1,178 research outputs found

    An Interaction Model for Simulation and Mitigation of Cascading Failures

    Full text link
    In this paper the interactions between component failures are quantified and the interaction matrix and interaction network are obtained. The quantified interactions can capture the general propagation patterns of the cascades from utilities or simulation, thus helping to better understand how cascading failures propagate and to identify key links and key components that are crucial for cascading failure propagation. By utilizing these interactions a high-level probabilistic model called interaction model is proposed to study the influence of interactions on cascading failure risk and to support online decision-making. It is much more time efficient to first quantify the interactions between component failures with fewer original cascades from a more detailed cascading failure model and then perform the interaction model simulation than it is to directly simulate a large number of cascades with a more detailed model. Interaction-based mitigation measures are suggested to mitigate cascading failure risk by weakening key links, which can be achieved in real systems by wide area protection such as blocking of some specific protective relays. The proposed interaction quantifying method and interaction model are validated with line outage data generated by the AC OPA cascading simulations on the IEEE 118-bus system.Comment: Accepted by IEEE Transactions on Power System

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    An Initial Exploration of Spatial Spreading of Cascading Failure in an Electric Power System

    Get PDF
    Large blackouts typically involve the cascading outage of transmission lines. However, little is known about the overall patterns of cascading outages. This research processes and initially examines observed utility data to explore the spatial spreading of cascading failure. The utility data is combined from two different sources, one year of recorded transmission line outages and a description of the grid connections. This requires extensive work relating different descriptions of the same grid. An initial analysis of the statistics of the spreading is presented, and the potential and implications of a new statistical approach to cascade spreading is assessed

    Dynamic instability of cooperation due to diverse activity patterns in evolutionary social dilemmas

    Full text link
    Individuals might abstain from participating in an instance of an evolutionary game for various reasons, ranging from lack of interest to risk aversion. In order to understand the consequences of such diverse activity patterns on the evolution of cooperation, we study a weak prisoner's dilemma where each player's participation is probabilistic rather than certain. Players that do not participate get a null payoff and are unable to replicate. We show that inactivity introduces cascading failures of cooperation, which are particularly severe on scale-free networks with frequently inactive hubs. The drops in the fraction of cooperators are sudden, while the spatiotemporal reorganization of compact cooperative clusters, and thus the recovery, takes time. Nevertheless, if the activity of players is directly proportional to their degree, or if the interaction network is not strongly heterogeneous, the overall evolution of cooperation is not impaired. This is because inactivity negatively affects the potency of low-degree defectors, who are hence unable to utilize on their inherent evolutionary advantage. Between cascading failures, the fraction of cooperators is therefore higher than usual, which lastly balances out the asymmetric dynamic instabilities that emerge due to intermittent blackouts of cooperative hubs.Comment: 6 two-column pages, 6 figures; accepted for publication in Europhysics Letter

    Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

    Full text link
    In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system is closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.Comment: Accepted by IEEE Transactions on Power System

    Modeling Cascading Failures in Power Systems in the Presence of Uncertain Wind Generation

    Get PDF
    One of the biggest threats to the power systems as critical infrastructures is large-scale blackouts resulting from cascading failures (CF) in the grid. The ongoing shift in energy portfolio due to ever-increasing penetration of renewable energy sources (RES) may drive the electric grid closer to its operational limits and introduce a large amount of uncertainty coming from their stochastic nature. One worrisome change is the increase in CFs. The CF simulation models in the literature do not allow consideration of RES penetration in studying the grid vulnerability. In this dissertation, we have developed tools and models to evaluate the impact of RE penetration on grid vulnerability to CF. We modeled uncertainty injected from different sources by analyzing actual high-resolution data from North American utilities. Next, we proposed two CF simulation models based on simplified DC power flow and full AC power flow to investigate system behavior under different operating conditions. Simulations show a dramatic improvement in the line flow uncertainty estimation based on the proposed model compared to the simplified DC OPF model. Furthermore, realistic assumptions on the integration of RE resources have been made to enhance our simulation technique. The proposed model is benchmarked against the historical blackout data and widely used models in the literature showing similar statistical patterns of blackout size
    • …
    corecore