253 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    FiFo: Fishbone Forwarding in Massive IoT Networks

    Full text link
    Massive Internet of Things (IoT) networks have a wide range of applications, including but not limited to the rapid delivery of emergency and disaster messages. Although various benchmark algorithms have been developed to date for message delivery in such applications, they pose several practical challenges such as insufficient network coverage and/or highly redundant transmissions to expand the coverage area, resulting in considerable energy consumption for each IoT device. To overcome this problem, we first characterize a new performance metric, forwarding efficiency, which is defined as the ratio of the coverage probability to the average number of transmissions per device, to evaluate the data dissemination performance more appropriately. Then, we propose a novel and effective forwarding method, fishbone forwarding (FiFo), which aims to improve the forwarding efficiency with acceptable computational complexity. Our FiFo method completes two tasks: 1) it clusters devices based on the unweighted pair group method with the arithmetic average; and 2) it creates the main axis and sub axes of each cluster using both the expectation-maximization algorithm for the Gaussian mixture model and principal component analysis. We demonstrate the superiority of FiFo by using a real-world dataset. Through intensive and comprehensive simulations, we show that the proposed FiFo method outperforms benchmark algorithms in terms of the forwarding efficiency.Comment: 13 pages, 16 figures, 5 tables; to appear in the IEEE Internet of Things Journal (Please cite our journal version that will appear in an upcoming issue.

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented
    corecore