4 research outputs found

    Blood vessel segmentation and shape analysis for quantification of coronary artery stenosis in CT angiography

    Get PDF
    This thesis presents an automated framework for quantitative vascular shape analysis of the coronary arteries, which constitutes an important and fundamental component of an automated image-based diagnostic system. Firstly, an automated vessel segmentation algorithm is developed to extract the coronary arteries based on the framework of active contours. Both global and local intensity statistics are utilised in the energy functional calculation, which allows for dealing with non-uniform brightness conditions, while evolving the contour towards to the desired boundaries without being trapped in local minima. To suppress kissing vessel artifacts, a slice-by-slice correction scheme, based on multiple regions competition, is proposed to identify and track the kissing vessels throughout the transaxial images of the CTA data. Based on the resulting segmentation, we then present a dedicated algorithm to estimate the geometric parameters of the extracted arteries, with focus on vessel bifurcations. In particular, the centreline and associated reference surface of the coronary arteries, in the vicinity of arterial bifurcations, are determined by registering an elliptical cross sectional tube to the desired constituent branch. The registration problem is solved by a hybrid optimisation method, combining local greedy search and dynamic programming, which ensures the global optimality of the solution and permits the incorporation of any hard constraints posed to the tube model within a natural and direct framework. In contrast with conventional volume domain methods, this technique works directly on the mesh domain, thus alleviating the need for image upsampling. The performance of the proposed framework, in terms of efficiency and accuracy, is demonstrated on both synthetic and clinical image data. Experimental results have shown that our techniques are capable of extracting the major branches of the coronary arteries and estimating the related geometric parameters (i.e., the centreline and the reference surface) with a high degree of agreement to those obtained through manual delineation. Particularly, all of the major branches of coronary arteries are successfully detected by the proposed technique, with a voxel-wise error at 0.73 voxels to the manually delineated ground truth data. Through the application of the slice-by-slice correction scheme, the false positive metric, for those coronary segments affected by kissing vessel artifacts, reduces from 294% to 22.5%. In terms of the capability of the presented framework in defining the location of centrelines across vessel bifurcations, the mean square errors (MSE) of the resulting centreline, with respect to the ground truth data, is reduced by an average of 62.3%, when compared with initial estimation obtained using a topological thinning based algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Differential geometry methods for biomedical image processing : from segmentation to 2D/3D registration

    Get PDF
    This thesis establishes a biomedical image analysis framework for the advanced visualization of biological structures. It consists of two important parts: 1) the segmentation of some structures of interest in 3D medical scans, and 2) the registration of patient-specific 3D models with 2D interventional images. Segmenting biological structures results in 3D computational models that are simple to visualize and that can be analyzed quantitatively. Registering a 3D model with interventional images permits to position the 3D model within the physical world. By combining the information from a 3D model and 2D interventional images, the proposed framework can improve the guidance of surgical intervention by reducing the ambiguities inherent to the interpretation of 2D images. Two specific segmentation problems are considered: 1) the segmentation of large structures with low frequency intensity nonuniformity, and 2) the detection of fine curvilinear structures. First, we directed our attention toward the segmentation of relatively large structures with low frequency intensity nonuniformity. Such structures are important in medical imaging since they are commonly encountered in MRI. Also, the nonuniform diffusion of the contrast agent in some other modalities, such as CTA, leads to structures of nonuniform appearance. A level-set method that uses a local-linear region model is defined, and applied to the challenging problem of segmenting brain tissues in MRI. The unique characteristics of the proposed method permit to account for important image nonuniformity implicitly. To the best of our knowledge, this is the first time a region-based level-set model has been used to perform the segmentation of real world MRI brain scans with convincing results. The second segmentation problem considered is the detection of fine curvilinear structures in 3D medical images. Detecting those structures is crucial since they can represent veins, arteries, bronchi or other important tissues. Unfortunately, most currently available curvilinear structure detection filters incur significant signal lost at bifurcations of two structures. This peculiarity limits the performance of all subsequent processes, whether it be understanding an angiography acquisition, computing an accurate tractography, or automatically classifying the image voxels. This thesis presents a new curvilinear structure detection filter that is robust to the presence of X- and Y-junctions. At the same time, it is conceptually simple and deterministic, and allows for an intuitive representation of the structure’s principal directions. Once a 3D computational model is available, it can be used to enhance surgical guidance. A 2D/3D non-rigid method is proposed that brings a 3D centerline model of the coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid on top of the interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures, which reduces the uncertainty inherent in 2D interventional images. A fully non-rigid registration model is proposed and used to compensate for any local shape discrepancy. This method is based on a variational framework, and uses a simultaneous matching and reconstruction process. With a typical run time of less than 3 seconds, the algorithms are fast enough for interactive applications
    corecore