6,100 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Learning Manipulation under Physics Constraints with Visual Perception

    Full text link
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure.Comment: arXiv admin note: substantial text overlap with arXiv:1609.04861, arXiv:1711.00267, arXiv:1604.0006

    Learning Manipulation under Physics Constraints with Visual Perception

    No full text
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure

    Reconciling intuitive physics and Newtonian mechanics for colliding objects

    Get PDF
    People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to integrate them into a unified model that can explain human judgments across a wide range of physical reasoning tasks. We propose an alternative framework, in which people's judgments are based on optimal statistical inference over a Newtonian physical model that incorporates sensory noise and intrinsic uncertainty about the physical properties of the objects being viewed. This noisy Newton framework can be applied to a multitude of judgments, with people's answers determined by the uncertainty they have for physical variables and the constraints of Newtonian mechanics. We investigate a range of effects in mass judgments that have been taken as strong evidence for heuristic use and show that they are well explained by the interplay between Newtonian constraints and sensory uncertainty. We also consider an extended model that handles causality judgments, and obtain good quantitative agreement with human judgments across tasks that involve different judgment types with a single consistent set of parameters

    A Compositional Object-Based Approach to Learning Physical Dynamics

    Get PDF
    We present the Neural Physics Engine (NPE), an object-based neural network architecture for learning predictive models of intuitive physics. We propose a factorization of a physical scene into composable object-based representations and also the NPE architecture whose compositional structure factorizes object dynamics into pairwise interactions. Our approach draws on the strengths of both symbolic and neural approaches: like a symbolic physics engine, the NPE is endowed with generic notions of objects and their interactions, but as a neural network it can also be trained via stochastic gradient descent to adapt to specific object properties and dynamics of different worlds. We evaluate the efficacy of our approach on simple rigid body dynamics in two-dimensional worlds. By comparing to less structured architectures, we show that our model's compositional representation of the structure in physical interactions improves its ability to predict movement, generalize to different numbers of objects, and infer latent properties of objects such as mass.National Science Foundation (U.S.) (Award CCF-1231216)United States. Office of Naval Research (Grant N00014-16-1-2007

    Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images

    Full text link
    In this paper, we study the challenging problem of predicting the dynamics of objects in static images. Given a query object in an image, our goal is to provide a physical understanding of the object in terms of the forces acting upon it and its long term motion as response to those forces. Direct and explicit estimation of the forces and the motion of objects from a single image is extremely challenging. We define intermediate physical abstractions called Newtonian scenarios and introduce Newtonian Neural Network (N3N^3) that learns to map a single image to a state in a Newtonian scenario. Our experimental evaluations show that our method can reliably predict dynamics of a query object from a single image. In addition, our approach can provide physical reasoning that supports the predicted dynamics in terms of velocity and force vectors. To spur research in this direction we compiled Visual Newtonian Dynamics (VIND) dataset that includes 6806 videos aligned with Newtonian scenarios represented using game engines, and 4516 still images with their ground truth dynamics
    • …
    corecore