12 research outputs found

    Individualized Rank Aggregation using Nuclear Norm Regularization

    Full text link
    In recent years rank aggregation has received significant attention from the machine learning community. The goal of such a problem is to combine the (partially revealed) preferences over objects of a large population into a single, relatively consistent ordering of those objects. However, in many cases, we might not want a single ranking and instead opt for individual rankings. We study a version of the problem known as collaborative ranking. In this problem we assume that individual users provide us with pairwise preferences (for example purchasing one item over another). From those preferences we wish to obtain rankings on items that the users have not had an opportunity to explore. The results here have a very interesting connection to the standard matrix completion problem. We provide a theoretical justification for a nuclear norm regularized optimization procedure, and provide high-dimensional scaling results that show how the error in estimating user preferences behaves as the number of observations increase

    Improving Top- N

    Get PDF
    Recommender systems become increasingly significant in solving the information explosion problem. Data sparse is a main challenge in this area. Massive unrated items constitute missing data with only a few observed ratings. Most studies consider missing data as unknown information and only use observed data to learn models and generate recommendations. However, data are missing not at random. Part of missing data is due to the fact that users choose not to rate them. This part of missing data is negative examples of user preferences. Utilizing this information is expected to leverage the performance of recommendation algorithms. Unfortunately, negative examples are mixed with unlabeled positive examples in missing data, and they are hard to be distinguished. In this paper, we propose three schemes to utilize the negative examples in missing data. The schemes are then adapted with SVD++, which is a state-of-the-art matrix factorization recommendation approach, to generate recommendations. Experimental results on two real datasets show that our proposed approaches gain better top-N performance than the baseline ones on both accuracy and diversity

    A geneticā€based pairwise trip planner recommender system

    Get PDF
    The massive growth of internet users nowadays can be a big opportunity for the busi- nesses to promote their services. This opportunity is not only for e-commerce, but also for other e-services, such as e-tourism. In this paper, we propose an approach of personalized recommender system with pairwise preference elicitation for the e-tourism domain area. We used a combination of Genetic Agorithm with pairwise user prefer- ence elicitation approach. The advantages of pairwise preference elicitation method, as opposed to the pointwise method, have been shown in many studies, including to reduce incosistency and confusion of a rating number. We also performed a user evaluation study by inviting 24 participants to examine the proposed system and publish the POIs dataset which contains 201 attractions used in this study

    Exploiting Explicit and Implicit Feedback for Personalized Ranking

    Get PDF
    The problem of the previous researches on personalized ranking is that they focused on either explicit feedback data or implicit feedback data rather than making full use of the information in the dataset. Until now, nobody has studied personalized ranking algorithm by exploiting both explicit and implicit feedback. In order to overcome the defects of prior researches, a new personalized ranking algorithm (MERR_SVD++) based on the newest xCLiMF model and SVD++ algorithm was proposed, which exploited both explicit and implicit feedback simultaneously and optimized the well-known evaluation metric Expected Reciprocal Rank (ERR). Experimental results on practical datasets showed that our proposed algorithm outperformed existing personalized ranking algorithms over different evaluation metrics and that the running time of MERR_SVD++ showed a linear correlation with the number of rating. Because of its high precision and the good expansibility, MERR_SVD++ is suitable for processing big data and has wide application prospect in the field of internet information recommendation
    corecore