Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 380472, 13 pages
http://dx.doi.org/10.1155/2015/380472

Research Article

Hindawi

Improving Top-N Recommendation Performance

Using Missing Data

Xiangyu Zhao,"” Zhendong Niu,” Kaiyi Wang,' Ke Niu,” and Zhongqiang Liu'

! Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
%School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Xiangyu Zhao; zhaoxy@nercita.org.cn

Received 23 April 2015; Accepted 26 August 2015

Academic Editor: Jean-Charles Beugnot

Copyright © 2015 Xiangyu Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recommender systems become increasingly significant in solving the information explosion problem. Data sparse is a main
challenge in this area. Massive unrated items constitute missing data with only a few observed ratings. Most studies consider
missing data as unknown information and only use observed data to learn models and generate recommendations. However, data
are missing not at random. Part of missing data is due to the fact that users choose not to rate them. This part of missing data
is negative examples of user preferences. Utilizing this information is expected to leverage the performance of recommendation
algorithms. Unfortunately, negative examples are mixed with unlabeled positive examples in missing data, and they are hard to
be distinguished. In this paper, we propose three schemes to utilize the negative examples in missing data. The schemes are then
adapted with SVD++, which is a state-of-the-art matrix factorization recommendation approach, to generate recommendations.
Experimental results on two real datasets show that our proposed approaches gain better top-N performance than the baseline ones

on both accuracy and diversity.

1. Introduction

In the current age of information overload, it is becoming
increasingly hard for people to find relevant content. Rec-
ommender systems have been introduced to help people in
retrieving potentially useful information in a huge set of
choices. Conventional recommendation methods are based
on users’ rating values. These rating values are considered as
indications of users’ preference level towards the rated items.
Recommender systems estimate the ratings of items that have
not been rated by the target user based on the rating history
and recommend top-N items with highest predicted ratings.
This kind of rating prediction approaches has gain significant
success. Recently, there is a growing interest in improving
recommender systems in terms of ranking performance as it
seems to better approximate the true task [1, 2]. As a result,
some researchers consider the recommendation problem as a
ranking prediction problem and directly optimize a ranking
goal to learn their recommendation algorithms.

Most of these approaches, either rating prediction ones or
ranking prediction ones, are trained and tested on observed
ratings only. The effectiveness of these approaches is based
on an implicit underlying assumption that the ratings in the
available data are missing at random. If the assumption is
not satisfied, the missing data mechanism cannot be ignored
in general and has to be modeled precisely so as to obtain
correct results. Indeed, some recent works find that the
data are missing not at random [3-5]. Marlin et al. [3]
provide evidence that low ratings are much more likely to
be missing from the observed data than high ratings in the
Yahoo!LaunchCast data. This may be a consequence of the
fact that users are free to choose which items to rate. Steck
[4] works on training and testing recommender systems on
data missing not at random and illustrates that accounting
for missing ratings can improve the top-N performance of
simple matrix factorization model. Therefore, missing data,
which have not been rated by the active users, carry useful
information of user preferences.



We agree with the idea that data are missing not at ran-
dom. However, our assumption is different with these ones in
[3-5], which consider missing data mainly as negative ratings.
In our opinion, there are lots of negative examples of users’
preference in missing data while observed data are positive
ones. We have found that the rating behaviors themselves are
evidences of user preferences no matter whether the rating
values are high or low in the previous work [6]. This indicated
that users are free to choose which items to rate in the context
of recommender systems. Therefore, lots of missing data are
because users choose not to rate them. For example, one who
dislikes horror film will not watch “Evil Dead” and also will
not rate it. To a certain user, the entire item data can be split
into two sets: one is the item set (c*) that the user chooses
to rate and the other is the item set (¢”) that the user does
not deliberately choose to rate. Observed data are part of ¢*.
The rest of ¢* combines with ¢~ to be missing data. The goal
of recommender systems is to identify the items in ¢* but
not been rated yet and to recommend them to users. As a
result, it is important to distinguish which item set an item
belongs to. Unfortunately, there are only positive examples to
be used for classification; negative examples are mixed with
some positive ones in missing data.

An intuitive approach to solving this problem is to
distinguish the negative examples and use them together with
the positive ones to learn recommendation model. In this
paper, we propose three kinds of schemes to get negative
examples from missing data and adapt them with an existing
recommendation approach to a unique model. It is expected
that the new model can better distinguish between positive
items and negative ones compared to the original model and
recommend more items that users may rate. As a result,
the new model is expected to gain improvement in top-N
recommendation performance.

The first scheme considers that all missing data are nega-
tive examples with different confidence towards the positive
ones. The other two sample some negative examples from
missing data with a stochastic method or a neighbor-based
method. All the schemes utilize the information from missing
data. To verify the effectiveness, we adapt the schemes with
SVD++ [7] (a state-of-the-art rating prediction approach
using a matrix factorization model) to new models. Our
experiments demonstrate that the new models gain signifi-
cant improvement of SVD++ in top-N recommendation.

The remainder of the paper is organized as follows.
We review related literature in Section 2. The schemes to
deal with missing data are introduced in Section 3. The
improvements of SVD++ are proposed in Section 4. Section 5
introduces some popular evaluation metrics. Experiments
are carried out on MovieLens and EachMovie datasets in
Section 6 to compare the proposed approaches with existing
ones. Finally, we conclude the paper in Section 7.

2. Related Work

In this section, the review of literatures is divided into four
parts. The first one is about conventional rating prediction
recommendation algorithms. The second one includes some
studies on ranking prediction recommendation approaches.
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The third one is about some recent works on nonrandom
missing data. The last one focuses on one-class collaborative
filtering, the idea which is similar to our proposed schemes.

2.1. Rating Prediction Approaches. Recommendation tech-
niques have been studied for several years. Conventional
recommendation approaches are based on rating prediction.
They are used for providing personalized recommendations
to help people in solving the information explosion problem.
Collaborative filtering (CF) is a very popular technique, since
it is not necessary to analyze the content of the candidate
items using swarm intelligence instead. Furthermore, it can
be easily adapted from one domain to another. CF algorithms
can be divided into two classes: memory-based and model-
based [8, 9].

Memory-based algorithms are heuristic methods that
make rating predictions based on the entire collection of
items previously rated by users [10, 11]. They are based
on a basic assumption that people who agreed about their
preferences to certain items in the past tend to agree again
in the future [12]. The level of agreement can be measured by
similarity. Based on the similarity calculation, recommender
systems predict ratings for unknown items using adjusted
weighted sum of known ratings and recommend items with
high predicted values [11].

Model-based CF is another kind of typical CF methods.
Model-based algorithms use the collection of ratings to learn
a model, typically using some statistical machine-learning
methods, which are then used to make rating prediction.
These approaches always design appropriate loss functions
and optimization procedure to learn their model by mini-
mizing the error between predicted ratings and actual ones.
Examples of such techniques include Bayesian clustering [9],
matrix factorization [7], and topic model [13].

SVD++ [7] is a model-based CF using matrix factoriza-
tion technique. It considers implicit feedbacks as complement
of explicit feedbacks and utilizes them together to build
recommendation models by minimizing prediction errors.
This approach is a state-of-the-art rating prediction approach,
which is used as the foundation of our improvement.

2.2. Ranking Prediction Approaches. Different from those rat-
ing prediction approaches, some researches directly consider
the recommendation problem as a ranking problem. They
propose models for ranking predictions by directly modeling
user preferences with respect to a set of items rather than the
rating scores on individual items.

Weimer et al. [14] present a method (CofiRank) which
uses Maximum Margin Matrix Factorization and considers
maximum NDCG as the optimizing target. The approach
is adaptable to different scores. Since the optimizing target
of CofiRank is a listwise one, the approach scales well on
collaborative filtering tasks.

Liu and Yang [15] measure the similarity between users
based on the correlation between their rankings of the items
rather than the rating values. Based on the preferences of
similar users, they propose collaborative filtering algorithms
for ranking items with either a greedy strategy or a random
walk model.
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Liu et al. [2] propose a probabilistic latent preference
analysis (pLPA) model to make ranking predictions. From
a user’s observed ratings, they extract his/her preferences in
the form of pairwise comparisons of items which are modeled
by a mixture distribution based on Bradley-Terry model. An
EM algorithm for fitting the corresponding latent class model
as well as a method for predicting the optimal ranking is
described.

Koren and Sill [16] propose a collaborative filtering
recommendation framework (OrdRec), which is based on
viewing user feedback on products as ordinal, rather than the
more common numerical view. Their approach is based on
a pointwise ordinal model, which allows it to linearly scale
with data size. OrdRec is also an improvement of SVD++. It
is used as a comparing approach in our experiments to verify
the effectiveness of our proposed approaches in the top-N
recommendation task.

2.3. Nonrandom Missing Data. Most of conventional collab-
orative filtering approaches use observed ratings only, and
they expect that the model optimizing with observed ratings
only is an unbiased estimating of using the entire data. These
approaches are based on an implicit assumption that the
ratings not in observed data are missing at random. However,
this may not be satisfied. Some recent works have found that
data are not missing at random [3-5].

Marlin et al. [3] find that low ratings are much more likely
to be missing from observed data than high ratings in the
Yahoo!LaunchCast data. This is an evidence of data missing
not at random. Steck [4, 5] works on training and testing
recommender systems on data missing not at random. He
assumes that the relevant rating values are missing at random,
and the other ratings are missing with higher probability.
Based on the assumption, he presents two performance
measures that can be estimated, under mild assumptions,
without bias from data even when ratings are missing not
at random. In addition, he also propose an appropriate
surrogate measure for training models which is captured as
AllRank. In this measure, both observed and missing data are
considered. It improves the top-N performance of a simple
matrix factorization model by accounting for missing ratings.

Cremonesi et al. [1] propose an improvement of matrix
factorization by considering all missing values in the user
rating matrix as 0, which is captured as PureSVD. This
approach gets better top-N performance even than more
detailed and sophisticated latent factor models. The result
demonstrates that considering missing data as 0 value is much
more effective than just ignoring them, which is also an
evidence of data missing not at random.

2.4. One-Class Collaborative Filtering. In some recommen-
dation context, the training data usually consist simply of
binary data reflecting a user’s action. Researchers consider
these problems as one-class collaborative filtering problems
(OCCEF). In these problems, users’ action data are usually
extremely sparse (a small fraction are positive examples);
therefore ambiguity arises in the interpretation of the non-
positive examples. Negative examples and unlabeled positive
examples are mixed together, and they always are unable to

be distinguished. Pan et al. [17] propose two frameworks to
solve the OCCF problems. One is based on weighted low
rank approximation; the other is based on negative example
sampling. Li et al. [18] exploit the rich user information to
improve recommendation accuracy in the OCCF problems.
They propose two ways to incorporate such user information
into the OCCF models: one is to linearly combine scores from
different sources and the other is to embed user information
into collaborative filtering. Rendle et al. [19] consider missing
data as a mixture of real negative feedback and missing
positive values and present a generic optimization criterion
(BPR) for personalized ranking that is the maximum pos-
terior estimator derived from a Bayesian analysis of OCCF
problem.

The schemes, which we will propose in the next section to
deal with missing data of reccommender systems by weighting
or sampling, are similar to the idea in OCCF. However, the
context of recommendation is different between our schemes
and the schemes in OCCE OCCF focuses on the binary
recommendation problems with implicit feedbacks while
our proposed ones focus on the classical recommendation
problems with explicit feedbacks. Furthermore, the neighbor-
based sampling scheme proposed in Section 3.3 can utilize
the advance of kNN methods while sampling negative exam-
ples.

3. Schemes to Deal with Missing Data

In the context of recommender systems, users are free to
choose which items to rate. As a result, the observed rating
data can indicate users” preferences. In the survey of Marlin
et al. [3] using Yahoo!LanchCast data, there are 93.9% users
report that they rate an item which they love very often,
while only 36.5% users report that they rate an item for
which they are “neutral” with the same frequency. The
survey is a collection of ratings for songs, which is a little
time-consuming context. If the context changes to a very
time-consuming or cost-consuming, such as movie or e-
commerce, the ratio of users choosing to rate an item for
which they are “neutral” should be less. Therefore, there are
two types of items for a certain user. One is the items that the
certain user wants to rate. They are partitioned to a set c*.
The other is the items that the user does not care and does
not want to rate. They are partitioned to ¢”. The observed
data contains the rated items. It is a part of ¢*. The rest part
of ¢* combines with ¢~ to be missing data. In this paper, we
consider the items in ¢* as positive examples, and the items
in ¢~ as negative examples.

Based on the partition, Steck considers that the rating
distribution is different between ¢* and ¢~ [5]. He tries to
model the difference to improve a simple matrix factorization
approach in top-N recommendation task [4]. In his opinion,
the negative ratings with low value get high probabilities to
be missing. Therefore, he imputes a small value (r,,) for all
missing data, and uses a weighting parameter (w,,,) to control
the effect of missing data. In this way, the improved models
using missing data can gain better top-N performance than
the original matrix factorization model using observed data
only (in the work, AllRank-Regression with w,, = 0.05 and



f,, = 2 gains the best top-N performance. It is used as a
comparing approach in our experiment).

The main idea of Steck [4, 5] is that most of missing data
are negative ratings. The difference between c" and ¢™ is rating
distribution. Different from them, in our opinion, most of
missing data are negative examples. Positive examples in ¢*
and negative examples in ¢~ are two different item sets. The
goal of the recommender systems is to identify the unrated
positive examples. As a result, it is necessary to distinguish
an item belong to which item set. Unfortunately, only positive
examples are explicit in recommendation context, negative
examples are mixed with some positive examples in missing
data. In order to solve the problem, we try to distinguish the
negative examples, and use them together with the positive
ones to learn recommendation model. Like the idea in [4],
we use an imputed value (r,,) for negative examples in order
to model both positive and negative examples in one unique
model. Different from Steck [4], our r,, is used to represent
negative examples, which are actually in a different item set
from positive examples. Therefore, the value of r,,, should out
of the range of rating scale in order to distinguish negative
examples with positive ones using rating value (The typical
value of r,,, is 0. The impact of different r,, is experimented in
Section 6 even with the value in the range of rating scale.).

In the rest of this section, three schemes are introduced
to deal with missing data.

3.1. Weighting Scheme. Weighting Scheme (WS) considers
that all missing data are negative examples with different
confidence levels towards the positive ones. The weighting
value indicates the confidence level, which determines how
much missing data are considered as negative examples. The
weighting function can be written as:

1, (u,i) € R
wui = (1)
6; <u) l) ¢ R)

where w,; is the weighting value for user u on item i, R is
the observed data, & is a uniform confidence threshold for
all missing data. If user u has rated item i, it is a positive
example, and the weighting value is set to 1. Otherwise, (u, i)
is considered as a negative example with a confidence level §.
In this scheme, all missing data are imputed with r,,,. It can be
formalized as:

. Ty (U,i) €R

rui = (2)
T (Ui) ¢ R,

where r;,; is the data for learning recommendation models,
and r,,; is the rating value in observed data.

With WS, a recommendation approach aims at finding a
prediction model to minimizing the objective of a weighted
Frobenius loss function as:

* % —~ w\2
Z(R) =Y wy (ri; —F(wi), (3)
(u,i)
where R* is the re-construct matrix which contains both

observed data and imputed ratings, while 7(u, i) is the rating
predicted by recommender systems.
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Broadly speaking, WS can be considered the same as
AllRank-Regression in [4]. The main difference is that their
opinion about missing data is negative ratings (AllRank-
Regression) or negative examples (WS). In addition, PureSVD,
which is proposed in [1] is a special case of using WS in SVD
approach with § = 1.

3.2. Random Sampling Scheme. WS considers all missing
data as negative examples. This assumption is roughly held
in most cases. However, the main drawback is that the
computational costs are very high especially when the target
problem of recommender systems is information overload,
which contains a massive set of missing data. Sampling
scheme could solve this problem in a certain degree by
considering some missing data as negative examples, which
is much different from WS.

In this subsection, we propose a random sampling
scheme (RSS) which samples some negative examples from
missing data with a stochastic method. In RSS, 0 percentage
of missing data is randomly selected as negative examples
(RandomN). These negative examples are combined with
rating matrix R to be the re-construct matrix R* for RSS. It
can be formalized as:

ry» Uiy €R
= (4)

“ Ty (U, i) € RandomN.

RSS uses R* to optimize the recommendation model
and generate recommendations. Therefore, the size of R
is a major aspect of the computational cost for different
recommendation approaches. As the size of R is a constant,
the computational cost is mainly relevant to the size of
RandomN. When 0 is 1, RandomN is the entire set of missing
data, the computational cost of RSS is similar to WS. When
0 is 0, RandomN is an empty set, the computational cost
of RSS is similar to the original recommendation approach
which does not consider the effect of missing data. When 0
is between 0 and 1, the computational cost of RSS is reduced
with a decrease in 6. The experimental results will show that
RSS gains the best performance when 0 is 0.2. This indicates
that the computational cost of RSS is much less than WS.

As RSS mainly focuses on utilizing missing data with-
out improvement of training process of recommendation
approaches. Therefore, RSS learns the prediction model by
minimizing the objective of an unweighted Frobenius loss
function as most recommendation approaches do. It can be
written as:

ZR) =Y (ri-Fwi)’. 5)
(u,i)

It is notable that the RandomN should be re-built in each
learning step, as the sampling scheme is a stochastic one, in
order to reduce the randomness.

3.3. Neighbor-Based Sampling Scheme. Sampling scheme can
reduce the computational costs of weighting scheme. How-
ever, using a stochastic method leads that both the missing
positive examples and the negative ones have the same



Mathematical Problems in Engineering

(1) for each useru € U do

been rated by all users in N(u);

(6) end for

Input: the rating matrix R, the random ratio 6, the neighbor size k
Output: the neighbor-based sampling matrix Neighbor N

(2)  Find N(u): the top-k most similarity users of u;
(3)  Find OUT(u): the item set, in which items have not been rated by user u;
(4)  Find C(u): the candidate item set, a sub set of OUT (1), in which items have not

(5)  Random select 8 percentage of items in C(u) into NeighborN;

ALGORITHM I: The neighbor-based sampling scheme.

chance to be selected as negative examples. In this subsection,
we propose a neighbor-based sampling scheme (NSS) to
increase the chance of negative examples to be selected and
to decrease the selected chance of positive ones. Different
from RSS sampling with a stochastic method, NSS samples
some negative examples from missing data using swarm
intelligence.

NSS is based on an assumption that similar users have
similar tendency about negative examples. Like the idea
of neighbor-based CE in NSS, for a certain user, items
that have rarely been rated by his/her neighbors are very
likely to be negative examples. As a result, NSS searches
the k most similar users as neighbors for individual users
and then selects the items which have not been rated by
users’ neighbors. In this case, negative examples have bigger
chance to be selected than positive ones. After that, NSS
randomly samples some items as negative examples from the
selected items. The sampled result is a negative example set
(NeighborN). The detail of NSS is described in Algorithm 1.

With the sampling result, the elements of the reconstruct
matrix for NSS can be written as

r,» (ui) €R
Tui = (6)

“ Ty (u,i) € NeighborN.

Recommendation approaches with NSS learn their mod-
els with the same loss function as RSS. Since the similar users
in NSS are used to share the opinions about which items (not)
to rate, the similarity functions which consider two users who
often (do not) rate the same items as similar users are suitable.
Jaccard index is a such kind of similarity function, and it is
used for measuring users’ similarities in this paper.

4. Recommendation Approaches

The proposed schemes in Section 3 can be adapted with
many recommendation approaches to utilize missing data.
In this section, we take a matrix factorization approach
which is known as SVD++ [7] as the basic model and
adapt the schemes with it in order to improve its top-N
recommendation performance by using missing data.

The SVD++ approach is demonstrated to yield superior
accuracy by considering implicit feedbacks (including rating
behaviors) as complement of explicit feedbacks and use them

together to build recommendation models by minimizing
prediction errors. The prediction model of SVD++ is

?(w’)=M+bu+b,-+q?<pu+|N<u)r”2 D y]->, )

JEN(u)

where y is the average rating value of the known data. In
addition, b, and b, indicate the observed deviations of user
u and item i, respectively, from the average. p, and g; are the
factorized user and item factor, respectively. N (u) represents
the item set rated by user u. y; is an item factor which is
according to the impact of implicit feedbacks.

The approach learns the values of involved parameters
with a stochastic gradient descent technique by minimizing
the regularized squared error function. The loss function can
be written as

mlbl;l Z<rui_y_bu_bi

P g0y (i)

2
—q?(pmmun“z > yj>> +Aq (b +87) (8

jEN)

+A7<|Iqi||2+llpu||2+ > ||yj'|2>’

JEN(u)

where A and A, are the regularizing terms. The learning
process runs in the rating matrix R, which contains all the
rating values proposed by users. The predicted ratings can be
calculated by (7) using the learned parameters.

SVD++ learns parameters from R. It considers all missing
data as unknown information and ignores them.

However, as mentioned above, missing data should
not be ignored simply. Therefore, we adapt the proposed
scheme with SVD++ to deal with missing data in order to
improve the recommendation performance. The improve-
ment approaches are introduced in the rest part of this
section, respectively.

4.1. Improvement of SVD++ with Weighting Scheme. In this
subsection, WS is adapted with SVD++ to deal with missing
data. This approach is captured as WSVD++. In WSVD++,
we just change the learning process of SVD++ without any



change of model structure. As a result, the prediction model
of WSVD++ is consistent with SVD++, as shown in (7). On

min

(sl 3 ||yj||2>]-
JEN(u)

In WSVD++, the learning process runs through all the user-
item pairs with different weighting values as defined in (1).
Let us denote the prediction error, r,,, — 7,;, by e,,;. WSVD++
loops through all the user-item pairs. For a given case r;;, we
modify the parameters by moving in the opposite direction
of the gradient, yielding

()b, = b, +w, -y, (e, —Ag b)),
(i) b — b +w, ;- (e — Ag - b)s

(iif) %‘ — Q)i +wy; -y (e (py+ IN(w)| ™2 ZjeN(u) ;Vj) -
7°4i)
(iV) Py Pyt Wy Yy (eui q — /\7 : pu)’

(V) VjieN@): y; — yj+wy -y, (e, IN@)| ™" g~
A7')’j)~

In this way, the learned parameters can converge to mini-
mize the loss function. However, b, and b; are two parameters
which indicate user and item rating bias, respectively. They
should not been influenced by missing data, which are not
explicit feedbacks from users for items. In addition, y; is an
indicator of implicit feedbacks, and the negative examples
are negative evidences for implicit feedbacks. It should not
been influenced by missing data, either. Therefore, we use
a different weighting function for these three parameters,
which can be written as

1, (u,i) €R
w, . = (10)
0, (u,i) ¢ R.

Correspondingly, the learning process can be revised to
(1) by — b, + wy,; -y - (e = Ag - by),
(i) b b +wy; - 11 - (e = Ae - B,

(i) g — g+ w1+ (€ (P + NG Lo 1) -
A7 4)s

(iv) Py Pyt Wy Yy (eui g~ /\7 : pu)>

(V) V€ N(w) s yj — yj+wl -y (e INGOIT g, -
A7 ‘,Vj)-

There is an important parameter (§) in WSVD++. It

determines the confidence of missing data to be negative
examples. We will discuss the impact in Section 6.2.

# T
LU ) Wy rui_n"l_bu_bi_qi
PR ()
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the other hand, the loss function should be converted to a
weighted function as shown in (3). It can be written as

2
putIN@[M Y y,~>> + Mg (b +157)

JEN(u)

€

4.2. Improvement of SVD++ with Sampling Scheme. In this
subsection, the sampling scheme is adapted with SVD++
to deal with missing data. The scheme can be either RSS
or NSS. Depending on the choosing scheme, the approach
is captured as RSSVD++ (with RSS) or NSSVD++ (with
NSS), respectively. The same as WSVD++, we only change
the learning process of SVD++ without any changing of
model structure. The prediction models of RSSVD++ and
NSSVD++ are consistent with SVD++, since they are all
unweighted functions. Furthermore, the loss functions are
still consistent with SVD++.

In addition, the negative examples are not relevance to the
parameter b,, b, and y; like WSVD++. Therefore, in order to
guarantee the irrelevance, an indicator function is defined. It
can be written as

1, (u,i) €R
I,;= (11)
0, {(u,i) € R" —R.

The learning process of RSSVD++ or NSSVD++ runs in
the reconstruct matrix R*. It can be defined as

(1) b, < b, + L,y (e, — Ag - by),
(i) b — b+ L; -y - (e — Ag - b)),
(iii) q; — q;+7- (e~ (py +IN(w)| /> YieNw V)~ A7 qi)s
(IV) Py PutV (eui qi — A7 ’ pu)’
(V) VjeNu): yj < yj+Iui')/2'(€u,~'|N(M)|71/2"1i—/\7'}’j)-

Both RSSVD++ and NSSVD++ are sampling schemes.
They share similar loss function and similar learning process.
The main difference between them is the way in which they
are sampling negative examples from missing data. There
is an important parameter (6) which is the ratio of the
negative examples randomly selected from missing data in
RSSVD++. The impact of it will be discussed in Section 6.3.
For NSSVD++, there are two important parameters, for
example, 0 and k. The former one is the ratio of a negative
example randomly selected from candidate item set. The
latter one determines the size of the neighbors for users. We
will discuss the impact of them in Section 6.4.

5. Evaluation Metrics

In this paper, we focus on top-N recommendation task, where
a recommender system is trying to pick the best N items for
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people [1, 6, 8]. The Normalized Discounted Cumulative Gain
(NDCG) [20] metric is a popular metric for evaluating the
relevance of top-N results in information retrieval where the
documents are assigned graded rather than binary relevance
judgments. As the rating values can indicate the levels of
users’ preferences on items in recommender systems, the
NDCG metric is suitable for evaluating recommendation
quality in the top-N recommendation task. In this paper, we
use NDCG as our main evaluation metric. It is an accuracy
metric, which can be written as

i ZR(H)P) -1
DCG@N (u) = ) ———, (12)
p-1log (1+p)

NDCGeN = Ly DCGEN @ .

[U| & IDCG@N (1)’

uelU
where R(u, p) is the rating value of user u rating the item
at the pth position of the recommendation list, DCG@N (1)
represents the Discounted Cumulative Gain value at the Nth
position for user u, and IDCG is the maximum possible DCG
which is used for normalizing the NDCG value. However, in
recommender systems, the recommended items are always
unknown ones (the target user has not rated the items yet).
Therefore, some researchers consider the recommendation
problem as a ranking problem and use NDCG to evaluate
the algorithms while ranking the items in the test set [2]. In
this paper, we recognize it as NDCG+ metric and consider it
to be a comparative evaluation metric. The main difference
between these two metrics is that NDCG+ ranks the items
contained in the test set of each user, whereas NDCG ranks all
the possible items (all items except the ones that the current
user has rated in the training set) for each user.

In addition, 1-call at top-N recommendations is used as
another accuracy metric. It reflects the ratio of users who have
at least one relevant item in their top-N recommendation
lists [21]. This paper is in the context of data missing not at
random. Recall is a popular evaluation metric in this context,
as it can be estimated without bias from observed data,
whether or not the relevant ratings are missing at random [5].
Recall is defined as

1 ¥ REL (4, N)

R@N = — )
@ REL (u)

U] (14)

uelU

where REL(u, N) is the number of relevant items among the
top-N items for user u and REL(u) is the number of all
relevant items for the user. As used in [4, 5], the relevant items
are the items rated by the current user with value 5.
Furthermore, a number of recent studies find that beyond
accuracy there are other quality factors, which are also
important to users, for example, diversity and novelty [8, 22].
Diversity in recommender systems refers to how different the
recommended items are from each other. It is an important
complement of accuracy since a recommender system which
recommends relevant items has little value to a user if the
recommendation cannot expand his/her interest. Coverage
is one of the most popular diversity metrics. It measures the
percentage of items that an algorithm is able to recommend

to users in the system. Denoting the total number of distinct
items in top-N places of all reccommendation lists as N, the
N-dependent coverage is defined as

Ny

cov(N) = . (15)
Furthermore, just recommending popular items is not
sufficient for users, which is considered as lack of novelty.
Therefore, the coverage of recommendations in the long tail
of the items is also a significant evaluation metric, which
indicates the novelty of recommendations to a certain degree.

It can be written as

NL,

CIL(N) = —

; (16)
where NL ; represents the intersection of N; and the long tail
item set. In this paper, we consider that the long tail item set
contains all the items which are not in the top 20% popular
item set.

In summary, 6 evaluation metrics are used to evaluate
our proposed approach. NDCG, 1-call, and Recall are used
to evaluate the top-N recommendation quality. COV is used
to evaluate the diversity of recommendations, whereas CIL is
mainly for evaluating novelty. NDCG+ is a metric to evaluate
the ranking prediction quality.

6. Experiment

6.1. Experiment Setup. The proposed recommendation
approaches are evaluated on MovieLens and EachMovie
datasets, which are both widely used in the field of
recommender systems. MovieLens dataset, denoted as
ML, contains 100 thousand ratings which are assigned by 943
users on 1682 movies. Collected ratings are in 1-to-5 scale.
EachMovie dataset, denoted as EM, contains 2.8 million
ratings from 72916 users on 1628 movies. The original
ratings from EM are in 0-to-1 scale. In order to be consistent
with ML, it is converted to 0-to-5 scale, and then ratings
with 0 value are excluded. In addition, EM dataset is very
Sparse, some users only rate a few items, and some items
are only rated by a few users. These data may reduce the
recommendation quality. Therefore, we exclude the users
who rated no more than 20 items and the items which are
rated no more than 10 times.

We use 5-fold cross validation for the evaluation. Starting
from the initial data set, five distinct splits of training and test
data are generated. For each data split, 80% of the original set
is included in the training data and 20% of it is included in
the test data. Users’ rating history in the training set is used to
generate recommendations according to different algorithms.
The test set is then used to evaluate the recommendation
results. We further split the test set randomly into two disjoint
sets of equal size. One of them is used to determine the tuning
parameters. The other is for final evaluation of the trained
model.

In order to demonstrate the effectiveness of our proposed
approaches, we compare them with the original SVD++
approach and other benchmark approaches. User-based CF



(UserCF) and Slope-one are two classic rating prediction
approaches. UserCF [11] is a classic neighbor-based CF
approach, which is based on an assumption that users
always like the items liked by similar users. Slope-one [23]
is a memory-based CF approach based on average rating
differential. The original SVD++ is also a rating prediction
approach. OrdRec [16] is a ranking prediction approach
based on a pointwise ordinal model. As an improvement of
SVD++, it is used to compare the improvement level between
using missing data and optimizing ranking performance.
In addition, PureSVD [1] and AllRank-Regression [4] are
two existing approaches dealing with missing data, which
have been introduced in Section 2. They are both used for
comparison. In order to minimize the impact of different
original models, their idea of using missing data are adapted
with SVD++, captured as Pure and AllRank, respectively. All
of the above-mentioned approaches are evaluated by NDCG,
Recall, 1-call, COV, and CIL, compared with NDCG+.

In addition, some approaches need user-specific param-
eters. The details of parameter assignments for different
approaches are as follows: the size of nearest neighbors for
UserCF is 50; SVD++, Pure, and AllRank have 50 features and
25 iteration steps with A, = A, = 0.05and y, = y, = 0.002;
the r,, and w,, for AllRank are 2 and 0.05, respectively, as
suggested in [4]; OrdRec has 50 features and 60 iteration
steps with A¢ = 0.0005, A, = 0.0001, y, = y, = 0.05, and
Y3 = 9, = 0.006. Our proposed approaches are improvements
of SVD++. The parameters, which have been included in
SVD-++, are set the same value as in SVD++. Therefore, the
effectiveness of the proposed approaches is irrelevance with
the impact of these parameters. The impact of other new
added parameters is analyzed in the next subsections.

6.2. Parameters of WSVD++. WSVD++ is an improvement
of SVD++ with a weighting scheme. There are two new
added parameters, for example, § and r,,. One is §, which
determines the weight of the negative examples. The other is
t,,» which is the imputed value of missing data. In order to
analyze the impact of them, experiments are carried out to
analyze the performances of WSVD++ with different values
of § and r,,. When one of them is analyzed, the other one
remains unchanged. Here, we only use NDCG value, which
is our main evaluation matric, to analyze the performances.

Figure 1 shows the performances of WSVD++ as a func-
tion of the value of § with r,, = 0 on ML (the trends
of performances on EM are similar. Therefore, we will not
show them here. Furthermore, we use the same data in
the experiments in this and the next two subsections while
analyzing the performances of the proposed approaches with
different parameters and only show the results on ML). The
value of § is changed from 0 to 1, step by 0.1.

When 8 is 0, WSVD++ degenerates to SVD++. When §
is from 0.1 to 0.2, WSVD++ gets better performance than
SVD-++. This indicates that improving SVD++ with a weight-
ing scheme could increase the capability to recommend
relevance items. When & is bigger than 0.2, the performance
of WSVD++ is not better than SVD++. This indicates low
confidence of missing data being negative examples. If the
weighting of missing data as negative examples is considered

Mathematical Problems in Engineering

0.12
0.1 +
0.08 -

0.06 1

NDCG

0.04 o

0.02

—— NDCG@1
m- NDCG@3
NDCG@5

FIGURE 1: NDCG of WSVD++ as a function of the value of § with
7,, = 0 on ML.

too much, the performance may decrease. When § is 1,
WSVD++ can be considered as Pure. The performance of it is
similar to original SVD++. When & is 0.2, WSVD++ gets the
best performances. As a result, the best value of § is chosen as
0.2 in WSVD++.

Figure 2 shows the performance of WSVD++ as a func-
tion of the value of r,, with § as 0.2, which is chosen as the
best value. The value of r,, is changed from -5 to 5, step by
1. It is obvious that when r,), is less than 1 (out of the range of
rating scale), the performance of WSVD++ is better than it
with 7,,, between 1 and 5. The result verifies the effectiveness
of using an imputed value out of rating scale to model
negative examples with a weighting scheme. In addition,
it demonstrates that considering missing value as negative
examples is more appropriate than considering it as negative
ratings. The best performance is located at r,, = 0. When the
value of r,,, is smaller than 0, the performance declines. It may
be because of the low confidence of the weighted examples.
Too small r,,, introduces bias of the trained model.

6.3. Parameters of RSSVD++. RSSVD++ is an improvement
of SVD++ with a random sampling scheme. There are two
new added parameters, for example, 6 and r,,,. 0 is the ratio of
the negative examples randomly selected from missing data,
while r,, is the imputed rating for missing data. In order to
analyze the impact of them, experiments are carried out to
analyze the performances of RSSVD++ with different values
of 0 and r,,,, respectively. Similar to the above subsection, we
only use NDCG value to analyze the performances.

Figure 3 shows the performances of RSSVD++ as a
function of the value of 6 with r,, = 0. The value of 0 is
changed from 0 to 1, step by 0.1.

When 0 is 0, RSSVD++ degenerates to SVD++. When
0 is from 0.1 to 0.2, RSSVD++ gets better performance
than SVD++. This indicates that improving SVD++ with a
random sampling scheme could increase the capability to
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FIGURE 2: NDCG of WSVD++ as a function of the value of r,, with
0 =0.2o0n ML.
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FIGURE 3: NDCG of RSSVD++ as a function of the value of 8 with
7,, = 0 on ML.

recommend relevance items. When 0 is bigger than 0.2, the
performance of RSSVD++ is not better than SVD++. This
indicates that considering too much missing data as negative
examples is not a good solution to improve recommendation
quality, since some missing data are not negative examples.
As a result, a small value of 6 can lead RSSVD++ getting
good performances. When 6 is 0.2, RSSVD++ gets the best
performances. Therefore, the value of 6 is chosen as 0.2 in
RSSVD++.

Figure 4 shows the performance of RSSVD++ as a func-
tion of the value of r,,, with 0 as 0.2. The value of 1,,, is changed
from -5 to 5, step by L It can be found that when r,, is
less than 1, the performance of RSSVD++ is better than it
with 7, between 1 and 5. When r,, = 0, RSSVD++ gains

0.12 4
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FIGURE 4: NDCG of RSSVD++ as a function of the value of r,, with
0 = 0.2 on ML.

the best performance. This verifies again the effectiveness of
considering missing value as negative examples and using
an imputed value out of rating scale to model the negative
examples.

6.4. Parameters of NSSVD++. NSSVD++ is an improvement
of SVD++ with a neighbor-based sampling scheme. There
are three new added parameters of it, for example, k, 8, and
7, k is the size of the nearest neighbor. Large k indicates
big size of N(u) and small size of C(u), since more users
have less unrated items. Therefore, the value of k determines
the candidate item set. 0 is the ratio of the negative example
randomly selected from the candidate item set. The negative
examples for NSSVD++ are determined by both k and
0. In order to analyze the impact of them, we use three
typical values of k and carry out experiments to analyze the
performances of NSSVD++ with different values of 6 and
certain value of k. r,,, is the imputed value of missing data. The
impact of it is analyzed with the optimized k and 6. Similar
to the above subsections, we only use NDCG value to analyze
the performances.

Figures 5-7 show the performances of NSSVD++ as a
function of the value of 8 with k = 20, 50, 80, respectively.
r,, remains 0 in these three figures. The value of 0 is changed
from 0 to 1, step by 0.1.

When 6 is 0, NSSVD++ degenerates to SVD++. When
0 is bigger than 0, NSSVD++ gains better performance than
SVD++ no matter what value 0 is. This is very different from
WSVD++ and RSSVD++. It is because the candidate item
set is heuristic selected by a neighbor-based algorithm, and
most items in the set are likely to be negative examples.
Furthermore, there is a similar phenomenon in these three
figures. It is that the NDCG performances keep stable when
0 gets up to a certain value. For k = 20, this value is 0.2;
for k = 50, the value is 0.5; and for k = 80, the value is
0.6. All in all, when 0 is 0.5 and k is 50, NSSVD++ gets the
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FIGURE 6: NDCG of NSSVD++ as a function of the value of 8 with
k =50andr,, = 0 on ML.

best recommendation quality. This pair of parameter values
is chosen as the best one in NSSVD++.

Figure 8 shows the performance of NSSVD++ as a func-
tion of the value of r,, with 8 = 0.5 and k = 50. The value
of r,,, is changed from -5 to 5, step by 1. Similar to WSVD++
and RSSVD++, when r,, is less than 1, the performance of
NSSVD++ is better than it with r,, between 1 and 5. However,
when r,, is between -5 and 0, the performance is almost
the same. It is very different from WSVD++ and RSSVD++.
This may be because the negative examples of NSSVD++
are generated by a neighbor-based strategy, which introduces
high confidence of the negative examples. Small value of r,,
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FIGURE 7: NDCG of NSSVD++ as a function of the value of 8 with
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FIGURE 8: NDCG of NSSVD++ as a function of the value of r,, with
0 = 0.5and k = 50 on ML.

does not introduce bias of the trained model. To be consistent
with WSVD++ and RSSVD++, the chosen value of r,, for
NSSVD++ is still 0.

6.5. Comparison with Baselines. In this subsection, we
present a performance comparison of both accuracy and
diversity between our proposed approaches and the baseline
ones on ML and EM datasets. For each approach, we report
the NDCG and Recall values at the 1st, 3rd, and 5th positions
in the recommendation list and I-call, COV, and CIL at the 5th
position, comparing with NDCG+ values at the 5th position.
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TABLE 1: Performance of different approaches on ML.
NDCG Recall lall  COV  CIL  NDCG+
1 3 5 1 3 5

UserCF 0.019 0.019 0.020 0.000 0.002 0.003 0.12 129.4 69.8 0.65
Slope-one 0.026 0.033 0.033 0.001 0.003 0.005 0.18 19.6 5.8 0.68
SVD++ 0.030 0.036 0.043 0.001 0.003 0.006 0.19 20.8 7.6 0.71
OrdRec 0.080 0.065 0.062 0.002 0.005 0.008 0.23 19.0 4.6 0.52
Pure 0.037 0.033 0.032 0.001 0.002 0.004 0.11 34.2 13.0 0.66
AllRank 0.063 0.058 0.055 0.002 0.004 0.006 0.19 21.2 4.4 0.70
WSVD++ 0.104 0.083 0.079 0.004 0.008 0.014 0.28 23.6 8.8 0.70
RSSVD++ 0.095 0.074 0.073 0.006 0.007 0.013 0.27 24.0 9.2 0.69
NSSVD++ 0.108 0.083 0.078 0.006 0.013 0.019 0.30 38.2 16.2 0.68

Table 1illustrates the results on ML (the bold cell indicates
the best result for that metric). In terms of NDCG mea-
sures, NSSVD++ outperforms all other approaches, followed
by WSVD++ and RSSVD++. These proposed approaches
improve the original SVD++ by 68% at least. This indicates
their good performance in top-N recommendation task.
These proposed approaches are improvements of SVD++
with utilizing negative examples in missing data. As a
result, the existence of negative examples in missing data is
demonstrated. In addition, NSSVD++ performs better than
WSVD++ and RSSVD++. This is because the former one
distinguishes negative examples from real missing data with a
heuristic algorithm and makes the selected negative examples
having a high confidence.

Pure is an improvement of SVD++ by considering all
missing data as rating 0. It has similar NDCG performance
as SVD++. This indicates that simply considering all missing
data as negative examples is not feasible. AllRank considers
missing data as negative ratings. The result shows that it
outperforms original SVD++. However, its improvement is
less than the improvement of our proposed approaches. This
verifies that missing data are more likely to be negative
examples rather than negative ratings. Furthermore, OrdRec
improves SVD++ by ranking prediction. Its improvement is
much less than our proposed approaches. This verifies that
using the negative examples from missing data is a more
effective method than considering recommendation problem
as a ranking prediction one.

Recall is a metric for evaluation of the capability of
recommending relevant items, which is the optimizing goal
of AllRank. However, our proposed approaches still gain the
best performance. This indicates that utilizing the negative
examples in missing data can leverage the capability of
recommending relevant items.

The proposed approaches improve SVD++ on 1-call about
42% at least. In addition, the proposed approaches gain better
performance than other baselines about 17% at least. This
indicates the contribution to provide valuable recommenda-
tions at top-N positions. It raises the chance that users receive
at least one relevant recommendation among just a few top-
ranked items.

UserCF gets the best diversity performance. If we only
focus on the matrix factorization approaches, NSSVD++

outperforms others. The proposed approaches improve the
original SVD++ at least 13% on COV and 16% on CIL.
Furthermore, NSSVD++ outperforms the other two pro-
posed approaches about 59% on COV and 76% on CIL. This
illustrates that our proposed approaches can improve the
baseline ones on diversity and novelty as well as on accuracy.

NDCG+ is a comparative evaluation metric, and we only
consider the value at the 5th position. Unfortunately, the
proposed approaches almost get the worst performances on
this metric. It is mainly because negative examples introduce
some biases of user and item factors. The prediction of the
proposed approaches considers whether or not users will
rate items as well as the predicted rating values. However,
this drawback is not very much, and the worst approach
(NSSVD++) gets only 4% less than SVD++, which gains the
best NDCG+ performance.

All in all, the experiment results on ML show that the
proposed recommendation approaches outperforms baseline
ones on both accuracy and diversity. In order to further
demonstrate the effectiveness of the proposed approaches, a
similar experiment is carried out on EM dataset.

Table 2 shows the performance of different approaches
on EM, which is a much larger dataset than ML. Similar
observations can be found. The proposed approaches still
gain better performance than the original SVD++ and other
ones. However, the advantages of WSVD++ and RSSVD++
decrease when the dataset changes from ML to EM. This
may be because EM is a much sparser dataset; missing
positive examples take higher proportion of missing data.
In this circumstance, treating all missing data in a unique
way is not a suitable solution. This problem does not exist
in NSSVD++, which uses a heuristic method to sample
negative examples from missing data. Therefore, NSSVD++
still improves SVD++ by 36% on NDCG, 35% on Recall,
78% on 1-call, 90% on COV, and 88% on CIL at least. The
experiment results on EM further verify the effectiveness of
our proposed approaches, especially NSSVD++.

In addition, it is obvious that there is no conversion
relationship between NDCG and NDCG+. This illustrates
that good performance on ranking prediction does not
indicate good quality of top-N recommendation. Therefore,
we cannot easily consider recommendation problem as a
ranking prediction one.
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TABLE 2: Performance of different approaches on EM.
NDCG Recall Ll  COV  CIL  NDCG+
1 3 5 1 3

UserCF 0.010 0.014 0.019 0.002 0.008 0.017 0.12 174.0 116.2 0.65
Slope-one 0.035 0.034 0.034 0.008 0.019 0.027 0.15 11.0 7.0 0.71
SVD++ 0.112 0.091 0.088 0.031 0.058 0.080 0.28 30.6 12.6 0.83
OrdRec 0.063 0.057 0.049 0.015 0.040 0.044 0.19 10.6 6.8 0.66
Pure 0.074 0.071 0.071 0.018 0.039 0.052 0.27 38.8 15.0 0.69
AllRank 0.111 0.104 0.103 0.031 0.073 0.103 0.37 13.4 4.4 0.83
WSVD++ 0.081 0.098 0.100 0.020 0.065 0.090 0.36 56.0 26.0 0.80
RSSVD++ 0.095 0.096 0.100 0.027 0.061 0.086 0.34 52.8 23.6 0.79
NSSVD++ 0.153 0.148 0.150 0.042 0.102 0.143 0.50 58.2 23.8 0.81

7. Conclusions

In recommender systems, the rating data, which are used for
generating recommendations, are only a small part of the
whole dataset. The rest part of the dataset is considered as
missing data. Existing recommendation approaches always
use observed rating data to learn models and to generate rec-
ommendations. However, part of unknown ratings is because
users choose not to rate them. This kind of unknown ratings
is the negative examples of user preference in our point
of view. Therefore, we propose three schemes to deal with
missing data. The first one is based on a weighting scheme,
which considers all missing data as negative examples with
different confidence towards positive ones. The second one
is based on a random sampling scheme, which samples
some missing data as negative examples with a stochastic
approach. The third one is also a sampling scheme, which uses
a neighbor-based algorithm to generate negative examples
with a heuristic idea. In addition, we adapt the schemes
with SVD++ in order to improve the top-N recommendation
performance by using missing data. Experiment results show
that all the proposed approaches outperform baseline ones in
top-N recommendation on both accuracy and diversity.
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