248,740 research outputs found
Modelling Probabilistic Wireless Networks
We propose a process calculus to model high level wireless systems, where the
topology of a network is described by a digraph. The calculus enjoys features
which are proper of wireless networks, namely broadcast communication and
probabilistic behaviour. We first focus on the problem of composing wireless
networks, then we present a compositional theory based on a probabilistic
generalisation of the well known may-testing and must-testing pre- orders.
Also, we define an extensional semantics for our calculus, which will be used
to define both simulation and deadlock simulation preorders for wireless
networks. We prove that our simulation preorder is sound with respect to the
may-testing preorder; similarly, the deadlock simulation pre- order is sound
with respect to the must-testing preorder, for a large class of networks. We
also provide a counterexample showing that completeness of the simulation
preorder, with respect to the may testing one, does not hold. We conclude the
paper with an application of our theory to probabilistic routing protocols
An integrative approach based on probabilistic modelling and statistical inference for morpho-statistical characterization of astronomical data
This paper describes several applications in astronomy and cosmology that are
addressed using probabilistic modelling and statistical inference
Probabilistic Timed Automata with Clock-Dependent Probabilities
Probabilistic timed automata are classical timed automata extended with
discrete probability distributions over edges. We introduce clock-dependent
probabilistic timed automata, a variant of probabilistic timed automata in
which transition probabilities can depend linearly on clock values.
Clock-dependent probabilistic timed automata allow the modelling of a
continuous relationship between time passage and the likelihood of system
events. We show that the problem of deciding whether the maximum probability of
reaching a certain location is above a threshold is undecidable for
clock-dependent probabilistic timed automata. On the other hand, we show that
the maximum and minimum probability of reaching a certain location in
clock-dependent probabilistic timed automata can be approximated using a
region-graph-based approach.Comment: Full version of a paper published at RP 201
Regional Control of Probabilistic Cellular Automata
Probabilistic Cellular Automata are extended stochastic systems, widely used
for modelling phenomena in many disciplines. The possibility of controlling
their behaviour is therefore an important topic. We shall present here an
approach to the problem of controlling such systems by acting only on the
boundary of a target region
On Probabilistic Parallel Programs with Process Creation and Synchronisation
We initiate the study of probabilistic parallel programs with dynamic process
creation and synchronisation. To this end, we introduce probabilistic
split-join systems (pSJSs), a model for parallel programs, generalising both
probabilistic pushdown systems (a model for sequential probabilistic procedural
programs which is equivalent to recursive Markov chains) and stochastic
branching processes (a classical mathematical model with applications in
various areas such as biology, physics, and language processing). Our pSJS
model allows for a possibly recursive spawning of parallel processes; the
spawned processes can synchronise and return values. We study the basic
performance measures of pSJSs, especially the distribution and expectation of
space, work and time. Our results extend and improve previously known results
on the subsumed models. We also show how to do performance analysis in
practice, and present two case studies illustrating the modelling power of
pSJSs.Comment: This is a technical report accompanying a TACAS'11 pape
Model checking probabilistic and stochastic extensions of the pi-calculus
We present an implementation of model checking for probabilistic and stochastic extensions of the pi-calculus, a process algebra which supports modelling of concurrency and mobility. Formal verification techniques for such extensions have clear applications in several domains, including mobile ad-hoc network protocols, probabilistic security protocols and biological pathways. Despite this, no implementation of automated verification exists. Building upon the pi-calculus model checker MMC, we first show an automated procedure for constructing the underlying semantic model of a probabilistic or stochastic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for processes of a specific structure a more efficient, compositional approach is applicable, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level modular description for the PRISM tool. The feasibility of our techniques is demonstrated through a number of case studies from the pi-calculus literature
Modelling, reduction and analysis of Markov automata (extended version)
Markov automata (MA) constitute an expressive continuous-time compositional modelling formalism. They appear as semantic backbones for engineering frameworks including dynamic fault trees, Generalised Stochastic Petri Nets, and AADL. Their expressive power has thus far precluded them from effective analysis by probabilistic (and statistical) model checkers, stochastic game solvers, or analysis tools for Petri net-like formalisms. This paper presents the foundations and underlying algorithms for efficient MA modelling, reduction using static analysis, and most importantly, quantitative analysis. We also discuss implementation pragmatics of supporting tools and present several case studies demonstrating feasibility and usability of MA in practice
- …
