5,919 research outputs found

    Results of expert judgments on the faults and risks with Autosub3 and an analysis of its campaign to Pine Island Bay, Antarctica, 2009

    Get PDF
    Probabilistic risk assessment is a methodology that can be systematically applied to estimate the risk associated with the design and operation of complex systems. The National Oceanography Centre, Southampton, UK has developed a risk management process tailored to the operation of autonomous underwater vehicles. Central to the application of the risk management process is a probabilistic risk assessment. The risk management process was applied to estimate the risk associated with an Autosub3 science campaign in the Pine Island Glacier, Antarctica, and to support decision making. The campaign was successful. In this paper we present the Autosub3 risk model and we show how this model was used to assess the campaign risk

    Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks

    Get PDF

    "Making Safety Happen" Through Probabilistic Risk Assessment at NASA

    Get PDF
    NASA is using Probabilistic Risk Assessment (PRA) as one of the tools in its Safety & Mission Assurance (S&MA) tool belt to identify and quantify risks associated with human spaceflight. This paper discusses some of the challenges and benefits associated with developing and using PRA for NASA human space programs. Some programs have entered operation prior to developing a PRA, while some have implemented PRA from the start of the program. It has been observed that the earlier a design change is made in the concept or design phase, the less impact it has on cost and schedule. Not finding risks until the operation phase yields much costlier design changes and major delays, which can result in discussions of just accepting the risk. Risk contributors identified by PRA are not just associated with hardware failures. They include but are not limited to crew fatality due to medical causes, the environment the vehicle and crew are exposed to, the software being used, and the reliability of the crew performing required actions. Some programs have entered operation prior to developing a PRA, and while PRA can still provide a benefit for operations and future design trades, the benefit of implementing PRA from the start of the program provides the added benefit of informing design and reducing risk early in program development. Currently, NASAs International Space Station (ISS) program is in its 20th year of on-orbit operations around the Earth and has several new programs in the design phase preparing to enter the operation phase all of which have active (or living) PRAs. These programs incorporate PRA as part of their Risk-Informed, Decision-Making (RIDM) process. For new NASA human spaceflight programs discussion begins with mission concept, establishing requirements, forming the PRA team, and continues through the design cycles into the operational phase. Several examples of PRA related applications and observed lessons are included

    Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    Get PDF
    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report

    Treatment of Uncertainties in Probabilistic Risk Assessment

    Get PDF
    Probabilistic risk assessment (PRA), sometimes called probabilistic safety analysis, quantifies the risk of undesired events in industrial facilities. However, one of the weaknesses that undermines the credibility and usefulness of this technique is the uncertainty in PRA results. Fault tree analysis (FTA) and event tree analysis (ETA) are the most important PRA techniques for evaluating system reliabilities and likelihoods of accident scenarios. Uncertainties, as incompleteness and imprecision, are present in probabilities of undesired events and failure rate data. Furthermore, both FTA and ETA traditionally assume that events are independent, assumptions that are often unrealistic and introduce uncertainties in data and modeling when using FTA and ETA. This work explores uncertainty handling approaches for analyzing the fault trees and event trees (method of moments) as a way to overcome the challenges of PRA. Applications of the developed frameworks and approaches are explored in illustrative examples, where the probability distributions of the top event of fault trees are obtained through the propagation of uncertainties of the failure probabilities of basic events. The application of the method of moments to propagate uncertainty of log-normal distributions showed good agreement with results available in the literature using different methods

    Requirements for a Computer Code System for the Development and Maintenance of Target Sets

    Get PDF
    In the field of commercial nuclear reactor security, the concept of target sets has matured since its invention in the late 1980s and early 1990s to the codification of target set regulations by the United States Nuclear Regulatory Commission in 2009 and publishing of official guidance in 2010. Target sets have evolved into a complex and useful tool to develop and test a protective strategy. By their definition, target sets are the “minimum combination of equipment or operator actions which, if all are prevented from performing their intended safety function or prevented from being accomplished, would likely result in significant core damage” and are strongly related to probabilistic risk assessment. Though current guidance encourages the use of probabilistic risk assessment to inform the development of target sets, there exist no tools to assist in developing the hundreds of thousands of equipment combinations that meet the definition of target sets. This report seeks to outline the requirements for a computer code system that would use a probabilistic risk assessment to provide the backbone for the development and maintenance of target sets for a commercial nuclear reactor or other complex facility
    • …
    corecore