32 research outputs found

    Nonmonotonic Probabilistic Logics between Model-Theoretic Probabilistic Logic and Probabilistic Logic under Coherence

    Full text link
    Recently, it has been shown that probabilistic entailment under coherence is weaker than model-theoretic probabilistic entailment. Moreover, probabilistic entailment under coherence is a generalization of default entailment in System P. In this paper, we continue this line of research by presenting probabilistic generalizations of more sophisticated notions of classical default entailment that lie between model-theoretic probabilistic entailment and probabilistic entailment under coherence. That is, the new formalisms properly generalize their counterparts in classical default reasoning, they are weaker than model-theoretic probabilistic entailment, and they are stronger than probabilistic entailment under coherence. The new formalisms are useful especially for handling probabilistic inconsistencies related to conditioning on zero events. They can also be applied for probabilistic belief revision. More generally, in the same spirit as a similar previous paper, this paper sheds light on exciting new formalisms for probabilistic reasoning beyond the well-known standard ones.Comment: 10 pages; in Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-2002), Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, pages 265-274, Toulouse, France, April 200

    From imprecise probability assessments to conditional probabilities with quasi additive classes of conditioning events

    Get PDF
    In this paper, starting from a generalized coherent (i.e. avoiding uniform loss) intervalvalued probability assessment on a finite family of conditional events, we construct conditional probabilities with quasi additive classes of conditioning events which are consistent with the given initial assessment. Quasi additivity assures coherence for the obtained conditional probabilities. In order to reach our goal we define a finite sequence of conditional probabilities by exploiting some theoretical results on g-coherence. In particular, we use solutions of a finite sequence of linear systems.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation

    Full text link
    In this paper, by adopting a coherence-based probabilistic approach to default reasoning, we focus the study on the logical operation of quasi conjunction and the Goodman-Nguyen inclusion relation for conditional events. We recall that quasi conjunction is a basic notion for defining consistency of conditional knowledge bases. By deepening some results given in a previous paper we show that, given any finite family of conditional events F and any nonempty subset S of F, the family F p-entails the quasi conjunction C(S); then, given any conditional event E|H, we analyze the equivalence between p-entailment of E|H from F and p-entailment of E|H from C(S), where S is some nonempty subset of F. We also illustrate some alternative theorems related with p-consistency and p-entailment. Finally, we deepen the study of the connections between the notions of p-entailment and inclusion relation by introducing for a pair (F,E|H) the (possibly empty) class K of the subsets S of F such that C(S) implies E|H. We show that the class K satisfies many properties; in particular K is additive and has a greatest element which can be determined by applying a suitable algorithm

    Deductive Reasoning Under Uncertainty Using a Water Tank Analogy

    Get PDF
    This paper describes a cubic water tank equipped with a movable partition receiving various amounts of liquid used to represent joint probability distributions. This device is applied to the investigation of deductive inferences under uncertainty. The analogy is exploited to determine by qualitative reasoning the limits in probability of the conclusion of twenty basic deductive arguments (such as Modus Ponens, And-introduction, Contraposition, etc.) often used as benchmark problems by the various theoretical approaches to reasoning under uncertainty. The probability bounds imposed by the premises on the conclusion are derived on the basis of a few trivial principles such as "a part of the tank cannot contain more liquid than its capacity allows", or "if a part is empty, the other part contains all the liquid". This stems from the equivalence between the physical constraints imposed by the capacity of the tank and its subdivisions on the volumes of liquid, and the axioms and rules of probability. The device materializes de Finetti's coherence approach to probability. It also suggests a physical counterpart of Dutch book arguments to assess individuals' rationality in probability judgments in the sense that individuals whose degrees of belief in a conclusion are out of the bounds would commit themselves to executing physically impossible tasks

    Non-parametric probability distributions embedded inside of a linear space provided with a quadratic metric

    Get PDF
    There exist uncertain situations in which a random event is not a measurable set, but it is a point of a linear space inside of which it is possible to study different random quantities characterized by non-parametric probability distributions. We show that if an event is not a measurable set then it is contained in a closed structure which is not a σ-algebra but it is a linear space over R. We think of probability as being a mass. It is really a mass with respect to problems of statistical sampling. It is a mass with respect to problems of social sciences. In particular, it is a mass with regard to economic situations studied by means of the subjective notion of utility. We are able to decompose a random quantity meant as a geometric entity inside of a metric space. It is also possible to decompose its prevision and variance inside of it. We show a quadratic metric in order to obtain the variance of a random quantity. The origin of the notion of variability is not standardized within this context. It always depends on the state of information and knowledge of an individual. We study different intrinsic properties of non-parametric probability distributions as well as of probabilistic indices summarizing them. We define the notion of α-distance between two non-parametric probability distributio

    Probabilistic entailment and iterated conditionals

    Full text link
    In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval [0,1][0,1]. We examine the iterated conditional (B∣K)∣(A∣H)(B|K)|(A|H), by showing that A∣HA|H p-entails B∣KB|K if and only if (B∣K)∣(A∣H)=1(B|K)|(A|H) = 1. Then, we show that a p-consistent family F={E1∣H1,E2∣H2}\mathcal{F}=\{E_1|H_1,E_2|H_2\} p-entails a conditional event E3∣H3E_3|H_3 if and only if E3∣H3=1E_3|H_3=1, or (E3∣H3)∣QC(S)=1(E_3|H_3)|QC(\mathcal{S})=1 for some nonempty subset S\mathcal{S} of F\mathcal{F}, where QC(S)QC(\mathcal{S}) is the quasi conjunction of the conditional events in S\mathcal{S}. Then, we examine the inference rules AndAnd, CutCut, CautiousCautious MonotonicityMonotonicity, and OrOr of System~P and other well known inference rules (ModusModus PonensPonens, ModusModus TollensTollens, BayesBayes). We also show that QC(F)∣C(F)=1QC(\mathcal{F})|\mathcal{C}(\mathcal{F})=1, where C(F)\mathcal{C}(\mathcal{F}) is the conjunction of the conditional events in F\mathcal{F}. We characterize p-entailment by showing that F\mathcal{F} p-entails E3∣H3E_3|H_3 if and only if (E3∣H3)∣C(F)=1(E_3|H_3)|\mathcal{C}(\mathcal{F})=1. Finally, we examine \emph{Denial of the antecedent} and \emph{Affirmation of the consequent}, where the p-entailment of (E3∣H3)(E_3|H_3) from F\mathcal{F} does not hold, by showing that $(E_3|H_3)|\mathcal{C}(\mathcal{F})\neq1.

    On compound and iterated conditionals

    Get PDF
    We illustrate the notions of compound and iterated conditionals introduced, in recent papers, as suitable conditional random quantities, in the framework of coherence. We motivate our definitions by examining some concrete examples. Our logical operations among conditional events satisfy the basic probabilistic properties valid for unconditional events. We show that some, intuitively acceptable, compound sentences on conditionals can be analyzed in a rigorous way in terms of suitable iterated conditionals. We discuss the Import-Export principle, which is not valid in our approach, by also examining the inference from a material conditional to the associated conditional event. Then, we illustrate the characterization, in terms of iterated conditionals, of some well known p-valid and non p-valid inference rules
    corecore