimensional Euclidean space R? and define an open cube in R?
as a translate of the d-fold Cartesian product 7 x --- x I of an open interval / =R. In
particular, A,(x) stands for the open cube in R? with edge length />0 and centre
x = (x1,...,xs)€R?. The Euclidean scalar product x -y = Z;izl xjy; of x,ye R?

induces the Euclidean norm |x| := (x - x)l/ 2,

We denote the volume of a Borel subset A< R with respect to the d-dimensional
Lebesgue measure as |A| = [, dx = [z dx y,(x), where y, stands for the indicator
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function of A. In particular, if A is the strictly positive half-line, @ = yj, ,,| denotes
the left-continuous Heaviside unit-step function.

The Banach space L”(R?), pe[l, o], consists of all Borel-measurable complex-
valued functions f : RY > C which are identified if their values differ only on a set of
Lebesgue measure zero and which possess a finite norm || 1|, = (Jadx | f(2) )1/ r
<o, if p<oo, and ||f]|,, =esssup, pe |f(x)|< 00, if p= c0. We recall that
LZ(R‘J) is a separable Hilbert space with scalar product {-,-» given by {f,g> =
Je dxf*(x)g(x). Here the star denotes complex conjugation and the function f* is
defined pointwise by /*(x) = (f(x))*. We write f e L. (R?), if fy,eL?(R?) for any

loc

bounded Borel set 4= R?. The uniform local Lebesgue spaces L{’lmf?loc(l}%d) consist of

all those feLf (R?) for which sup__,a [/ %4,)l, < o0. The Kato class [3,23,28,48]
over R’ may be defined as the vector space #'(R?):={feL (R"):lim, o

%,(f)=0}, where »,(f) = sup, g [y ds [ dée 1P| f(x + £/5)|. It obeys the inclu-
sion A (R?) nglmif,loc([R{d) with equality if d = 1. We say that / belongs to .# joc(R?),
if fy,ex(RY) for any bounded Borel set AcR?. Moreover, f is called
Kato decomposable, in symbols fe# (R?), if sup{0,f}e# 1oc(R?) and
sup{0, —f} € # (R?). Finally, %;° (R) is the vector space of all functions f: R? —C
which are arbitrarily often differentiable and have compact supports supp f.

The absolute value of a closed operator F : dom(F)—L*(R?), with dense domain
of definition dom(F)<=L?*(R?) and Hilbert adjoint F*, is the positive operator |F|
= (F*F)"/*. The (uniform) norm of a bounded operator F: L?(R?)—L*(RY) is
defined as ||F|| = sup{||Ef ||,/ e L*(RY), || /]I, = 1}.

Definition 1.1. Let deN. A vector potential A is a Borel-measurable, R?-valued
function on R? and a scalar potential V is a Borel-measurable, R-valued function on
RY. Furthermore,

(A) a vector potential A is said to satisfy property (A), if both its square |A|2 and its
divergence V-A lie in the intersection LI (R?)A A joc(RY). Here, V =
(01, ...,04) stands for the gradient, which is supposed to act in the sense of
distributions on %° (RY);

(C) a vector potential A4 is said to satisfy property (C), if there exist real constants
Bjx = —Byj, where j,ke{l,...,d}, such that

1 d
Ak(x)ZEZXijk (1.1)
=

for all xeR? and all ke{l,...,d}. In other words, A generates a spatially
constant magnetic field given by the skew-symmetric d X d-matrix with entries
Bjk == @Ak - 8kAj;
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(V) a scalar potential V' is said to satisfy property (V), if it can be written as a sum
V=r+"W (1.2)
with V7 being locally square-integrable and Kato decomposable,

VIEleoc(Rd)m'%/i(Rd)v (13)
and V), obeying a sub-quadratic growth limitation in the following sense: for
every ¢>0 there exists a finite constant v, >0 such that

Va(x)|<elxl* + v, (1.4)

for Lebesgue-almost all xeR?.

Remarks 1.2. (i) For one space dimension, d = 1, there is no loss of generality in
assuming 4 = 0 on account of gauge equivalence.

(i) If d<3, then LY (R?) S # 10c(RY).

(iii) Due to gauge equivalence we have contented ourselves in formulating the
constant-magnetic-field condition (C) in the Poincaré gauge (1.1).

(iv) Property (C) implies property (A).

(v) Property (V) allows for a larger class of potentials than those considered
in [43]. This is because (V) requires weaker local regularity properties. Yet, the
crucial sub-quadratic growth limitation of ¥'(x) towards minus infinity as |x| > oo is
identical.

(vi) Even though a quadratic growth limitation instead of the stronger
condition (1.4) would still yield a self-adjoint Schrédinger semigroup, we do
not consider such situations, because the corresponding Feynman—Kac(-Itd)
formula would not hold for an arbitrarily large time parameter ¢, cf. Section 5.13
in [27].

We base the definition of Schrodinger operators on the following proposition,
whose proof is an application of Theorem 2.5 in [24].

Proposition 1.3. Let A be a vector potential with property (A) and let V be a scalar
potential with property (V). Then the differential operator

» 1L | . ,
(KOL([Rd)a(pl—»E > (10 + Ao+ Vo (1.5)
j=1

is essentially self-adjoint on L*(RY). Here i = \/—1 denotes the imaginary unit and a
superposed hat on a function indicates the corresponding multiplication operator.

Definition 1.4. The self-adjoint closure of (1.5) on L*(R?) is called the (magnetic)
Schrddinger operator and denoted by H(A, V).
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As suggested in [43], we introduce vector spaces of L7 ( [Rd)—functions with a decay
at infinity which is faster than that of some Gaussian function. These spaces are
tailored for the, in general, unbounded Schrddinger semigroup {e~"#4")} _ with V/
having property (V).

Definition 1.5. For each pe[l, co] we set
LL(RY) = {x//eL”(Rd) : there exists p€]0, co[ such that
/ dx e [y (x) < o0 } (1.6)
Rd

Remarks 1.6. (i) Holder’s inequality yields the chain of inclusions
Lg (RY) cLEL(RY) S LE (R < LE(RY), (1.7)

if 1<p<g< .
(ii) The space L (R?) is dense in L”(R?) for any pe|[l, co] thanks to the inclusion

%5 (RY) < LA (RY). (1.8)

1.2. Continuous integral kernels for unbounded Schrodinger semigroups and their
spectral projections

As a preparation for the Feynman—Kac—It6 formula (1.17) in Theorem 1.10 we
need to recall the Brownian bridge in RY associated with the starting point xeR¢, the
endpoint ye R? and the closed time interval [0, 7], where ¢> 0 is fixed but arbitrary. It
may be defined as the R?-valued stochastic process whose d Cartesian components
are independent and have continuous realizations [0, |55 b;(s)eR, je{l,...,d}.
Moreover, the jth component b; is distributed according to the Gaussian probability
measure characterized by the mean function [0,7]>s+—x; + (y; — x;)s/t and the
covariance function [0,7] x [0, 7]> (s,s") > min{s,s'} — ss'/1, see e.g. [37,40,46]. We
denote the joint (product) probability measure of b := (b1, ...,bs) by ug; Given
t>0, a vector potential 4 with property (A) and a scalar potential V with property
(V), then the Euclidean action functional

S,(A, V;b) ::i/o db(s)-A(b(s))—k%/o ds(V-A)(b(s))—i—/O dsV(b(s))  (1.9)

associated with these potentials is well defined for ,u%,-almost all paths b of the
Brownian bridge. The first integral on the right-hand side of (1.9) is a stochastic line
integral to be understood in the sense of It6. The other two integrals with random
integrands are meant in the sense of Lebesgue. The ugzg,-almost-sure existence of the
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integrals in (1.9) follows e.g. from Sections 2 and 6 in [10] and the estimate

/ugy (db)

The latter is valid for all £>0 and relies on (1.4), Fubini’s theorem and an explicit
computation. As to the applicability of (1.4) in this estimate, we have used the basic
fact that for ,u%,-almost every path b of the Brownian bridge the set

/dsVz ‘<tvg+€/ ds/,uw (db)|b(s))* < 0. (1.10)

{s€]0,1]:b(s)e A} of time instances, for which b stays in a given Lebesgue-null set
AcRY, is itself of Lebesgue measure zero in [0, 7], that is, f(f ds 4 (b(s)) = 0. We will
make use of this fact in the following without further notice.

Lemma 1.7. Let A be a vector potential with property (A) and let V be a scalar
potential with property (V). Finally, let t>0. Then
(i) the function k,: R? x R? > C, (x,y)—k,(x,y), where

o/

ki(x,y) = W

[ istapesiars (1.11)

is well defined in terms of a Brownian-bridge expectation, Hermitian in the sense that
ki(x,y) = k(y,x) for all x,yeR?, continuous and obeys the semigroup property

kol 2) = [ vk, (112)

for all x,zeR? and all { >0;

(i1) for every 0 >0 there exists a finite constant aﬁ‘” >0, independent of x,yeRY, such
that the estimate

2
lki(x, )| <al” exp{ Ix 4ty‘ + 0]’ +5|y|2} (1.13)
holds for all x,yeR?,
(iii) the function k, obeys
ki(x,-)eL& (RY)  for all xeR? (1.14)

and thus has the Carleman property (1.15). Moreover, the mapping R? —L*(R?),
x> ki(x, ) is strongly continuous.

Remarks 1.8. (i) The lemma is proven in Section 2.

(i1) Concerning the asserted continuity of k;, the proof will even show that the
function 10, oo [xR? x RY5 (¢, x, y) —k,(x, y) is continuous.

(iii) The estimate (1.13) corresponds to Theorem 2.1 in [43].
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(iv) Part (iii) of Lemma 1.7 continues to hold with k,(x,-) replaced by k,(-,x)
thanks to the Hermiticity of &, (for all x,yeR?).

(v) While (1.14) follows (directly) from the estimate (1.13), the weaker Carleman
property of k;,

ki(x,-)eL*(RY) for Lebesgue-almost all xeR?, (1.15)

is already a consequence of the semigroup property, the Hermiticity and the
continuity of k.

Definition 1.9. Let H(A4, V') be the Schrodinger operator of Definition 1.4 and let

teR. Then the operator exponential e~/(4V) is densely defined, self-adjoint and
positive by the spectral theorem and the functional calculus for unbounded functions
of unbounded self-adjoint operators (see e.g. Chapter 5 in [7]).

We are now in a position to give a probabilistic representation of e=“(4.V) by a
Feynman—Kac-It6 formula.

Theorem 1.10. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). Moreover, let t>0 and let e="4V) be given by Definition
1.9. Then

() the domain of eV is given by

dom(e44) — {yet?®@): [ wrkCowmer®@)} (g

with k, defined in (1.11). Moreover, L% (R?) =dom(e4Y)) is an operator core for
e tHAY).

(i) e ™ AV) s the maximal Carleman operator induced by the continuous integral
kernel (1.11) in the sense that

My = [ dykCn0) (117)

for all yedom (e~ V)Y and that k, has the Carleman property (1.15);

(iii) the image e AV 0 of any e dom(e " 4V)) has a continuous representative
in L>(R?) given by the right-hand side of (1.17). If even y e LZ,(RY), then, in addition,
e Ay e LE (RY).

Remarks 1.11. (i) The proof of Theorem 1.10 is deferred to Section 3.
(i1) For the theory of Carleman operators we refer to [4,45,49]. We follow mostly
the terminology and conventions of [49].

(ili) The right-hand side of (1.17) maps even any €Ll (R?) (and hence any
yeLl(RY) forall pe[l, o)) to an element of L& (R?). This fact is well known for the
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free case 4 =0 and V' = 0. It extends to the general situation of Theorem 1.10
simply by the basic estimate (1.13).

(iv) Theorem 1.10 extends the main result of [43], where the Feynman—Kac-Ito
formula (1.17) was proven for 4 =0 and lpeLé(le) under somewhat more
restrictive assumptions on the scalar potential V', see Remark 1.2(v).

(v) If V, =0, then the scalar potential V' = V| is Kato decomposable and
H(A,V,) therefore bounded from below. Regularity properties of the associated
bounded Schrédinger semigroup {e~#“:/1)} _ - are well known and have been
studied in great detail, see the seminal paper [42] and also [23] for the non-magnetic
case A = 0. Part of these results were extended to situations with rather general
vector potentials in [10].

So far we have been concerned with the (possibly unbounded) operator

tH(AY) for a fixed but arbitrary time parameter re]0, oo[. Next we
—zH(A,V)}

exponential e~
compile some semigroup properties of the family {e S
Theorem 1.12. Assume the situation of Theorem 1.10. Then the family {e”HM’V)}t;O
is a strongly continuous (one-parameter) semigroup of self-adjoint operators generated
by the Schrodinger operator H(A, V) in the following sense:

(1) the semigroup law

e—(tth’)H(A,V)lp _ e—tH(A,V)e—t’H(A,V)w (1.18)
holds for all t,1 €0, o[ and all Yy e L% (R?);

(ii) the orbit mapping uy :[0, 0[—L*(RY), trouy(t) = e AV is strongly
continuous (at t = 0 only from the right) for all lﬁeLé(Rd);

(iii) for every pe %" (RY) the orbit mapping u,, is strongly differentiable (at t =0
only from the right) and the unique solution of the linear initial-value problem

S a(0) = ~H(A V)0, 9(0) =0, (1.19)
for a strongly differentiable (at t=0 only from the right) mapping
@: [0, 0[>dom(H(A,V)), t—d(1).

Remarks 1.13. (i) The proof of Theorem 1.12 is given in Section 3.
(i1) Interesting analytic results on semigroups of unbounded operators on abstract
Hilbert and Banach spaces were previously obtained in e.g. [18,25,31,35].

—tH(A,V

In many situations it is useful to know that not only e ) has a continuous

integral kernel but also certain bounded functions of H(4, V).

Theorem 1.14. Assume the situation of Theorem 1.10 and let F e L™ (R) be a bounded
function with an at least exponentially fast decay at plus infinity in the sense that the
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inequality
|F(E)|<ymin{l,e "} (1.20)

holds for Lebesgue-almost all E e R with some constants y,t€10, co[. Furthermore, let
F(H(A,V)) be defined by the spectral theorem and the functional calculus. Then
(i) F(H(A,V)) is a bounded Carleman operator induced by the continuous integral

kernel f : R x R - C, (x,y)—f(x,y), where
f(xvy) = <k1('ax)anIH<A"V)F(H(A7 V))kt(ay)> (121)

with arbitrary t€)0,7/2], in the sense that

FHA VW = [ ay £Cw0) (122)

for all yeL>(R?) and that f has the Carleman property (1.15);

(i) the left-hand side of (1.22) has a continuous representative in L*(RY), which is
given by the right-hand side of (1.22);,

(iii) for every weLE (R?) the product F(H(A, V)W is a Hilbert-Schmidt operator
with squared norm given by

Trace{Ww*|F(H (A4, V))|*w} = /R ) dx|w(x)? /R |/, )% (1.23)

Here W denotes the bounded multiplication operator uniquely corresponding to w, and
Ww* denotes its Hilbert adjoint.

Remarks 1.15. (i) The right-hand side of (1.21) is well defined and continuous
in (x,y)eR?x R’ by Lemma 1.7(iii), Remark 1.8(iv), the boundedness of
PHAVIE(H(A, V) and the continuity of the L?(R?)-scalar product ¢-,-». More-
over, (1.21) is independent of the chosen ¢€]0,7/2][.

(i1) The proof of Theorem 1.14 is given in Section 4 and rests on a more general
result, which is formulated as Lemma 4.1. This lemma is in the spirit of Theorem
B.7.8 in [42], but, among others, we have relaxed a boundedness assumption in a
suitable way. Theorem 1.14 itself may be viewed as a generalization of Theorem
B.7.1(d) in [42] from Kato-decomposable scalar potentials to ones with property (V)
and to vector potentials with property (A). But, whereas Theorem B.7.1(d) in [42]
relies on resolvent techniques and requires the power-law decay |F(E)|<const.(1 +
|E])™ with a>d/2 for energies E in the spectrum of H, we work with the semigroup
and thus need the decay property (1.20).

Corollary 1.16. Assume the situation of Theorem 1.14 and let I =R be a Borel set in
the real line which is bounded from above, sup I < oo. Then Theorem 1.14 holds with
F =y, that is, for the spectral projection y;(H(A,V)) associated with the energy
regime I of the Schrodinger operator H(A, V). Denoting the corresponding continuous
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integral kernel (1.21) by py, Eq. (1.23) takes the form
Trace[Ww*y; (H(A, V)W :/ dx|w(x)|*pr(x, x) (1.24)
IR([

for all we LE (RY).
Remark 1.17. The proof of Corollary 1.16 is given in Section 4.
Finally, we note that the functional calculus extends to integral kernels.

Corollary 1.18. Assume the situation of Theorem 1.14. Then
£ = [ dp(E: ) P(E) (129)

holds for all x,ye R and all F obeying (1.20). In addition, (1.25) holds for the function
F given by F(E) = e~'E with some arbitrary t€)0, o[, in which case one has to set
f =ki. The right-hand side of (1.25) is to be understood as a Lebesgue—Stieltjes
integral with respect to the complex ‘“‘distribution” function RaEwp(E;x,y) =

P)-o0.£](X, ).
Remark 1.19. The proof of Corollary 1.18 is given in Section 4.
1.3. Applications to random Schrodinger operators

The results of the previous subsection are nicely illustrated by random
Schrédinger operators. In fact, certain random potentials of wide-spread use in
the physics literature on disordered systems lead to Schrodinger operators which are
almost surely unbounded from below and hence to Schrodinger semigroups which
are almost surely unbounded from above.

Definition 1.20. A random scalar potential V on R is a random field V: Q x RY - R,
(w,x)— V@) (x), on a complete probability space (Q,.«7,P) which is measurable
with respect to the product of the sigma-algebra o7 of event sets in 2 and the sigma-

algebra of Borel sets in R?. Furthermore, a random scalar potential ¥V is said to
satisfy property

(S) if there exist two reals p; >p(d) and p, >p1d/[2(p1 — p(d))] such that
sup E[[[V4,x ] < o0 (1.26)

xez?

Here, E[X] = fQ P(dw)X(®) denotes the expectation of a (complex-valued)
random variable X on Q, and the real p(d) is defined as follows: p(d) =2 if
d<3, p(d) =d/2if d=5 and p(4)>2, otherwise arbitrary;
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(E) if it is RY-ergodic with respect to the group of translations in R?, see [29];
1 if
. 29+1
sup E[|[Vya, (0 l2551] < o0, (1.27)
xez!
where 3e N is the smallest integer with 3> d/4;
(L) if the finiteness condition

L, = esssup Ele""™M] < o0 (1.28)
xeRY
holds for all > 0;
(G) if V is a Gaussian random field [2,34] which is R?-homogeneous, has zero mean,
E[V(0)] =0, and a covariance function x> C(x):=E[V(x)V(0)] that is
continuous at the origin where it obeys 0 < C(0) < o0.

Remarks 1.21. (i) While property (S) will assure the applicability of the results in the
previous subsection, property (), respectively (L), is mainly a technical one needed
for the existence of the integrated density of states in Proposition 1.25, respectively
for the existence of the disorder-averaged semigroup in Corollary 1.29.

(ii) Given (E), property (I) simplifies to [E[\V(O)|29+1]< oo and property (L) to
L, =FEle" 0] < 0. Property (L) implies neither (S) nor (I) and vice versa.
Moreover, if d#4, property (I) in general does not imply property (S), even if
property (E) is supposed. Given (E), a simple sufficient criterion for both (S) and (1)
to hold is the finiteness

E[|V(0)] < o0 (1.29)

of the pth absolute moment for some real p>max{3,d + 1}. To prove this claim for
property (S), we choose p; =p, =p in (1.26). For (I) the claim follows from
29<max{2,d}.

(ii1) If V" has property (G), then the standard Gaussian identity

tlew{ [ canreo}] =enfs [ dan [ wance-n} o)

holds for all (finite) complex Borel measures { on R?. Accordingly, property (G)
implies properties (S), (I) and (L), see Remark 3.9(iii) in [26] for details. It also
implies property (E), if the covariance function C decays at infinity.

In order to apply the results of the previous subsection we need

Lemma 1.22. Let V be a random scalar potential with property (S). Then for P-almost
every weQ the realization V@ : R >R, x— V@) (x) is a scalar potential with
property (V).
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Remark 1.23. The proof of the lemma is given in Section 5.

For a vector potential with property (A) and a random scalar potential with
property (S) we thus infer from Proposition 1.3 and Definition 1.4 the existence of
the random (magnetic) Schrodinger operator H(A,V) given by the realizations
H(A, V), which are essentially self-adjoint on %;° (R?) for P-almost all we Q.

As an obvious consequence of Lemma 1.22 we note

Corollary 1.24. Let A be a vector potential with property (A) and let V be a random
scalar potential with property (S). Then the results of Lemma 1.7, Theorems 1.10, 1.12,
1.14 and Corollaries 1.16 and 1.18 apply for P-almost every weQ to the realization
H(A, V() of the random Schrédinger operator.

Corollary 1.24 is the basis for the rigorous derivations of two frequently used
relations in the physics literature on disordered systems.

Integrated density of states: The first of these two relations is an integral-kernel
representation of the integrated density of states of random Schrodinger operators.
To formulate this representation, we first recall one possible definition of the
integrated density of states in

Proposition 1.25. Let A be a vector potential with property (C) and let V' be a random
scalar potential with properties (S), (E) and (1). Let I = R? be a bounded open cube and
let jr denote the bounded multiplication operator associated with the indicator function
of I'. Then the expectation value

N(E) = ﬁ E{Trace[fr7) o pi(H(A, V))ir]} (1.31)

is well defined for every energy E€R in terms of the spatially localized spectral
projection associated with the half-line | — oo, E[ of the random Schridinger operator
H(A,V). Furthermore it is independent of I'. The integrated density of states
E— N(E) is the unbounded left-continuous distribution function of a positive Borel
measure on the real line R.

Proof. We refer to Theorem 3.1 in [26] for the case d >2 and to Theorem 5.20 in [36]
forthecase d =1. [

Remark 1.26. Mostly, N(E) is defined as the almost surely non-random quantity
arising in the infinite-volume limit from the number of eigenvalues per volume
(counting multiplicities) of a finite-volume restriction of H (A4, V(®) below E. This
definition coincides with the one in Proposition 1.25 above, as is shown in Corollary
3.3 of [26] under the present assumptions on 4 and V.

On account of Corollary 1.24 and (1.31) we conclude
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Corollary 1.27. Let A be a vector potential with property (C) and let V be a random
scalar potential with properties (S), (E) and (1). Then the equality

N(E) = E[p(E;0,0)] (1.32)

holds for all EeR, where p*“)(E;-,-) = p] o denotes the continuous integral kernel

). We recall that p\®) (E; -, -) exists for P-

of the spectral projection y)_ ., g/(H (4, (@)
almost all weQ according to Corollary 1.24.
Remarks 1.28. (i) The corollary is proven in Section 5.

(i1) The representation (1.32) for the integrated density of states has been known
previously from a rigorous point of view only under additional assumptions on the
random scalar potential. For example, Remark VI.1.5 in [12] and Remark 3.4 in [26]
require from the outset the P-almost sure existence of continuous integral kernels for
the spectral projections. A sufficient criterion for this requirement is that V' is [P-
almost surely Kato decomposable [10,42]. Earlier derivations of the representation
(1.32) by different authors require even stronger conditions on V, see Theorems 5.18
and 5.23 in [36]. The latter theorem, however, covers differential operators more
general than Schrodinger operators.

(ii1) To our knowledge, Corollary 1.27 provides the first rigorous derivation of the
representation (1.32) for a wide class of random scalar potentials. As we have seen,
this class includes also random potentials leading to Schrédinger operators which are
P-almost surely unbounded from below. For example, this is the case if V' has
properties (G) and (E) [12,29,36]. For such a choice of V the relation (1.32) is
frequently taken for granted in the physics literature on disordered systems, see e.g.
[17,33,39].

(iv) Corollary 1.27 strengthens Corollary 3.3 in [26] in the sense that Eq. (3.6) in
[26] may be replaced by Eq. (3.7) in [26] without an additional assumption.

Disorder-averaged semigroup: The second application, for which Corollary 1.24
provides a rigorous justification, concerns, loosely speaking, the expectation value of
the random operator exponential e="H(4.V)

Corollary 1.29. Let A be a vector potential with property (A) and let V be a random
scalar potential with properties (S) and (L). Moreover, let t>0 and let kﬁ"’) denote the
continuous integral kernel of e~ AV We recall that k') exists for P-almost all
weQ according to Corollary 1.24. Then

(i) the disorder-averaged integral kernel ¥k, :R? x R —C, (x,y)—k/(x,y) =
E[k:(x,y)] is well defined, Hermitian in the sense that k,(x,y) =k, (y,x) for all
x,veR?, continuous and dominated by the free heat kernel according to

PR

|kt(x7y)|<$zW

(1.33)
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for all x,yeRe. In particular, k,(x,-)eL& (R?) for all xeR‘. The mapping
R? - L*(RY), x—k,(x,-) is strongly continuous;

(ii) the function k, induces a bounded, self-adjoint and positive Carleman operator T,
on L2(RY) in the sense that

T = [ v BCw0) (134)

for all e L*(R?) and that k, has the Carleman property (1.15);

(iii) the image Tpp of any y e L*(RY) has a continuous representative in L*>(R?) given
by the right-hand side of (1.34). If even yeL%(RY), then one has in addition
T eLE (RY) and the equality

Ty = E[e™ Ay (1.35)
holds.

Remarks 1.30. (i) The corollary is proven in Section 5.

(i1) In view of the equality in (1.35), the operator 7, may be called the averaged
semigroup (operator). One should note, however, that the one-parameter family
{T},50 is not a semigroup in general.

(iii) Assuming also properties (C) and (E), the diagonal of the kernel k, is constant
and given by the (two-sided) Laplace transform

k.(0,0) = /R dN(E)e 't (1.36)

of the integrated density of states. This follows from Lemma 5.1(ii), Corollary 1.18,
integration by parts and Fubini’s theorem. The latter two steps rely both on
Lemma 4.2.

The content of Corollary 1.29 is often used in the physics literature on disordered
solids and random media for the special case where V' is a homogeneous Gaussian
random potential, that is, a random scalar potential with property (G). For this
choice of V, the random Schrédinger operator H(A, V) is [P-almost surely
unbounded from below [12,29,36], but complies with the assumptions of Corollary
1.29 according to Remark 1.21(iii). The corresponding Carleman kernel k; in
Corollary 1.29 can then be made more explicit by applying Fubini’s theorem and the
standard Gaussian identity (1.30) with the finite measure { on R’ defined for u*

xy”
almost every Brownian-bridge path b by its sojourn times {(A) == fé ds y4(b(s)) in
Borel sets A= R?. This leads to

Corollary 1.31. Let A be a vector potential with property (A) and let V be a random
scalar potential with property (G). Finally, let t>0. Then the assertions of Corollary
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1.29 hold with

_ o —P /@) o
ki(x,y) :W/ﬂgity(db)e 5,(4,0:b)

x exp{ /ds/ ds' C(b(s) — b(s ))} (1.37)

for all x,yeR?.
Remark 1.32. The integral kernel (1.37) obeys the inequality

kil ) <e OO0, 0)] . (1.38)
which is sharper, but less explicit than estimate (1.33), when particularized to a
Gaussian random potential. As to the validity of (1.38) we note that by the

diamagnetic inequality it suffices to consider the situation with 4 = 0. The latter was
treated in [33] by adapting an argument in the proof of Lemma 3.4 in [16].

2. Proof of Lemma 1.7
This section contains the probabilistic arguments which enter Lemma 1.7.

Proof of Lemma 1.7. To begin with, we establish the bound (1.13). In so doing we
also show that the Brownian-bridge functional b+>exp{—S,(4,V;b)} is p%'- 5

integrable and hence (1.11) well defined. To this end, we successively apply the
triangle and the Cauchy—Schwarz inequality to the (absolute square of the)
Brownian-bridge expectation in (1.11)

2 2

I/'uxy S,AVb) (/,uw(db)|e Si(A4,V;b) |)
2

([ statamesors)

< /M%}( 7S,02V1 /#\y o= Si(02V2b). (2.1)

It follows from Eq. (1.3.5) in [46] that

/ 104 (db)e 50218 < Co (1) expfx — I/ (40)} (22)

thanks to V,ex” i(Rd) by property (V). Here Cy(f) is strictly positive and
continuous in #€)0, co[. Moreover, it is independent of x,yeR?. As to the second
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expectation in the last line of (2.1), inequality (1.4) and the proof of Theorem 2.1 in
[43] give for all 2>0 and all £€]0, (42)"'[ the estimate

\/‘u?c:;(db)ef&(o,/le:b) < /ugi;(db)eSZ(O,MVz\;b) < Y‘(islz)eztvnez},g[(|x|2+‘}ylz)7 (23)

where Y(&) = fol do[l — 4¢a(1 — 0)]%/* is increasing in ¢ and finite for all €0, 1],
Together with (2.2) and (2.1), estimate (2.3) with A =2 establishes (1.13) for all
0€]0, 7| by identifying § with 2¢z. For arbitrary 6> ¢! estimate (1.13) then follows
from the monotonicity of & e?¥+ob",

Next, we prove the properties of k; claimed in part (i) of the lemma. The
Hermiticity and the semigroup property of k, are a consequence of the time-reversal
invariance and the Markov property of the Brownian bridge, respectively. This
follows from the line of reasoning in the proof of Egs. (1.3.6) and (1.3.7) in [46]. For
the proof of the continuity of k; we refer to Corollary 2.3.

Finally, we turn to the proof of part (iii). The claim (1.14) is immediate from the
estimate (1.13). The semigroup property (1.12) and the Hermiticity give

ko(x, ) — k(2,5 = ke (3, %) — ka2, %) — k(% 2) + Ky (2, 2) (2.4)

for all x,zeR?. This equality together with the continuity of k» establishes the
strong continuity of the mapping R? - L*(RY), x+—k,(x,-). O

Lemma 2.2 below is our basic technical result for deducing the already claimed
continuity of k,. It will also enter the proof of the Feynman—Kac—It6 formula in the
next section. For both purposes Lemma 2.2 will provide an approximation
argument. We use it to deduce the desired properties from corresponding ones of
Schrodinger semigroups with regularized scalar potentials which are Kato
decomposable.

Definition 2.1. Given any real R>0 and a scalar potential ¥ with property (V), we
define a regularized scalar potential VgeL? (R?)n ;. (RY) by setting

loc

Ve =Vi+ Vag, (2.5)

where its truncated part xi— V5 z(x) = @(R — |x|) V2(x) lies in L (R).

Lemma 2.2. Let A be a vector potential with property (A) and let V be a scalar
potential with property (V). For t>0, R>1 and x,yeR? define the reqularized kernel

ol /20 o
K00 = [ isanesi 2:6)



304 K. Broderix et al. | Journal of Functional Analysis 212 (2004) 287-323

Then for every triple 11,72, €0, co[ with 1) <1, there exists pel0, oo such that one
has the uniform-type-of convergence

lim sup  sup [e!MP (v, ) — K (xp)] = 0. (2.7)

Ro o0 xyeR! teln,n]

Proof. Given a Hdélder exponent pe]l, oo|, we denote by p/ = (1 —p~1)! its

conjugate exponent. Moreover, we let 7€ [t), 73] arbitrary. Then the triangle and the
Holder inequality yield

‘/'“Xy o= SHAVb) _ S,(A,VR:b)]

/uw(db) “SUOViB) | SOV2b) _ o= S(0.V2D)|

1

1 1
{/ .ny(db) —S,<0‘pV|;b)]p {/ ug:’y(db)|e_8'<°’V2"’> _e_Sr(OvVZ.RZ,b)V’/ p. (2.8)

The first expectation in the last line of (2.8) is bounded according to
1

/p
[ [t apyesior ”)} <Crexp{lx — ¥/ (duip)}, (29)

confer (2.2). Here C; = Ci(p, 11, 7>) is a finite constant. In order to bound the second
expectation in the last line of (2.8) we employ the elementary inequality |¢" —
| <|r — |em} for r, 1 e R together with | V3 | <|V3| and the Cauchy-Schwarz
inequality. This gives

/#xy db)|e=SiOV2b) _ o= Si0.Varsb)
< [ Hy(an)S OIS 0,12 = Vi)

1/2

1/2
< [ / ugz;(db)e&(‘)@ﬁ’Vz'%“} [ / 10 (dD)Si(0, V2 — VarsH)P'| . (2.10)
The first expectation in the last line of (2.10) can be estimated as in (2.3),
/Hw(db) SOV < CF exp{ap'ena (Ix” + [y}, (2.11)

where £€]0, (2p'13) [ is arbitrary and C, = Cy(p, ¢,12) is another finite constant.
Here we have used the monotonicity of the right-hand side of (2.3) in z. To bound the
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second expectation in the last line of (2.10) we observe that

V() — Var()| < (el + 00 (x| - R) < <s+vt>" (2.12)

for all >0 and Lebesgue-almost all xe R?. Here we have exploited R>1 and the
“Chebyshev” inequality ©(¢& —1) <&, ¢eR. By the Jensen and the triangle
inequality, Fubini’s theorem and upon standardizing the Brownian bridge according
to b(s) =: t'/2b(s/t) + x + (y — x)s/t, estimate (2.12) yields

/’uw(dbﬂst (0,12 — V2,R§b>|2p/

(522 [ o
(”“L )zp/ / 01 dB)2B(o) + x + (v — 0)o¥. (2.13)

This result and several applications of the elementary inequality

e+ #2417 (214)

for >0 and r,” € R? show that there exist two further finite constants C; = Cs(p, ¢)
and C4 = C4(p ¢) such that

quen
[a@nis o, - venP | <R led s alat bl @is)

Combining (2.8)—(2.11) and (2.15), we obtain

R2

‘/#” o SIAVB) _ =S4V b))
C Gyt x—y°
= 22[c3r§+c4<|x|“+|y|“>1exp{' - +zm-2<|x2+|y|2>} 210

for all zety, 1], all €]0, (2p’7:§)71[ and all x, yeR?. Another application of (2.14)
and choosing p = 21,/7, =2 then yields

sup [T 1k () — K (x, )]

telty,1)

CiGrny ) 4 4
< G192 e e Iy
ROt Gl o)

x exp{—[1/(412) — dp — 8enalx — yI° = (5 — 4p — 10ew2) |y} (2.17)



306 K. Broderix et al. | Journal of Functional Analysis 212 (2004) 287-323

for all p, 5>0, all e€]0, (212 — 71)/(473)[ and all x, ye R?. The assertion of the lemma
now follows by choosing p and ¢ so small that 4p + 10et, <min{g, (47:2)_1}. O

Lemma 2.2 possesses an immediate corollary, which completes the proof of
Lemma 1.7.

Corollary 2.3. The function
10, 0[xRY x RI>C, (t,x,y)—k/(x,y) (2.18)

is continuous under the assumptions of Lemma 1.7.

Proof. Since by assumption Vg lies in # 1 (R?) and both |A|* and V-4 lie in
J/loc([Rid), Theorem 6.1 in [10] for the case d>2, respectively, Proposition 1.3.5 in
[46] for the case d = 1, guarantee the continuity of the function

10, o [xR? x RY - C, (t,x,y)|—>k,(R>(x,y) (2.19)

for all R>0. But according to Lemma 2.2 the kernel k, is the locally uniform limit of

kP as R— 0. Hence, k, inherits the continuity properties of KBoO

3. Proofs of Theorems 1.10 and 1.12

Given the two probabilistic Lemmas 1.7 and 2.2, the additional arguments needed
to prove Theorems 1.10 and 1.12 are purely analytic. First, we exploit the fact that
the function k,, as defined in Lemma 1.7, is a Carleman kernel [49].
Lemma 3.1. Let A be a vector potential with property (A) and let V be a scalar

potential with property (V). For t>0 we denote by K, the integral operator induced by
the kernel k, with domain

dom(x) = {el2®): [ ariewi el (.0)
and action
K= [ dvk(odit) (32)
R

for all yedom(K;). Then K, is a maximal Carleman operator, hence closed, and its
domain is dense thanks to the inclusion

L% (RY) =dom(K,). (3.3)
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Moreover, the image K of any e dom(K,) has a continuous representative in L*(R?)
given by the right-hand side of (3.2). If even yeL%L(RY), then, in addition,
KyeLZ (RY).

Proof of Lemma 3.1. By Lemma 1.7(i) and (iii) we know that k, is a Hermitian
Carleman kernel. Thus, Theorem 6.13(a) in [49] yields the closedness of the induced
maximal Carleman operator K,. The inclusion (3.3) is implied by Remark 1.6(i) and

the inclusion K,L%(RY)<L& (R?), which we prove next. To do so, we note that
(1.13) implies

sup [ 1. (x <a® e 5o)yf 3.4
p t 7y t

xeR?

for all p,6>0 with p 4+ 6 <1/(16¢) and all yeR?. In deriving (3.4) we have also used
the elementary inequality (2.14) with r = x —y, ¥ = y and a = 2.
Consequently, given any y e L% (R?), we get

2 2
esssup [ (Kp) ()| <al” [y ). (35)

xeR?
Now, choosing p and 6 small enough, the right-hand side of (3.5) is finite since
L% (RY) =LY (RY) by Remark 1.6(i).

In order to complete the proof of the lemma we have to show the continuity of
K,y for all yedom(K;). To this end we observe

|(Kp) (x) = (Kp) () < W[ o (6, -) = e (3.6)

by the triangle and the Cauchy-Schwarz inequality for all x,x € R?. The desired
result now follows from the strong continuity of x+ k,(x,-) in Lemma 1.7(iii). O

We will eventually prove Theorem 1.10 by showing the operator equality K, =
e~"(4.V) " As an initial step we recall Definition 2.1 and employ Lemma 2.2 in order
to establish strong convergence of the regularized operator exponentials e~ #(4.V%) to

K, on L% (R?) as R— 0.

Lemma 3.2. Let t>0, lﬁeLé(Rd) and suppose the assumptions of Theorem 1.10. Then
im ey — K, =0 (3.7)

holds.

Proof. We recall from Theorem 6.1 in [10] for the case d>2, respectively, from

Eq. (6.6) in [40] or from Egs. (1.3.3), (1.3.4) and Exercise 1.4.2 in [46] for the case
d =1, the Feynman-Kac-It6 formula for the bounded semigroup with the
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regularized potential

ey = | kM), (338)

valid for all yeL?(R?). Now, given any yeL%(R?) there exists 5>0 such that

||eﬁ|"zlp\|1 < oo by Remark 1.6(i). Lemma 2.2 then yields the existence of p>0 such
that the right-hand side of the estimate

2

Hf“%mw—mw@:/cu
Rd

| O x0) = ki)

< / do o= 2P [/ dye‘3|y‘2|lp(y)|
Rtl Rd

2
% ep\x‘Z_ﬁUr|z|k§R) (x,y) — kt(x,y)@

2
< | sup (PP (x, p) — Ky (x,)])
x,yeR?

x [1/(2p) 2" |2 (3.9)

vanishes as R—oco. O

Remark 3.3. One can even show that the convergence in Lemma 3.2 holds with
respect to the L7 (RY)-norm for arbitrary pe(l, oo], if one requires y e LZ (R?), see
also Remark 1.11(ii1).

The next lemma concerns a certain stability of strong-resolvent convergence. It
will be the basis for an argument similar to the one provided by Theorem 3.1 in [43].

Lemma 3.4. For neN let A, and A be self-adjoint operators acting on a complex
Hilbert space and let G:R— R be a continuous function. Define G(A,) for neN and
G(A) via the spectral theorem and the functional calculus as self-adjoint operators.
Then strong-resolvent convergence of A, to A as n— oo implies strong-resolvent
convergence of G(A4,) to G(A).

Proof. For zeC with Im z#0 we define the bounded continuous function R, : R— C,
I R(A) = (A— z)_l. Hence, the composition R,oG is also a bounded and
continuous function on R. Therefore, (R; - G)(A4,) = R.(G(A4,)) converges strongly

to (R.2G)(A) = R.(G(A)) as n— oo by Theorem VIII.20(b) in [38] or Theorem 9.17
in[49]. O
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Having these auxiliary results at our disposal, we can proceed to prove—as an
intermediate step—Theorem 1.10(ii), which is analogous to the claim of Remark 1
after Theorem 1.2 in [43].

Lemma 3.5. Let t>0. Under the assumptions of Theorem 1.10 one has
L% (RY) cdom(e ™ 4Y)) and the Feynman—Kac-Itd formula

e HAV Ny = K (3.10)

holds for all tpeLé(Rd). In particular, e=™4Y) and thus K, are both symmetric on
L (RY).

Proof of Lemma 3.5. The Schrodinger operators H(A, V) and H(A, Vr), R>0, are
all essentially self-adjoint on %° (R?) according to Proposition 1.3 and Definition
1.4. Moreover, H(A, V) converges strongly to H(A, V) on %° (R?) as R— oo. This
can be inferred from (1.4) and the estimate

I Va)o — H(A V)0l = [ Vi)~ VaPlotof
< /Rt, dx O(|x| — R)(elx]” + v.) lo(x)[,  (3.11)

which is valid for all e>0 and all pe%; (R?). The right-hand side of (3.11)
vanishes, if R is large enough. Therefore, Theorem VIII.25(a) in [38] implies that
H(A, Vg) converges to H(A,V) in strong-resolvent sense as R— oo, and thus,
thanks to Lemma 3.4, e="(4."%) converges to e (4¥) as R— oo in strong-resolvent
sense for all 7> 0. Since the operators e~ “(4.Vr) and e="H(4.V) are self-adjoint, strong-
resolvent convergence is equivalent to e “(4V) being the strong-graph limit of
e~ tH(4Vr) a5 R— oo by Theorem VIIIL.26 in [38]. Thus, by definition of this limit, the
graph

= {(f, p) e L*(RY) x L*(RY) : yedom(e ANy g = =AYy L  (3.12)

of e=™4Y) consists of all pairs (i, ¢)e L2(R?) x L*(RY) for which there exists a
sequence {\ g} With Y edom(e 7 Vx)) = L.2(RY) such that

Jim (Il — il + lle 40y — 1) = 0. (3.13)

According to Lemma 3.2 the convergence in (3.13) holds for every weLzG(Rd), if we
set Y r = and ¢ = Ky, that is,

2 {(},¢)eL*(R)) x L*(R?) : y e LG (R), ¢ = K} (3.14)
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This implies L% (R?) =dom (e #(4")) and (3.10). Moreover, the restriction of the
self-adjoint operator e=#(4V) to L2 (R?) yields a symmetric operator. [J

Having settled Lemma 3.5, we are in a position to establish Theorem 1.12 on the
semigroup properties of the family {e~#(4"} _ .

Proof of Theorem 1.12. (i) The validity of the semigroup law (1.18) on LZ (RY) relies
on the functional calculus for unbounded functions of unbounded self-adjoint
operators, see e.g. Chapter 5 in [7], on Lemma 3.5 and on the inclusion

KLL(RY)<LE (RY), which was proven in Lemma 3.1. The latter two ensure that
both sides of (1.18) are well defined on L2G([Rd).

(ii) Strong continuity of the orbit mapping u, for weLé(Rd) follows from the
functional calculus, too, in that

oty (¢ +h) = uy (1) |5 = /R (W, P(AEY » (e (HF — ¢~F)? (3.15)

for all te[0, co[ and all he[—t, co[. Here P denotes the projection-valued spectral
measure of the Schrédinger operator H .= H(A, V), that is, P(I) := y;(H) for Borel
sets I = R. Indeed, the integral in (3.15) vanishes in the limit 2— 0 by the dominated-
convergence theorem, because we may assume /e |—t, ] with some /€0, o[ so
that the function Rs E+> (1 + Ze’<’+h“>E)2 dominates the integrand of (3.15) and is
(i, P(-) y-integrable due to e L (R?). In the special case ¢ = 0, this procedure
gives the only meaningful right-sided limit /| 0.

(iii) First we claim %¢° (RY)cdom(He ). Since %;°(R?)c=dom(e ), this
follows from Theorem 5.2.9(c) in [7], if

/ (o, P(AE)p > (Ee 'F)? < w0 (3.16)
R

for all p e 4 (RY). The latter holds true, because (Ee~'F)* < E> + ¢2F for all E€R
with some 9> and because %° (R) cdom(H) ndom(e ). Next we compute the
strong derivative of u, for p %" (IR"). To this end, we consider the squared norm

Hh—l (e—(H-h)H(p _ e—tH(p) + He"H(p||§

- / (o, PAE) Y [h~' (e”HNE — o=1E) 4 Ee~'F)? (3.17)
R

for he]—1,1\{0} and claim that it vanishes in the limit 2—0. (In the
special case =0, the limit gives the only meaningful right-sided derivative.)
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This follows from the dominated-convergence theorem and the A-independent
upper bound 2E%(2 + e >F + 2¢720+1E) for the integrand in (3.17). This bound is
{@,P(-)p)-integrable as a function of E because of @e%;° (RY) =dom(H)
and (3.16).

It remains to show that u,, is the unique solution of the initial-value problem (1.19).
To this end, let @ be an arbitrary solution of (1.19) and fix >0 arbitrary. By the
above reasoning one has %e*(’”)H g = He= """ in the strong sense for arbitrary
5€]0,¢] and arbitrary ge %" (R?). As a consequence, one finds

% (Mg, @(s)) = CHe Mg, 0(s) )y — (Mg, HE(s)) =0 (3.18)

by the assumptions on @ and the self-adjointness of H. Hence, the fundamental
theorem of calculus implies

tod
0= [ dsgoce g 00y = Cg(0)> = g, D(0))
:<gaq§(t)> - <gae7tH§0> = <gaq§(t)_u(p(t)>' (319)

The denseness of €7 (R?) in L?(RY) completes the proof of uniqueness. [J
An immediate consequence of the just-proven Theorem 1.12 is

Corollary 3.6. Assume the situation of Theorem 1.10. Then Lé( [R?d) is an operator core
for e AY) for all t>0.

Proof. By Theorem 1.12 and the symmetry of e~"*(4") on L% (R?), see Lemma 3.5,
all three assumptions of Theorem 1 in [35] are fulfilled by choosing there o =
te0, o[, S, = e 1Y) with dom(S,) = LL(R?) and D = L4 (R?). In this context,
we recall from Lemma 3.5 that e=#(4.V) is symmetric on L% (R?) and from Theorem
1.12 that the mapping [0, o[3¢+— {y,uy(t)) is continuous—and hence Borel
measurable—for every eLé([RRd) due to the strong continuity of the orbit mapping

uy. Therefore the claim follows from Theorem 1 in [35]. [
The remaining part of the proof of Theorem 1.10 is provided by

Lemma 3.7. Assume the situation of Theorem 1.10 and let K, be defined as in Lemma
3.1. Then one has the equality

K, = e HAY), (3.20)
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Proof. We follow [4] or [45] and introduce the restriction K? = Kr|dom(1<9) of the
maximal Carleman operator K, to the subspace

dom(K?) = {yedom(K,) : kp e LY(RV)}, (3.21)

where the function R?s x> x,(x) = ||k,(x, )|, = [ka:(x, x)]"/? is well defined and
continuous because of Lemma 1.7(iii). Estimate (1.13) in Lemma 1.7 and Remark
1.6(i) imply L% (RY) =dom(K?). Thus, the Feynman-Kac-Itd formula from Lemma
3.5 leads to

o tH AV

)|Lg(R“) = Kilp2 ey = KtO‘LzG([R{”) =K. (3.22)
Here, as usual, the notation 4 < B means that the operator B is an extension of the
operator A. By Theorem 10.1 in [45] the operator K? is symmetric, hence closable.
Taking the closure of (3.22) with respect to the graph norm and exploiting Corollary

AV)

3.6, we get e HAV) 2 KO Since K is symmetric, so is its closure K°. Therefore we

conclude
e MAY) = KO, (3.23)

because self-adjoint operators are maximally symmetric. Furthermore, we observe
the equalities K9 = (K9)* = (K°)" = K,, which hold according to (3.23), Theorem
VIII.1(c) in [38] and Theorem 10.1 in [45]. This completes the proof. [

Finally, we gather our previous results to complete the

Proof of Theorem 1.10. Corollary 3.6 has established that Lé([R{d) is an operator

core for e=™4¥) The remaining assertions of Theorem 1.10 follow from Lemmas

3.7,3.1 and 1.7(ii1). O

4. Proofs of Theorem 1.14 and Corollaries 1.16 and 1.18

The following lemma is in the spirit of Theorem B.7.8 in [42], but, among others,
we do not assume that the operator M is bounded.

Lemma 4.1. Let M be the maximal self-adjoint Carleman operator induced by the
Borel-measurable and Hermitian integral kernel m: R? x RY —C in the sense that

6 (&) <domh) = {yeL’@); [ aymwiner’@ )

My = | dymC Q) (4.1)
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for all yedom(M), m(x,y) = m*(y,x) for Lebesque-almost all pairs (x,y)eR? x R?
and m has the Carleman property (1.15). Assume further that x+>m(-, x) defines a
strongly continuous mapping from R? to L*(RY). Finally, let B be a bounded operator
on L2(RY) such that MB and MB* are also bounded and that MBM admits a bounded
closed extension MBM to all of L*(R?). Then

(i) MBM is a bounded Carleman operator induced by the continuous
integral kernel f:RY x RY—>C, (x,y)— p(x,y) = {(m(-,x),Bm(-,y)> in the sense
that

MBHY = | dBl ) (42)

for all x//eLz(Rd) and that B has the Carleman property (1.15).
(i) the left-hand side of (4.2) has a continuous representative in Lz(Rd), which is
given by the right-hand side of (4.2);

(iii) for any we L™ (RY) with [pu e dx dy|w(x)|*|m(x, y)|* < oo the product MBM
is a Hilbert—Schmidt operator with squared norm given by

Trace[w*[MBM "] = /R ) dx|w(x)|? /R dylB(, DI (4.3)

Here W is the bounded multiplication operator uniquely corresponding to w, and Ww*
denotes its Hilbert adjoint.

Proof. The strong continuity of the mapping R? - L2(R), x+-m(-, x), the triangle
and the Cauchy-Schwarz inequality imply the continuity of the function .# : RY - R,
x> M (x) = ||m(-,x)||, because |.#(x)— #(x")|<|m(-,x)—m(-,x)||,- Now, for
every o €%y (R?) and every y e L*(RY) the Cauchy-Schwarz inequality provides the
estimate

/Rd y doe dy [y )] fm(y, X)[ @ (o)< Wl @l a4 xsupp |12 < o0 (4.4)

due to the continuity of .#. Therefore, (4.1) and Fubini’s theorem yield
Mooy = [ dx (0 mlex), 0. (45)

where the scalar product in the integrand is well defined, because, by hypothesis,
m(-, x) e L*(RY) for all xeR?. Next, we consider a sequence (\/,), ., =% (R?) with
limy, - o ||, — ¥|l, =0 and sup,cn{lV,ll,} <2[|¥||,- From the boundedness of
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MBM , the continuity of the scalar product <-,-> and (4.5) we conclude
{o, MBMY ) = lim (o, MBMY, )
n— oo

= lim {Me,BMY,>

n— oo

= lim dx ¢*(x){m(-, x), BMy, >

n— oo R((
= lim dx ¢*(x){MB'm(-,x),¥,>. (4.6)
n— oo Rd
Since
sup [CMB'm(-,x), 1, > | <2/ MB[| [ ||>-#(x) (4.7)
ne

for all xeR?, MB* is bounded and .# is continuous, the dominated-convergence
theorem and the continuity of the scalar product yield

(o, MBMy > = /Rd dx ¢*(x){ MB*'m(-,x),> (4.8)

for all @e%y (RY) and all Yyel*(RY). Moreover, the function
RYs x> { MB*m(-,x), > belongs to L. (R?), confer (4.7), so that the lemma of
Du Bois—Reymond—also known as the fundamental lemma of the calculus of
variations, see e.g. Lemma 3.26 in [1]—implies

(MBMY)(x) = {MB m(-, x), ¥ )

*

:/RddyURddz m(y,z)(B'm(-,x))(z)| ¥(»)

= dy<m('ax)aBm('vy)>¢(y) (49)

Rz(

for Lebesgue-almost all xeR? and all xpeLz(Rd ). To get the last equality, we have
also used the Hermiticity, m(x,y) =m*(y,x) for Lebesgue-almost all pairs
(x,y)eR? x R?. This proves (4.2).

The Carleman property (1.15) for f follows from part (iii) of the lemma (to be
proven below). Indeed, since m is Hermitian and since .# is continuous, one may
choose w = y, in (4.3) for an arbitrary bounded Borel subset A < R“. This completes
the proof of part (i).

The proof of assertion (ii) follows from the first equality in (4.9), the fact that the
mapping RY - L*(RY), xr>m(-,x), is strongly continuous, MB* is bounded and
(-, - 1s continuous.

For the proof of assertion (iii) we exploit our assumption on w, the maximality of
the Carleman operator M, (4.1) and Theorem VI.23 in [38] to conclude that Mw is
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Hilbert—Schmidt. Therefore, MBMw = MBMw is Hilbert—-Schmidt, too, by the
boundedness of MB and the Holder inequality for Schatten norms, see e.g.

Theorem 2.8 in [41]. Thanks to weL*(RY) and Eq.(4.2) we have MBM ) =

St B, ) w(y)¥(y) for all YyeL?(RY). Hence (4.3) follows from an anew
application of Theorem VI.23 in [38]. [

After these preparations it is easy to deduce Theorem 1.14 as a special case.

Proof of Theorem 1.14. We apply Lemma 4.1 with the choices M = e~"(4.Y) and
B=cMAVIE(H(A,V)), where te]0,1/2].

This is allowed, because Theorem 1.10 ensures that e 1S a maximal
Carleman operator with the required properties, recall Remark 1.6(ii), Lemma 1.7
and Remark 1.8(iv).

Furthermore, we observe from (1.20) and the functional calculus for
unbounded functions of unbounded self-adjoint operators, see e.g. Chapter 5
in [7], that the operator product B= > 4VIF(H(A,V)) is bounded. The
functional calculus also guarantees that the two operator products MB and MB*
are bounded and that the equality MBM = F(H(A,V)) holds on dom(M).
The latter implies the boundedness of MBM = F(H(A,V)), because
FelL”(R).

Finally, the finiteness of the integral [pi g dx dy|w(x)| |k, (x,y)|* for all

—tH(A,V)

weLg& (RY) follows from the estimate (1.13) with sufficiently small §>0, inequality
(2.14) and Remark 1.6(i). Thus, all assumptions of Lemma 4.1 are fulfilled and
Theorem 1.14 holds with /' = f and for all weLZ (RY). O

Next we show how to deduce Corollary 1.16 from Theorem 1.14.

Proof of Corollary 1.16. Clearly, choosing F =y; in Theorem 1.14 is in
accordance with (1.20) because of sup/<oo. Therefore, part (i) of this
theorem yields the existence and continuity of the integral kernel p; of
1 (H(A,V)). To derive (1.24) we note that the operator w*y,;(H(A, V))W is trace

class by Theorem 1.14(iii)) and y? = z;. Moreover, thanks to weLgf(Rd) the
L?(R? x RY)-function  (x,y)r>w*(x)p;(x,y)w(y) is an integral kernel for
Wy (H(A, V). Recalling that A,(x) is the open cube in R? with edge length
/>0 and centre xeR?, an application of Theorem 3.1 in [8], see also [6] or [9], gives
the equality

Trace[W*y;(H(A, V)W)

= [ dxlim /‘2"/ dx dy'w* (X )pr (¥, Y )w(y). (4.10)
R? 210 A (xX)x Ay (x)



316 K. Broderix et al. | Journal of Functional Analysis 212 (2004) 287-323

The continuity of p; and the Lebesgue differentiation theorem, see e.g. Sections 1.1.3
and I.1.8 in [44], now complete the proof because

lim ¢~ / dx’ dy'w* (X" )pr (¥, " )w(y')
Ar(x)xAz(x)

/10
- / dx'w(x")
/l/(x)

— pi(x,x) () (4.11)

2

= pi(x,)lim

for Lebesgue-almost all xeR?. [

Now we are concerned with the second corollary to Theorem 1.14.

Proof of Corollary 1.18. We fix x, yeR?. In the first case we apply the functional
calculus to the right-hand side of (1.21). This gives

fmwzémeWan (4.12)

for any 7€]0,7/2[ with the complex spectral “distribution” function $,(E;x,y) ==
k(e X), 2= oo g (H (A, V)ki(+, ¥) > . Here, ©>0 is the constant required to exist for F
in (1.20). In particular, for F = y_,, g with Ege R, Eq. (4.12) takes the form

Ey

M%mﬁz/(M@%wm- (4.13)

This equation holds for arbitrary ¢>0, because 7 can be chosen arbitrarily large in
this particular case. Taken together, (4.12) and (4.13) yield claim (1.25).
In the second case we may write

ki(x,y) = {kipp(c,x), kipn(,p) ) :/Rd&/z(E;x,y) :/de(E;x,y)e’tE (4.14)

for all +>0. Here, the first equality is due to the Hermiticity and the semigroup
property of the kernel k;, the second equality is just the definition of 3,/, and the last
equality follows from (4.13). O

For convenience, we formulate and prove simple estimates on the integral kernel
of a spectral projection in the remainder of this section. We will only need these
estimates for the applications to random Schrodinger operators.

Lemma 4.2. Assume the situation of Corollary 1.16. Then the diagonal
of the continuous integral kernel py of the spectral projection y;(H(A,V)) obeys the
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estimates

0<pr(x,x)<e P Tk, (x, x) (4.15)
for all xeR? with any t€)0, .
Proof. Fix xeR? arbitrary, pick peb (R?) and define (p@ by (/)Ef> () =e“p((y -

x)/e) for every yeR? and every ¢€]0,1]. Then {cpf)}se]ojl]cﬁ(ﬂ%d) is a family of

approximating delta functions at xe RY. By the continuity of p; and the dominated-
convergence theorem one gets the representation

pi(xx) =lim <ol (H(A, V)0, (4.16)

The same arguments yield

ile,x) = lim ol e gl (4.17)

for any 7€]0, oco[. Claim (4.15) now follows from the functional calculus and the
elementary inequalities

0< 7 (E)<e® =) (4.18)

forall EeR. 0O

5. Proofs of Lemma 1.22 and Corollaries 1.27 and 1.29

Proof of Lemma 1.22. We mimic the proof of [30], see also Proposition V.3.2 in [12].
By the definition of p(d) in property (S) and since (d/2)p;/[p1 — p(d)] <p2, we can
find ve|0,2[ and relp(d), pi| such that

il D1
vpr—r

< p2. (5.1)

Next, we pick a constant ce€]0, oo[ and define

9 (x) = VO ()0 (c(1 + x]") = [V (x))), (5:2)

Vl((/)) (x) — V((U) (x) _ V2((’)) (x) (52b)

for all weQ and all xe RY. Clearly, for every weQ the realization VQ(‘”> satisfies (1.4)
for all e>0. We will show below that Vl(w) el! (R?) for P-almost all we Q. This

unif,loc
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proves the lemma, because Lfmif!loc(Rd) = (RY), see e.g. Eq. (A.21) in [42] for d>2
and note 4 (R) = L]‘mif’loc([R{).

In this proof we use the abbreviation A(y) = A,(y) for the open unit cube in R?
with centre yeRY. To prove P[V; eLﬁnifﬁloc(Rd)] =1 we apply the “Chebyshev—
Markov™ inequality @(¢& — 1)< |¢]" with k = p; —r>0 to obtain for all weQ the
estimate

(@) ar V(w)a Nl
|V (X)‘ _ ><C || /CAU)”]M (53)

vy ol = / dx|V @O (x) e -——2- < MWl
|| 1 /(/1(})”; A0) X| (X)| c(l+|x|‘) (1+|y|\)p17r

for all yeZ? with some constant ¢€]0, oco[, which is independent of yeZ?. This
implies

5HVXA(y)||p1/r
L LITNESIED Y [EMVM”I
yez! yezt (1+ |y| )(171 )/
EV 209 150"

< é? _
S (L)

(5.4)

In order to get the second inequality in (5.4), we used the “Chebyshev—Markov”
inequality with k = ¢, where ¢ is chosen such that

d p_ _pry9

< p2. (55)
vpr—r r

The numerator in the second line of (5.4) is uniformly bounded in yeZ? due to the
right inequality in (5.5), Jensen’s inequality and property (S). The left inequality in
(5.5) then assures that the series in the second line of (5.4) is summable, which implies
by the first Borel-Cantelli lemma

PI[V1)(ll,>1 for infinitely many yezi] =0. (5.6)

This delivers

P supd Vixagnll, = © | =P[[Vixapyll, = oo for some yerd]
ye”Z

yez!
< Z P[HVXA()?)”pI = OO}
yGZd
=0, (5.7)
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where we have used the countable subadditivity of P for the first inequality and
|[V1]<|V| as well as r<p; for the second inequality. The last equality in (5.7) follows
from property (S). Thus, we have shown

PV ELfmif,loc(Rd)] =1L u (5.8)

For the proof of Corollaries 1.27 and 1.29 we need suitable measurability
properties of the involved integral kernels, which we establish in

Lemma 5.1. Let A be a vector potential with property (A) and let V' be a random scalar
potential with property (S). Then there exists Qoe.o/ with P(Qy) = 1 such that for
every me

tH(A,V®

(i) the operator exponential e~ ) has a continuous integral kernel k,(w> for any

t>0 and the mapping

Qox]0, o [xR x RT - C,
(@) (5.9)
((U, l,x,y) = kt (X,y)

is /o ®%(]0, 0 |) @ B(RY) ® B(R)-measurable;
(i) the spectral projection y_, g(H (4, V(@) has a continuous integral kernel
PN E;-,-) for any E€R and the mapping

QxRxRI'xR! > C, (5.10)
(@, E,x,y) = p(E;x,y)
is )R B(R)® B(R?) ® B(R)-measurable.
Here, </ is the restriction of the sigma-algebra <f of Q to Qq, and given any Borel
set BER? we denote by %(B) the sub-sigma-algebra of Borel sets in R which are
contained in B.

Proof. The existence and continuity of the integral kernels is guaranteed by
Corollary 1.24, Lemma 1.7, Theorem 1.10 and Corollary 1.16 (see also Corollary

1.18). The measurability claimed in (i) follows from the Brownian-bridge
)

representation (1.11) for k; . The claim of (ii) follows from (i), Corollary 1.18
and the invertibility of the Laplace transformation. [

Proof of Corollary 1.27. We fix EFeR arbitrary. Lemma 5.1(ii)) guarantees the
existence, continuity and suitable measurability properties of the integral kernel
p\“)(E;-,-) of the spectral projection - o0, (H (4, V(@) for all weQye.o/ with
P(2) = 1. Eq. (1.24) and Proposition 1.25 imply that

N(E) = [E{/F%p(E;x,x)} (5.11)
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is finite. Now the claim follows from Fubini’s theorem, because p'® (E; x, x) >0 for
all we Qg and all xeR’, see Lemma 4.2, and because E[p(E; x, x)] is independent of
xeR? due to the R?-ergodicity of V. O

Proof of Corollary 1.29. We fix >0 arbitrary. Lemma 5.1(1) guarantees the
existence, continuity and suitable measurability properties of the integral kernel k,(w>
of the operator exponential e~ @4V for all weQye.of with P(Qy) = 1. Jensen’s
inequality, Fubini’s theorem and property (L) imply for ugfy-almost every path b of
the Brownian bridge the estimate

[E[exp{—/tdsV(b(s))H < /OtdZS[E[exp{—tV(b(s))}]<$,< oo, (5.12)

0
which shows that the integral kernel k, is well defined and obeys the inequality
ol /21)

ey (x, )| <E[lki (x, )| < & ")

(5.13)

for all x, ye R?, thereby proving (1.33). The Hermiticity of k; is inherited from that of
k:, see Lemma 1.7(i). The estimate (5.13) also yields k,(x,-)e L& (R?) for all xeR?,
and hence the Carleman property (1.15) for k,. We defer the proof of the continuity

of k; to the end, but exploit its consequences right now. Jensen’s inequality, Fubini’s
theorem and the almost-surely applicable Markov property (1.12) yield the estimate

) =Rz IR [ dy Eller) - k(=)
R
= ko (x, x) — kas(z, x) — k_z,(x,z) + k_zf(z, z), (5.14)

showing that the continuity of k», implies the strong continuity of the mapping
RY - L2(RY), x—k,(x,-).
The estimate (5.13) delivers

| Top| < Lo HOO |y | (5.15)

for all l//GLZ(Rd)7 where T; is defined in (1.34). Consequently, 7; is a bounded
Carleman operator on L?*(RY). Moreover, T, is self-adjoint because of the
Hermiticity of k, and an interchange of integrations thanks to (5.13) and Fubini’s
theorem. The continuity of any image 7, follows from the strong continuity of
k(x,-) by proceeding along the lines of Eq. (3.6) in the proof of Lemma 3.1.

Now let e LE(R?) so that the equality T,y = E[fe=(4Y)y] follows from (1.17)
and an interchange of integrations. This interchange is again allowed by Fubini’s
theorem and (5.13). The inequalities (5.13) and (2.14) imply that T,y e L& (RY) for all
weLé(Rd ). Remark 1.11(iii) applies accordingly.
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Next we establish the positivity of 7;. Given any Y € Lé([F\Rd), one deduces from the
just-proven equality (1.35), estimate (5.13) and Fubini’s theorem that {y, Tay > =
E[{y,e ™ AY)y %] >0, where the lower bound follows from the positivity of
e HAVY) for P-almost all weQ. Now, the denseness of L2 (R?) in L*(R?), the
boundedness of T; and the continuity of the scalar product yield <y, T,y > >0 for all
Yy eL?(RY).

Finally, we turn to the postponed proof of the continuity of the mapping R? x
R?-C, (x,y)—k,(x,y). This continuity will follow from Lemma 5.1(i) and the
dominated-convergence theorem, provided we show

E[ sup |k,(x,y)|] < oo (5.16)

x.yer

for any bounded set # <R? x R?. In order to do so, let us fix weQy and x,yeA
arbitrary. By using (1.11), the triangle inequality, Jensen’s inequality and Fubini’s
theorem, we get

i) (x, )| < (2mt) d/z/ ds/ 01 (db)eV"(bL)
:(2m‘)7d/2/0 da/Rd dz go(z — myy(0))e V@), (5.17)

where the equality follows from an explicit computation with m, ,(¢) = x + (y — x)o
and

xp{—|z[*/[2(1 — ¢)a
S 19

Next, we apply Holder’s inequality with the conjugated exponents pe]l, oo| and
p = (1-p )" to the integral with respect to z in (5.17), which yields the upper

bound
" 1/p ) N P
(/ dz e PV @) erle ) (/ dzeplz|gg(z—mx’y(a))|p> . (5.19)
Rd d

The second integral in (5.19) is bounded from above by

'max{|x|,|y |z 4 'max{|x|, 1-p")d/2
Qi {\»\,M}/Rddz o Ellg, () <MD (1 = )0, (5.20)
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where I, = (21) " [ dte P (P=IEVD/2 < o for any p'> 1. This gives the estimate

1
E| sup k(x,»)|| < (2ne)" 71" <sup e|‘7|) / do[(1 — 0)or] V)
xyex zeAd 0

1/p
x [E (/ dz e‘”V(Z)eplz) : (5.21)
Rd

The expectation value on the right-hand side of (5.21) is finite for any p>1 by
Jensen’s inequality, property (L) and Fubini’s theorem. Therefore (5.16) follows from
the boundedness of #" and by choosing p>max{1,d/2}. O
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