15,098 research outputs found

    Probabilistic models for multi-view semi-supervised learning and coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 146-160).This thesis investigates the problem of classification from multiple noisy sensors or modalities. Examples include speech and gesture interfaces and multi-camera distributed sensor networks. Reliable recognition in such settings hinges upon the ability to learn accurate classification models in the face of limited supervision and to cope with the relatively large amount of potentially redundant information transmitted by each sensor or modality (i.e., view). We investigate and develop novel multi view learning algorithms capable of learning from semi-supervised noisy sensor data, for automatically adapting to new users and working conditions, and for performing distributed feature selection on bandwidth limited sensor networks. We propose probabilistic models built upon multi-view Gaussian Processes (GPs) for solving this class of problems, and demonstrate our approaches for solving audio-visual speech and gesture, and multi-view object classification problems. Multi-modal tasks are good candidates for multi-view learning, since each modality provides a potentially redundant view to the learning algorithm. On audio-visual speech unit classification, and user agreement recognition using spoken utterances and head gestures, we demonstrate that multi-modal co-training can be used to learn from only a few labeled examples in one or both of the audio-visual modalities. We also propose a co-adaptation algorithm, which adapts existing audio-visual classifiers to a particular user or noise condition by leveraging the redundancy in the unlabeled data. Existing methods typically assume constant per-channel noise models.(cont.) In contrast we develop co-training algorithms that are able to learn from noisy sensor data corrupted by complex per-sample noise processes, e.g., occlusion common to multi sensor classification problems. We propose a probabilistic heteroscedastic approach to co-training that simultaneously discovers the amount of noise on a per-sample basis, while solving the classification task. This results in accurate performance in the presence of occlusion or other complex noise processes. We also investigate an extension of this idea for supervised multi-view learning where we develop a Bayesian multiple kernel learning algorithm that can learn a local weighting over each view of the input space. We additionally consider the problem of distributed object recognition or indexing from multiple cameras, where the computational power available at each camera sensor is limited and communication between cameras is prohibitively expensive. In this scenario, it is desirable to avoid sending redundant visual features from multiple views. Traditional supervised feature selection approaches are inapplicable as the class label is unknown at each camera. In this thesis, we propose an unsupervised multi-view feature selection algorithm based on a distributed coding approach. With our method, a Gaussian Process model of the joint view statistics is used at the receiver to obtain a joint encoding of the views without directly sharing information across encoders. We demonstrate our approach on recognition and indexing tasks with multi-view image databases and show that our method compares favorably to an independent encoding of the features from each camera.by C. Mario Christoudias.Ph.D

    Score Function Features for Discriminative Learning: Matrix and Tensor Framework

    Get PDF
    Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.Comment: 29 page

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Gaussian process domain experts for model adaptation in facial behavior analysis

    Get PDF
    We present a novel approach for supervised domain adaptation that is based upon the probabilistic framework of Gaussian processes (GPs). Specifically, we introduce domain-specific GPs as local experts for facial expression classification from face images. The adaptation of the classifier is facilitated in probabilistic fashion by conditioning the target expert on multiple source experts. Furthermore, in contrast to existing adaptation approaches, we also learn a target expert from available target data solely. Then, a single and confident classifier is obtained by combining the predictions from multiple experts based on their confidence. Learning of the model is efficient and requires no retraining/reweighting of the source classifiers. We evaluate the proposed approach on two publicly available datasets for multi-class (MultiPIE) and multi-label (DISFA) facial expression classification. To this end, we perform adaptation of two contextual factors: where (view) and who (subject). We show in our experiments that the proposed approach consistently outperforms both source and target classifiers, while using as few as 30 target examples. It also outperforms the state-of-the-art approaches for supervised domain adaptation
    • …
    corecore