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Abstract 

The power system is one of the most critical infrastructures in today’s world. The reliability and 

security of such critical system are of great importance because of the huge economic and social 

cost of blackouts in modern societies and has induced a considerable research effort over the past 

two decades. One of the biggest threats to power systems is large-scale blackouts resulting from 

cascading failures (CF) in the grid. After major blackouts in U.S. history, many researchers have 

tried to study this phenomenon from different aspects. These efforts range from static modeling of 

the power system for topological studies to the dynamic simulation of the cascading process during 

the escalation phase of the failures. However, there still is a need for further studies on grid 

vulnerability to cascading failure especially with the ongoing changes in the portfolio of generation 

due to ever-increasing penetration of renewable energy (RE) resources. 

The literature review on the existing CF simulation models suggests that these models are not 

suitable for the evaluation of blackout risk in power systems with high penetration of renewable 

energy resources. The uncertainty injected from RE units will affect the line flows that could 

potentially impact the tripping events and consequently the grid vulnerability. In this work, efforts 

have been made to develop tools and models to study CF in power systems in the presence of 

renewable generation. The uncertainty injected from renewable energy resources and electrical 

loads are modeled by analyzing actual high-resolution data from North American utilities. Next, 

two CF simulation models based on simplified DC power flow and full AC power flow (PF) to 

investigate grid vulnerability under different loading conditions are proposed. In order to estimate 

the line flow process of AC power flow model in a power system, the Unscented Transform (UT) 

technique is utilized. The simulations show that for high penetration of RE based on the proposed 



 

xviii 

 

UT method we can achieve up to 200, 77, and 65 times better results compared to the DC PF model 

in the estimation of flow uncertainty variance, bandwidth, and mean, respectively. Furthermore, 

the integration of RE resources is based on potential RE growth map and geographical information 

of the grid topology which is an enhancement over the random installation of RE units. The 

developed tools and models might be useful for the researchers in both academia and industry to 

investigate the impact of RE penetration on grid vulnerability under various loading levels and RE 

integration ratios. 

Efforts have been made to perform a set of statistical analyses for some real power system data to 

extract salient characteristics of power grids such as electrical and non-electrical parameters of the 

transmission network and their interdependence on the nominal voltage level. Finally, in this 

dissertation a statistical toolkit to perform statistical analysis on power system cases, the GridStat 

Analysis Toolkit, is developed which is a MATLAB GUI-based application designed with an 

interactive interface for convenient use experience offering four sets of main statistical analysis: 

1) Topological analysis, 2) Grid parameters statistics, 3) Voltage interdependence and 4) Grid 

scaling properties.
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1 Introduction 

Large-scale blackouts resulting from cascading failures induce considerable economic and social 

costs annually. Cascading failure (CF) is defined as a sequence of dependent failures of individual 

components that successively weakens the power system and could result in electrical instability 

and large-scale blackouts. CFs originate from strong interdependencies inside the grid. 

Transmission line overload due to contingency is the most common initial cause of CFs in power 

systems.  

The ever-increasing penetration of renewable energy (RE) resources such as wind energy will have 

many impacts on grid vulnerability and operations. Due to the stochastic nature of wind energy, a 

large amount of uncertainty will be injected to the grid that will change its dynamic performance. 

One worrisome change is the increase in CFs involving wind farms [1]. The intermittent out power 

from wind generators will force other conventional generators to continuously alter their output 

resulting in big variation in line flows. This could, in turn, impact the loading level of transmission 

lines. During the escalation phase of a CF that overloaded lines are getting tripped, the change in 

line flow process due to high penetration of wind energy will affect the cascade of failures and 

propagation of trips thus consequently the overall blackout size. Therefore, it is becoming more 

and more crucial to develop tools and models that allow studying the impact of these changes on 

the risk of CFs leading to blackouts. 

1.1 Motivation 

Massive economic and social impacts of blackouts have motivated a great deal of research effort 

on studying the vulnerability of the power grids to CFs. With ever-increasing penetration of 
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renewable energy resources, the dynamic of the grid is changing. Due to their stochastic nature, 

the operators of the system face more uncertainty injected to the grid from these sources. The 

increased level of uncertainty will also change the behavior of the system during the escalation 

phase of cascading failures. 

Therefore, we need to first find a suitable model for the uncertainty of renewable generation. Then, 

using the developed model the study of grid vulnerability to cascading overload failures under 

high penetration of renewables can identify their impacts on grid dynamics. 

1.2 Literature review 

Cascading failures in power systems happen due to several initial causes but they usually result in 

large-scale blackouts with a huge social and economic cost. After major blackout incidents in 

history, a great deal of research has been directed towards the modeling and analysis of large-scale 

blackouts resulting from cascading failures. Since the dynamics of the grid during a cascade 

process are still unknown, there exist, different models, to simulate and study this phenomenon. 

Many studies have tried to model the dynamics of the failure based on the power system normal 

operations regime like optimal power flow, while others proposed stochastic approaches to 

consider randomness in the evolution of the failures. 

A) Existing models for cascading failure analysis 

In the model proposed by Dobson, Carresras et al. in [2] the flow re-dispatch is determined by 

optimal power flow (OPF) calculation similar to the normal operation of the system. This model 

is the reference for works in [3] and [4]. Authors in [5] propose a CF model inspired by the model 

in [3] that has a different tripping mechanism in the simulation of CF. 
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Another approach to the problem in the literature is analyzing the interaction of power grids and 

communication networks with each other while studying the dynamics of the grid based on power 

flow analysis. The interdependencies of power and communication networks are modeled in [6] 

and [7] and it is found that power flow equations are a critical component in CF simulations. 

Rahnamay-Naeini and Hayat in [8] study the mutual dependencies of the two network using estate 

estimation techniques. 

In the CF model proposed in [9], authors determine the criticality of lines by considering the 

changes of flow and structure of the network after each level of CF. [10] studies a blackout case 

in the Indian power grid due to voltage collapse in the inter-regional corridor. Transient stability 

analysis and cascading failures are considered together in [11] and [12]. Sensitivity analysis of 

power grids to cascading failures by means of considering their critical dependence on their 

operating characteristics is performed by Rahnamay-Naeini and Hayat in [13]. 

Another research line in dynamic failure analysis is the application of Graph Theory (GT) and 

Complex Network Theory (CNT).  

For example, the models proposed by Motter and Lai in [14] and Holme and Kim in [15] analyze 

the blackouts resulting from intentional attacks assuming the shortest connection path for flow 

exchange. This model is modified by Crucitti, Latora, and Marchiori in [16] to more accurately 

simulate the behavior of the network and found that the difference in load distribution across the 

network might increase grid vulnerability to CF. Similarly, Wang and Ron [17] proposed a model 
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where the load of the attached node is redistributed to its neighbors proportionally. In this work, 

the mechanism of realistic power grid operation is not accurately considered in the model.  

More recently, cascading failure models based on complex network theory (CNT) have been 

proposed in the literature. Authors in [18] proposed a model based on the CNT by combining the 

node overload failures and hidden failures of transmission lines in blackouts together. The 

robustness of the grid is studied by Wang et al. in [19] and found that sometimes the addition of a 

new line to the power system could result in a decreased robustness for the grid. Zhu et al. studied 

cascading failures of the power grids based on a new model that combines complex network 

theories with power flow models, called the extended model [20]. Authors in [21] established a 

cascading failure model based on the CNT where the development tendency of cascading failure 

is determined by the network topology, the power flow, and boundary conditions. 

A few authors analyze the dynamics of cascading failure using stochastic approaches. Authors 

found a good fit for the cumulative number of trips based on the branching model in [22]. We 

should note that unlike the communication networks where packets can switch their route easily 

choosing the shortest path, the flows in a power grid are determined by the physical constraints 

imposed by Kirchhoff’s Voltage/Current laws (KVL and KCL) and Ohm’s law [23] which is 

unique for the electric networks. Another distinction is that in a power grid nodes are categorized 

into three classes: generators, loads and intermediate nodes and cannot be interchanged with each 

other. Wang et al. proposed a stochastic Markov model to capture the progression of CFs 

considering uncertainty coming from only electrical loads without accounting for thermal stability 

model for thermal relays tripping time [24]. More recently, a stochastic model is presented in [25] 

for describing cascading failure in a cyber-coupled smart grid where they combine stochastic 
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process with a state transition description. In this work, the CF is simulated considering the effects 

of overloading, interdependency between the power grid and cyber network, and malware 

contagion. 

In the literature, there are several studies that focus on the static failure analysis by analyzing the 

topological robustness of the power system against cascading failures. These models analyze the 

topology change during the escalation phase of cascading failure due to intentional attacks. [26] 

and [27] examine the node removal effect on power system connectivity. Wang, Scaglione, and 

Thomas improved the nodal degree model and showed an excellent fit with a mixture distribution 

[28]. They find that the power system is even more vulnerable to disconnection under the realistic 

nodal degree distribution model. In [29] the cascading link failures are studied by using the random 

geometric graph model that does not accurately reflect the nature of the power system. Authors in 

[30] tried to identify the critical buses in terms of topology vulnerability by gauging the attack 

impact for several realistic grids. They only reported the direct simulation results and compared 

them with predictions of other models. More recently, Dey et al. in [31] suggest corrective actions 

to save the system from total collapse by considering topological characteristics of the grid. In this 

paper, the average propagation of failure is calculated as a branching process. 

We can also categorize the CF models in the literature based on their approach in simulating power 

system response during cascades of tripping events [32]. In this regard, there exist two major 

approaches including dynamic transient models [33]–[38] and quasi-steady state (QSS) models 

[2], [24], [39]–[47] each has advantages and disadvantages. 

1) Dynamic transient models 
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In the dynamic models, the dynamic components, such as rotating machines, exciters, and 

governors, as well as all protective components of the system along with their dynamic behavior, 

are modeled using differential equations. The computational burden of the simulation for large 

cases and the numerical failure in solving differential equations are disadvantages associated with 

dynamic models that prevent running multiple Monte Carlo (MC) simulations to assess the risk of 

blackouts for different planning scenarios. The models in [33], [34] and the COSMIC model in 

[35], [36] are examples of research-grade dynamic cascading failure models and [37], [38] are 

examples of existing commercial simulation tools that have introduced dynamic simulation to their 

cascading failure analysis. 

2) Quasi-steady state models 

On the other hand, the QSS models are widely used in the literature to study the cascading failure 

and evaluate the risk of large-scale blackouts. These models rely on the steady-state assumption 

for the system where the flow re-dispatch of the network is calculated based on power flow (PF) 

analysis.  They differ from each other in terms of the assumptions they make to simulate the 

cascading failure and the power flow model used. The representation of the transmission system 

can be based on the full version of PF equations (i.e., ACPF), or on the linearized version (i.e., 

DCPF). The DCPF approximation is the common technique used in the QSS models due to its 

guaranteed convergence and low computational cost which allows the simulation of failures 

beyond any topology changes for the grid. In addition, its linear property makes the direct 

estimation of flow process statistics from those of the injected power possible as utilized in the 

proposed mixed OPF-stochastic CF model in [42]. However, the DC approximation comes at the 

expense of assuming flat voltage profiles for the entire network thus hindering the simulation of 
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voltage related failures during the CF. Large errors in flow estimation by DC model is also 

identified in the literature especially for larger networks [48]–[50]. The ORNL-PSerc-Alaska 

(OPA) models in [2], [39], the random chemistry model in [40], the Markov-transition model in 

[24], and more recently the mixed OPF-stochastic model in [41], [42] are examples of the 

cascading failure models that employ DCPF. Whereas the AC OPA model in [43], Manchester 

model in [44], TRELSS model in [45], importance sampling model in [51], and more recently the 

AC-OPF-f model in [47] are among the models employing full AC power flow in the simulation 

of cascading failures. 

B) Studies on the impact of Renewable Generation on cascading failure 

While studies for modeling the cascading failure process in power grids have been prevalent in the 

literature, the study of impacts of stochastic renewable generation on grid vulnerability to 

cascading failures is lacking. Especially, the highly variable nature of renewable generation will 

have a large impact on the dynamics of voltage profiles that can totally change the behavior of the 

grid during cascading failures. The effects of replacing conventional generation by wind and solar 

generation on the grid voltage performance are examined in [52]. Authors used a western 

electricity coordination council (WECC) equivalent system to identify the issues with voltage 

performance after such generation alteration. But, there is a need to analyze the impact of this 

change in voltage dynamics on grid vulnerability and voltage stability during cascading failure. 

Henneaux et al. studied the impact of thermal effects on the risk of blackout for increased wind 

farms [53]. They found that high penetration of wind energy to the grid will increase the variability 

of cross-border flows, therefore, leading to a higher risk of cascading failure. The short circuit 

capacity margin of renewable energy sources is analyzed in [54] to evaluate the state vulnerability 
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of the grid. The false tripping of protection relays is examined in [55] to see the impact of high 

penetration of distributed generation (DG) on the performance of the protection system. The 

authors found that an increase in the number of DG units could result in an increase in the number 

of undervoltage tripping which will be even more problematic with the increase in power electronic 

devices in the distribution network. Authors in [56] proposed an online assessment system to 

evaluate, analyze and predict the CFs of a group of wind farms timely and effectively. Cascading 

tripping out of numerous wind turbines in China is analyzed in [57] to identify important factors 

contributing to the failures. Khazaei et al. in [58], [59] proposed renewable energy aggregation to 

reduce the impacts of uncertainty on the network. Scala et al. in [60] found that the presence of 

fluctuations due to erratic renewable sources and customer demands increase the instability within 

an isolated segment of a power grid. However, none of the existing studies examine the impact of 

intermittent renewable generation on voltage dynamics within the cascading failure context. 

1.3 Contributions 

The models developed for cascading failure analysis over the past two decades such as Motter-Lai 

model [14], [61], CASCADE model [62], Branching process model [63], ORNL-PSerc-Alaska 

(OPA) model [3], [39], [64], Manchester model [65], and stochastic models [22], [24], [66]–[68], 

do not allow considering high uncertainty level injected from RE sources on the simulation of line 

outages during cascading failures. There are a few works in the context of CF analysis considering 

the RE resources. For example, Henneaux et al. in [53] studies the impact of thermal effects on 

the risk of blackout for increased wind farms and found that high penetration of wind energy to 

the grid will increase the variability of cross-border flows, therefore, leading to a higher risk of 

cascading failure. In another work in [55], the impact of high penetration of distributed generation 
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(DG) on the performance of the protection system is investigated by analyzing the false tripping 

of protection relays. And Scala et al. in [60] found that the stability of a power grid within an 

isolated segment could increase due to power fluctuations caused by renewable sources. However, 

there is still a need for models and tools that can simulate CF in power system similar to traditional 

CF models in the literature (e.g. AC OPA, Manchester model, …) while allowing for modeling 

the impact of RE on line flow process. As the new technologies are integrating into the modern 

grids, they become more and more complicated with an unprecedented uncertainty level that the 

grid has to deal with. Especially, simulation of voltage profile behavior with high penetration of 

variable renewables during the cascading failure is lacking from the literature. 

In this dissertation, models and tools are developed to study the cascading failures in power system 

in the presence of highly variable and uncertain renewable energy resources. Following is the list 

of our main contributions to the state of the art in cascading failure analysis. 

 Analyzing uncertainty injected from different renewable energy resources and electrical 

loads and developing an uncertainty model for cascading failure simulations 

 Proposing a mixed OPF-stochastic cascading failure model based on the simplified DC 

power flow model suitable for preliminary vulnerability studies 

 Estimating the line flow process for AC power flow model utilizing the Unscented 

Transform (UT) method 

 Proposing an AC cascading failure model based on UT methodology to simulate voltage-

related failures during CF phenomenon 

 Benchmarking the proposed ACUT model with the historical blackout data as well as a 

number of CF models in the literature 
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 Some preliminary results on the RE penetration impacting the grid vulnerability 

The developed tools and models might be useful for experts both in academia and industry to 

evaluate the impact of penetration of renewables on grid vulnerability to cascading failure. 

Especially, after further examination and validation, from the long-term planning standpoint, it 

might also be able to identify the suitable locations of integration for potential renewable energy 

resources to minimize their adverse impacts on grid vulnerability.  

Moreover, both the DC and AC proposed CF models are quasi-steady state (QSS) models. Since 

the dynamic transient models simulate the dynamics of the grid based on the differential equation, 

they are very computationally expensive preventing a large set of Monte-Carlo (MC) simulations. 

Whereas the QSS models (including our proposed models) are less computationally expensive and 

allow simulation of large set MC simulations of different N-2 contingencies to evaluate the average 

impact of RE penetration on grid vulnerability. 

Finally, efforts have been made to perform a set of statistical analyses for some real power system 

data to extract salient characteristics of power grids such as electrical and non-electrical parameters 

of the transmission network and their interdependence on the nominal voltage level. These efforts 

have led to the development of a MATLAB GUI-based application for convenient statistical 

analysis on power grids. These analyses are presented in the Appendix. 

1.4 Structure of the dissertation 

In chapter 2 we present the proposed uncertainty modeling approach and analyze actual data to 

characterize uncertainty injected from different RE sources as well as electrical loads. In chapter 

3, CF in power systems will be briefly discussed. Chapter 4 will present the proposed DC CF 
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model for preliminary analysis. The enhanced AC CF model called ACUT will be presented in 

chapter 5. Chapter 6 is dedicated to validation and benchmarking the proposed model. Finally, 

chapter 7 will conclude the dissertation and make recommendations for future works. Our work 

on statistical analysis on power grid parameters and variables is presented in the Appendix.
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2 Uncertainty modeling 

In this chapter, we present the procedure to develop an uncertainty model to represent the 

forecasting error of smart grid loads and wind generation as an example of erratic renewable 

generation. Note that, a similar procedure can be followed to analyze and characterize the 

uncertainty from other renewable energy sources such as solar PV and solar thermal units. This 

section includes a brief introduction to the problem, the discussion on the proposed model, 

description of the historical data used in model construction, and the transition from generation 

and loads uncertainty to line flow uncertainty in a standard power system test case. 

2.1 Introduction 

The uncertainty handling has been one of the main concerns of the decision makers (including 

governors, engineers, managers, and scientists) for many years [69]. Most of the decisions to be 

made by energy sector decision makers are subject to a significant level of data uncertainty [70]. 

The uncertain parameters in power system studies can be generally classified into two different 

categories including: 

 Technical parameters: These parameters are generally categorized in two main classes, 

namely topological parameters and operational parameters. The topological parameters are 

those related to network topologies like a failure or forced outage of lines, generators or 

metering devices, etc. The operational parameters are tied with operating decisions like 

demand or generation values in power systems. The variability of renewable generation is 

an example of operational uncertainty that can be modeled with forecasting error. 

 Economical parameters: The parameters which affect the economic indices fall in this 
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category. Microeconomics investigates the decisions of smaller business sectors like 

aggregators, domestic or industrial consumers while macroeconomics focuses on the entire 

power system industry. For example, uncertainty in fuel supply, costs of production, 

business taxes, labor, and raw materials are analyzed in microeconomics. On the other 

hand, issues like regulation or deregulation, environmental policies, economic growth, 

unemployment rates, gross domestic product (GDP) and interest rates are analyzed in 

macroeconomics. All of these parameters are subject to uncertainties and should be 

correctly addressed in economic studies. 

There is various uncertainty handling methods developed for dealing with the aforementioned 

uncertain parameters. The main difference between these methods is in line with the different 

techniques used for describing the uncertainty of input parameters. For example, the fuzzy method 

uses membership functions for describing an uncertain parameter while the stochastic methods use 

probability density function. The similarity of them is that all of them try to quantify the effect of 

input parameters on the model's outputs. These methods and the way the uncertainty is handled by 

them are described as follows: 

 Probabilistic approach [71]: It assumes that the input parameters of the model are random 

variables with a known probability density function (PDF). 

 Possibilistic approach: The input parameters of the model are described using the membership 

function (MF) of input parameters based on Fuzzy logic. 

 Hybrid possibilistic–probabilistic approaches: Both random and possibilistic parameters are 

present in the model. 

 Information gap decision theory [72]: In this method, no PDF or membership function is 



 

14 

  

available for input parameters. It is based on the difference between what is known and what 

is vital to be known by quantification of severe lack of information in the decision-making 

process. 

In this thesis, the renewable generation uncertainty is modeled with operational parameters. This 

is reflected in the erratic renewable energy injected to the grid that can be represented by the 

forecasting error. Other sources of uncertainty such as economical parameters can be considered 

in the context of the day-ahead electricity market and generation dispatch. One way to model 

different uncertainty sources in cascading failure studies is Monte-Carlo simulations where the 

blackout risk assessment can be performed by a large number of scenarios accounting for both 

operational parameters (renewable generation variability) and economical parameters (unit 

dispatch). 

Another interesting line of research is to study the correlation of operational parameters with 

weather data since especially for renewable generation weather information are critical. For 

example, the correlation can be seen in the output power of nearby wind farms and their variability 

to accurately represent the variability in their injected power. 

In this chapter, we define wind power uncertainty by the high dynamic variability in its output 

power signal and model it by the forecasting error. Similarly, the electric loads' uncertainty is 

defined by the forecasting error for demanded power. The Autoregressive Moving Average 

(ARMA) method is simple and easy to implement technique widely used in time series forecasting. 

The several steps ahead values of a time series are calculated based on a linear relationship between 

previous values of the series. The historical data are used to determine the best parameters of the 

model by minimizing the root mean squared error (RMSE) of the output signal. The ARMA model 
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is used for both wind generation and electrical loads because of its good performance. It is able to 

capture the daily seasonality in load profile. Application of more complicated methods such as 

Artificial Neural Networks (ANN) to forecast and evaluate the uncertainties of wind generation 

may produce misleading results due to higher accuracy of the model compared to the actual 

forecasting techniques used in the industry. 

We use very high-resolution data for both generation and loads and then analyze the error signal 

for each uncertainty source to evaluate their dynamic features. The occupied bandwidth of the 

error signal is an important metric that shows the frequency components of the uncertainty for the 

source and will be later used in the stochastic cascading failure model. 

2.2 Proposed uncertainty model 

A) Uncertainty representation 

Figure 1 shows a hypothetical power grid with different kinds of generations. Wind turbines and 

PV plants are the main sources of renewable energy that are widely used in power grids. Along 

with renewable sources, there are many conventional generation units such as fossil fuel, hydro, 

co-generation, and steam units. Each of these generation units injects a different amount of 

uncertainty into the grid with different characteristics in terms of magnitude and frequency of 

occurrence. Despite recent developments in load forecasting techniques, there is still uncertainty 

coming from load forecasting error. 
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Figure 1. Schematic diagram of a hypothetical grid 

In the proposed model, the power signal of each component (i.e. output power for generators and 

demand power for loads) is modeled with two terms as shown in Eq. (1). 

 𝑃(𝑡) = 𝜇(𝑡) + 𝜖(𝑡) (1) 

where 𝜇(𝑡) is the average of power signal (MW) at each time instant or in other words it is what 

we expect to have for each component ahead of time. For example, we can consider the forecasted 

value for load or renewable generation or scheduled output of a conventional generation unit for 

next day as 𝜇(𝑡). In this model 𝜖(𝑡) represents the uncertainty (MW) which can come from forecast 

error or mismatch in output power for conventional units. In this study, load and wind output power 

forecast errors are considered as uncertainty. Also, mismatch in output power from scheduled 

value for conventional generation units shows their uncertainty. 

B) Model requirements 

1) Data: since we are looking for a model which can accommodate the high dynamics of 

uncertainty associated with a different source of variations, high-resolution data with sampling 

rate in seconds range seem necessary. For this purpose, we obtained the data from the Electric 

Reliability Council of Texas (ERCOT) which offers high-resolution data that are measured every 
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4 seconds. These data are for numerous wind generators, load demand, and different types of 

conventional generations. In this study, fossil fuel generators and co-generation are used as a 

conventional generation. Figure 2 shows data for different components of the ERCOT network. 

Wind output power shows a highly variable signal which in turn will result in large uncertainty 

with high-frequency components. 

  

(a) (b) 

  

(c) (d) 
Figure 2. ERCOT 4 sec data for a) wind generator, b) fossil fuel generator, c) co-generation and d) load 

2) Forecasting model: In this study in order to capture the high-frequency component of 

uncertainty associated with each source, a very short-term forecasting horizon is chosen for load 

and wind forecasting. Traditional Autoregressive Moving Average (ARMA) forecasting model 

offers a high accuracy when forecast time is short [73]. Therefore, the ARMA model is used to 

forecast load power wind output power. For a stationary time-series of load data, because the 
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properties of historical and future data are mutually similar, the historical data can be used as the 

reference to formulate an adequate ARMA model. The forecasting with ARMA model essentially 

can be divided into three steps, including model identification, parameter estimation, and adequacy 

validation. 

System modeling can be expressed as the following ARMA form: 

 𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝑎𝑡 (2) 

 𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 (3) 

 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 (4) 

where 𝑦𝑡 is the observed time series of load at time 𝑡, 𝑎𝑡 is the white noise at time 𝑡, and 𝐵 is the 

back-shift operator such that 𝐵𝑦𝑡 = 𝑦𝑡 − 1 and 𝐵𝑚𝑦𝑡 = 𝑦𝑡 − 𝑚. 𝜙1, …, 𝜙𝑝 are AR part 

parameters and 𝑝 is the AR order. 𝜃1, …, 𝜃𝑞 are MA part parameters and 𝑞 is the MA order. The 

sample autocorrelation function (ACF) and partial autocorrelation function (PACF) are used as 

references to conjecture the appropriate model order [74]. 

Parameter estimation for ARMA model is done based on gradient-based method, in which they 

are estimated in order to have zero gradients of the mean squared sum of fitting errors to historical 

data. Finally, the adequacy of the model is validated after the appropriate estimation of model 

parameters. These parameters should be significantly different from zero and the residuals are the 

realization of the white noise process [74]. ARMA forecasting model parameters for load and wind 

forecasting are shown in Table I. 

 



 

19 

  

Table I. ARMA forecasting model parameters 

 
Model parameters 

𝒑 𝒒 differencing order seasonality 

Load ARMA 10 10 2 Daily 

Wind ARMA 50 50 1 None 

3) DC power flow 

To study the effects of uncertainty from different sources on transmission line flows, DC power 

flow approximation is used in this study. DC power flow is a standard approach widely used in 

optimizing flow dispatch and for assessing line overloads [75]. For a power grid with n nodes and 

m transmission lines, the network flow equation can be written as follows: 

 𝑃(𝑡) = 𝐵′(𝑡)𝜃(𝑡) (5) 

 𝐹(𝑡) = 𝑑𝑖𝑎𝑔(𝑦𝑙(𝑡))𝐴𝜃(𝑡) (6) 

where 𝑃(𝑡) represents the vector of injected real power, 𝜃(𝑡) the phase angles, and 𝐹(𝑡) the flows 

on the lines. The matrix 𝐵′(𝑡) is defined as 

 𝐵′(𝑡) = 𝐴𝑇𝑑𝑖𝑎𝑔(𝑦𝑙(𝑡))𝐴 (7) 

where 𝑦𝑙(𝑡) = 1/𝑥𝑙 is the line admittance; 𝑑𝑖𝑎𝑔(𝑦𝑙(𝑡)) represents a diagonal matrix with entries 

of {𝑦𝑙(𝑡), 𝑙 = 1,2, … , 𝑚}. 𝐴 ≔ (𝐴𝑙,𝑘)𝑚×𝑛 is the line-node incidence matrix, arbitrarily oriented and 

defined as: 𝐴𝑙,𝑖 = 1; 𝐴𝑙,𝑗 = −1, if the 𝑙th line is from node 𝑖 to node 𝑗 and 𝐴𝑙,𝑘 = 0, 𝑘 ≠ 𝑖, 𝑗. 

2.3 Uncertainty statistics for different sources 
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Based on the proposed model by [76], frequency components of injected power in buses which 

will translate into frequency components of line flows have a direct impact on grid vulnerability 

against random disturbances. In other words, the more the bandwidth of uncertainty, the more 

vulnerable the grid against failures. 

The power spectrum 𝑆𝑥𝑥(𝑓) of a time series 𝑥(𝑡) describes the distribution of frequency 

components composing that signal. The power spectral density (PSD) of a signal refers to the 

spectral energy distribution per unit of time. The spectrum of physical processes often contains 

essential information about the nature of them. One particular information that can be useful for 

our purpose is the occupied bandwidth of the signal. It can clearly represent the dynamics of signal 

that in our case shows the dynamics of uncertainty for different sources. In order to obtain the PSD 

of a signal (e.g. wind uncertainty) first, we define the autocorrelation function as [77] 

 

𝑅𝑋𝑋(𝜏) =
1

𝑁𝜎2
∑(𝑋𝑡 − 𝜇)(𝑋𝑡+𝜏 − 𝜇)

𝑁−𝜏

𝑡=1

 

(8) 

where 𝑁 is the number of samples, 𝜎2 is the sample variance of the time series, and 𝜇 is the mean 

of the samples. 

Next, the PSD can be calculated by applying the Fourier transform to the autocorrelation function: 

 

𝑆𝑥𝑥(𝑓) = ℱ[𝑅𝑋𝑋(𝜏)] =
Δ𝑡

𝑁
|∑ 𝑥𝑛𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

,   −1
2Δ𝑡⁄ < 𝑓 < 1

2Δ𝑡⁄  

(9) 
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Where 𝑥𝑛 is the uncertainty signal, Δ𝑡 is the sampling interval, and 𝑁 is the total number of 

samples. For a one-sided PSD, the values at all frequencies except 0 and the Nyquist, 1 2Δ𝑡⁄ , are 

multiplied by 2 so that the total power is conserved [78], [79]. 

Finally, the 99% occupied bandwidth is the frequency range containing 99% of the spectral energy 

and can be calculated by solving: 

 ∫ 𝑆𝑥𝑥(𝑓)𝑑𝑓
𝑓∗

−𝑓∗

∫ 𝑆𝑥𝑥(𝑓)𝑑𝑓
+∞

−∞

= 0.99,      𝑓∗ = 𝐵𝑊99%   

(10) 

In this study, the 99% occupied bandwidth is considered as a metric to show the dynamics of 

uncertainty. 

The root mean square error (RMSE) which is also equal to the standard deviation of the distribution 

and mean absolute percentage error (MAPE) are metrics to show the magnitude of uncertainty 

from each source and can be calculated based on the following equations. 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝜖𝑖

2

𝑁

𝑖

 (11) 

 𝑀𝐴𝑃𝐸 = (
1

𝑁
∑

𝜖𝑖

𝑃𝑖

𝑁

𝑖

) × 100 (12) 

where 𝜖 is the uncertainty magnitude at each time step, 𝑁 is the total number of samples (21600), 

and 𝑃 is the magnitude of the actual power. 

2.3.1 Wind generation uncertainty 
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Based on ARMA forecasting model, the uncertainties associated with wind generator output power 

and load are modeled. The uncertainty associated with conventional generation (i.e. fossil fuel 

generation and co-generation) is modeled based on the deviation of actual plant output from its 

scheduled value. Figure 3 shows the forecasting result and the distribution of forecasting error (i.e. 

uncertainty) for a select wind profile. Figure 3 (b) shows the probability distribution function of 

forecasting error for wind output power. The probability distribution function of forecasting error 

for wind output power can be approximated with t location-scale distribution with the following 

PDF: 

 
𝛤 (

𝜈 + 1
2 )

𝜎√𝜈𝜋𝛤 (
𝜈
2)

[
𝜈 + (

𝑥 − 𝜇
𝜎 )

2

𝜈
]

−(
𝜈+1

2
)

 (13) 

where 𝛤 is the gamma function, 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜈 is the 

shape parameter. The mean of the t location-scale distribution is 𝜇 and the variance is 𝑣𝑎𝑟 =

𝜎2 𝜈

𝜈−2
. Note that if random variable 𝑥 has a t location-scale distribution with parameters 𝜇, 𝜎, and 

𝜈, then 
𝑥−𝜇

𝜎
 has a student’s t distribution with 𝜈 degrees of freedom. 

  
(a) (b) 

Figure 3. Wind uncertainty results: a) forecasted and actual power and b) distribution of error 
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If we take the uncertainty signal showed in Figure 3 (b) and calculate its autocorrelation function, 

we then can obtain the PSD of the uncertainty and according to Eq. (12) we can calculate the 99% 

bandwidth of the error signal. Figure 4 shows the uncertainty signal analysis. Figure 4 (a) shows 

the autocorrelation of the uncertainty signal and Figure 4 (b) shows the PSD of the signal. 

  
(a) (b) 

Figure 4. Uncertainty signal analysis: a) autocorrelation of the signal and b) Fourier transform of the autocorrelation (PSD) 

Figure 5 shows the PSD of the uncertainty signal for the selected wind profile. Based on Eq. (12) 

we have obtained the bandwidth that contains 99% of the spectral energy. This bandwidth is shown 

on the figure. 

 

Figure 5. 99% occupied bandwidth of the uncertainty for a select wind profile 
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The signal processing toolbox of MATLAB offers a tool, called OBW, to directly estimate the 

occupied bandwidth of a signal. To determine the occupied bandwidth, this tool computes a 

periodogram power spectral density estimate using a rectangular window and integrates the 

estimate using the midpoint rule. The occupied bandwidth is the difference in frequency between 

the points where the integrated power crosses 0.5% and 99.5% of the total power in the spectrum. 

For the rest of this dissertation, we will use MATLAB’s OBW command to calculate and plot PSD 

and occupied bandwidth of uncertainty signals. 

2.3.2 PV generation (utility-scale and distributed PV) uncertainty 

The high-resolution data received from ERCOT do not include solar PV generation. We obtained 

solar PV generation data from the local utility, Dominion Energy. The data have a resolution of 30 

seconds and consist of PV generation data for both utility-scale and distributed PV. The utility-

scale PV site has a capacity of 120 MW and the distributed PV sites capacity range from 5 MW to 

20 MW. The challenge with the PV data set is to synchronize their resolution with ERCOT 4 

second data. This was achieved by means of data padding based on linear interpolation and time 

table toolbox in MATLAB. After synchronizing the resolution of PV data, we can compare their 

statistics with those of ERCOT wind and load data. 

Figure 6 shows the daily profile of output power for the utility-scale PV generation site. The 

uncertainty signal (i.e. the forecasting error) is also depicted for this generation site. 
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(a) (b) 

Figure 6. Utility-scale PV generation profile supplied by Dominion Energy: a) daily profile and the uncertainty signal and b) 

99% OBW of the uncertainty signal 

The 99% OBW is depicted in Figure 6 (b) for the utility-scale PV. The bandwidth for PV 

uncertainty is very close to the bandwidth obtained for wind generation which indicates that both 

wind and PV are highly variable generation units injecting the major portion of overall grid 

uncertainty. 

 
 

(a) (b) 
Figure 7. Distributed PV generation profile supplied by Dominion Energy: a) daily profile and the uncertainty signal and b) 99% 

OBW of the uncertainty signal 

Figure 7 shows the distributed PV profile and its associated uncertainty signal for a select site with 

20 MW capacity. As shown in Figure 7 (b), the OBW of the distributed PV is similar to the 
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bandwidth of the utility-scale PV and wind generation and can be considered a major source of 

uncertainty. However, one should note that the size of distributed PV generations is much smaller 

than utility-scale PV units, therefore, although the bandwidth of the injected uncertainty is 

comparable to utility-scale units, the size of uncertainty is significantly smaller. This means that 

the effect of uncertainty injected from distributed energy resources (DER) such as distributed PV 

units can be captured by the uncertainty of electrical loads. In other words, the local distributed 

generation will change the load profiles and their uncertainty add to the uncertainty of loads seen 

by the grid. 

2.3.3 Conventional generation uncertainty 

Conventional thermal units mainly include coal, gas, and nuclear generators. The hydropower 

generators also are categorized in the conventional generation units. These units can vary in size 

and depending on their cost function will operate as a baseload supplier or peak load supplier. For 

example, nuclear power plants always play the role of baseload supplier because they have to 

operate continuously without any interruption. This is due to the fact that their startup cost is high 

compared to other types of generation units while their operation cost is very small. In addition, 

due to safety and stability reasons, nuclear power plants are preferred to work with a steady output. 

On the other hand, the gas generators, usually play the role of peak takers because of their fast 

ramping capability. Figure 8 shows the scheduling of a fossil fuel generator that gives the 

uncertainty associated with each of this source. As compared to uncertainty injected from 

renewable energy sources like wind and PV, the uncertainty resulting from conventional 

generators are very small and can be neglected. 
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Figure 8. Fossil fuel generator actual and scheduled power 

2.3.4 Electrical loads 

Figure 9 shows the forecasting result for the load that gives the uncertainty associated with this 

source. The loads are the second biggest sources of uncertainty that are being injected to the grid. 

The uncertainty level of loads depends on the accuracy of the forecasting technique being 

employed. We utilize the ARMA method to achieve a reasonable amount of accuracy while not 

underestimating the amount of forecasting error with load forecasting.  

 

Figure 9. Actual and forecasted load profiles 
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Table II summarizes the uncertainty analysis results for different components of the power grid. 

Note that in this table, the PV data with 4-second resolution obtained by means data padding is 

utilized in uncertainty analysis. As can be seen from the table, the renewable energy sources (i.e. 

wind and PV) have the highest bandwidth, meaning that they inject faster dynamics to the grid. In 

terms of uncertainty size, the wind generation injects the largest, while the load injects the smallest 

uncertainty to the grid. Since, the bandwidth of PV and wind uncertainty are very close to each 

other, while wind uncertainty size is significantly larger than that of PV, for the purpose of 

simulation, we will use wind as the representative of renewable energy resources in the cascading 

failure simulations. 

Table II. Summary of uncertainty analysis for different sources 

Uncertainty Avg. Bandwidth (Hz) Avg. RMSE (MW) Avg. MAPE (%) 

Load  61.84 0.20 4.16 

Co-generation  72.45 0.94 6.22 

Fossil fuel generation 63.03 1.05 5.91 

Wind generation 117.24 8.09 10.32 

Utility PV generation 114.90 1.28 1.36 

Distributed PV generation 112.20 0.45 5.26 

2.4 From generation uncertainty to flow uncertainty 

The proposed model is tested on IEEE 300 bus system to evaluate the impact of uncertainty on the 

flow of lines. To see the impacts of renewable energy penetration into the grid, 11 conventional 

generators of the original system are replaced with wind generators. Using DC power flow 

approximation, the power flowing from bus 4 to 16 is calculated as shown in Figure 10 (a). The 

distribution of line flow uncertainty and the associated bandwidth are shown in Figure 10 (b) and 

(c), respectively. It is found that line flows capture the highest bandwidth of uncertainties 

associated with different sources which in our case was wind generator with a bandwidth of 117 
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mHz. Also, the uncertainty probability distribution function for line flow found to approximately 

follow normal distribution which can be explained by Central Limit Theorem. 

   
(a) (b) (c) 

Figure 10. IEEE 300 bus system line 4-16 flow results: a) line flow, b) distribution of flow uncertainty and c) occupied bandwidth 

of flow uncertainty
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3 Cascading failures in power systems 

This chapter discusses the cascading failures phenomenon in power systems and their underlying 

causes and involved factors. Also, the simulation of cascading failures and the widely used 

simulations methods in the literature will be discussed briefly. 

3.1 Introduction 

Large-scale blackouts resulting from cascading failures induce considerable economic and social 

costs annually. Cascading failure (CF) is defined as a sequence of dependent failures of individual 

components that successively weakens the power system and could result in electrical instability 

and large-scale blackouts and they originate from strong interdependencies inside the grid. 

Massive economic and social impacts of such events have motivated a great deal of research effort 

on studying the vulnerability of the power grids to CFs. Transmission line overload due to 

contingency is the most common initial cause of CFs in power systems. 

Renewable energy integration and power system deregulation may drive the electric grid closer to 

its operational limits and introduce a large amount of uncertainty coming from their stochastic 

nature that changes the grid’s dynamic performance. One worrisome change is the increase in CFs 

involving wind farms [1]. Therefore, it is becoming more and more crucial to study the impact of 

these changes on the risk of CFs leading to blackouts. Henneaux et al. studied the impact of thermal 

effects on the risk of blackout for increased wind farms [53]. Authors in [56] proposed an online 

assessment system to evaluate, analyze and predict the CFs of a group of wind farms timely and 

effectively. Cascading tripping out of numerous wind turbines in China is analyzed in [57] to 

identify important factors contributing to the failures. Khazaei et al. in [58], [59] proposed 
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renewable energy aggregation to reduce the impacts of uncertainty on the network. Scala et al. in 

[60] found that the presence of fluctuations due to erratic renewable sources and customer demands 

increase the instability within an isolated segment of a power grid. However, none of these studies 

has evaluated the impacts of increased uncertainty injected from wind generation on the grid 

vulnerability to CFs in the complex interconnected power networks. 

In this chapter, we analyze the dynamics of the grid during cascading failure and study the impact 

of highly variable renewable generation has on the transmission flow process. 

3.2 Markovian model for cascading failure 

In the Markovian state-based model the power system is analyzed based on the state of its 

components such as transmission lines and transformers. During the CF the state of the system 

transitions from one state to another state as the lines get tripped. This transition is usually shown 

by the state graph. 

A) State graph 

The state graph shows all possible states for a system. It also shows the probability of transitions 

from one state to the other [80]. For example, the two states for a transmission line could be 

“closed” and “open” states. The transition from “closed” to “open” means line trip or failure and 

the reverse transition means reclosing or repair. 

In a Markovian process which is a continuous process, the future states depend only on the present 

state and not the past states [81]. The CF model proposed in [24] is based on Markovian process 

assumption for the cascade of failures in the power system. 
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B) Markovian model for cascading failure 

Authors in [24] proposed a conditional Markov transition model for cascading failures in power 

system which is able to indicate which part in the network will be under stress and therefore most 

likely to break down given current network conditions and states. In this model, the grid state is 

defined as a vector of line states (0 for open and 1 for closed), and lines will transition from one 

state to another based on the transition rate (i.e. probability of failure for transitioning from “1” to 

“0”). Also, in this model, the tripped lines could transition to state “1” due to relay reclosing 

actions.  

Next, by assuming a Gaussian assumption for line flow process, the authors connect the above 

Markovian transition model with line overloading and tripping mechanism to simulate the 

cascading failure in a power system. Note that, the power re-distribution after each line trip is 

calculated based on power flow analysis. 

3.3 Cascading failures simulation 

Cascading failures simulation has been the subject of research in the past two decades. Since 

cascading failures happen rarely in power systems, there is still little knowledge about their 

underlying causes and promoting factors. Therefore, researchers have come up with various 

simulation models to investigate different aspects of this phenomenon to reveal the weakness of 

the grid and potentially recommend remedial actions. There are many different models in the 

literature that each has its own advantage and disadvantage and is suitable for a special application.  

The research on CF in the literature mainly focuses on modeling and analysis to assess the blackout 

risk for a given network [32]. There exist two major approaches in simulating CF including 
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dynamic transient models [33]–[38] and quasi-steady state (QSS) models [2], [24], [39]–[47] each 

have advantages and disadvantages. 

As discussed in the literature review in the dynamic models, the dynamic components, such as 

rotating machines, exciters, and governors, as well as all protective components of the system 

along with their dynamic behavior, are modeled using differential equations. The computational 

burden and numerical failure in solving differential equations are disadvantages of these models. 

QSS models rely on the steady-state assumption for the system where the flow re-dispatch of the 

network is calculated based on power flow (PF) analysis. The main difference among QSS models 

is the choice of the PF model they incorporate in their simulation. Most of the QSS models use 

DC approximation due to its fast and guaranteed convergence to calculate redistribution of flow 

after line trips. However, this comes at the expense of assuming flat profiles for voltage and thus 

being unable to capture voltage-related failures. Full ACPF is also incorporated in several QSS 

models however, the convergence of ACPF is a challenging issue especially when many lines go 

offline during the escalation of CF. 

3.4 Uncertainty analysis for line flow 

Uncertainties coming from different sources such as renewable generation and loads show 

different characteristics in terms of magnitude and frequency of occurrence. This work adopted an 

uncertainty model proposed in [82] that represents the injection power from each component (i.e. 

generator output power and load demand power) with two terms as shown in (14). 

 𝑃(𝑡) = 𝜇𝑃(𝑡) + 𝜖𝑃(𝑡) (14) 
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where 𝜇𝑃(𝑡) is the time-varying mean of the power signal or in other words it is what we expect 

to have for each component ahead of time and 𝜖𝑃(𝑡) which is a zero mean signal, representing the 

uncertainty that may come from forecast error or mismatch in output power for conventional 

generators. Note that in this study, the output power of generators including conventional and wind 

generation and demand power from loads are modeled with the above representation. Figure 11 

shows this representation for output power signal of a wind generator as an example. 

 

Figure 11. Uncertainty representation and characterization based on its frequency components and PDF for a selected wind 

generator 

3.4.1 Normality verification for line flow 

In the line outage model presented in the next section, the line overload distance is calculated based 

on the Gaussian assumption for line flow uncertainty as proposed by the authors in [24]. Authors 

in [24] assume Gaussian or normal distribution for the line flows without accounting for wind 

generation uncertainty in the network. Therefore, it is of interest to verify this assumption for the 

line flows of a grid with high penetration of wind energy with the uncertainty model proposed 
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earlier. This enables us to calculate the overload distance for the line flows which will be later used 

in the line tripping model. The IEEE 300 bus system with 411 transmission branches and several 

added wind generators is selected to implement the proposed uncertainty model and investigate 

the normality assumption for the line flows. 

The initial observations on the line flows uncertainty distributions reveals a close proximity to 

normal distribution. There is numerous approach for normality test in the literature each suitable 

for different needs. Kurtosis and Skewness coefficients are used widely for normality test for large 

samples as many other tests such as Kolmogorov-Smirnov test, Jarque-Bera test, and Shapiro-Wilk 

test almost always reject the null hypothesis of the normal distribution for large samples. This is 

because when the number of samples gets larger, even the smallest deviation from perfect 

normality will lead to a significant result. Kurtosis is a measure of whether the data are heavy-

tailed or light-tailed relative to normal distribution. Skewness is a measure of symmetry, or more 

precisely, the lack of symmetry. A perfect normal distribution would have both kurtosis and 

skewness coefficients equal to zero. However, in [83], [84] the ±2 range for these measures are 

introduced as the acceptable range in order to prove normal univariate distribution. We will use 

this range in the verification step. 

The absolute value for both measures are calculated for flows of all 411 lines in the IEEE 300 bus 

system and then sorted in ascending order. Figure 12 shows the results for the line flows 

uncertainty kurtosis and skewness. Kurtosis coefficients are sorted in ascending order and the 

corresponding skewness coefficients are superimposed in the figure to consider both measures 

simultaneously. It is found that 95% of the lines have kurtosis and skewness coefficients less than 

5 with 85% (349 lines) within an acceptable range of 2. This means that the majority of lines satisfy 
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the normality criteria with a trivial deviation from a perfect normal distribution. Table III 

summarizes the results of the normality test for grid lines based on kurtosis measure. It is also 

found that 59% of the lines that are outside of the acceptable bound (with coefficient larger than 

2) are connected directly to generation buses as shown in Table III. The statistical analysis on line 

capacities for the actual grid data from the Federal Energy Regulatory Commission (FERC) 

suggests that these lines tend to have larger loading margin compared to other lines. Hence, their 

overload probability is relatively low. It implies that we can use Gaussian assumption for the line 

flows in the line outage model considering the fact that the lines with larger coefficients will not 

frequently get tripped and don’t have much impact on the proposed stochastic model. 

 

Figure 12. The IEEE 300 bus system line flow uncertainty normality test results. 

Table III. Summary of normality verification for IEEE 300 system line flows 

 Total 

Count 

Generation 

connected  

Load 

connected  

Connection 

Normal lines 349 49 (14%) 199 (57%) 101 (29%) 

Out of normal bound lines 62 37 (59%) 20 (33%) 5 (8%) 

Total 411 86 (21%) 238 (58%) 87 (21%) 
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4 Proposed DC cascading failures model 

In this chapter, the cascading failures model proposed based on DC power flow is introduced. The 

assumptions made for model development and flow process estimation will be discussed. The 

simulation results based on the proposed method will be presented and the impact of high 

penetration of wind energy as a common form of renewable energy will be examined based on the 

proposed DC model and single N-2 contingency. 

4.1 AC and DC power flow models 

The power flow problem is the computation of voltage magnitude and phase angle at each bus in 

a power system under balanced three-phase steady-state conditions. As a by-product of this 

calculation, real and reactive power flows in equipment such as transmission lines and 

transformers, as well as equipment losses, can be determined. For a power grid with N nodes, the 

nodal equations for a power system network enforced by Kirchhoff’s law are written as 

 𝑰 =  𝒀𝑏𝑢𝑠𝑽 (15) 

where  𝑰 is the N vector of source currents injected into each bus and 𝑽 is the N vector of bus 

voltages, and 𝒀𝑏𝑢𝑠 is the network admittance matrix. Then, the complex power delivered to bus k 

can be written as 𝑆𝑘 = 𝑃𝑘 + 𝑗𝑄𝑘 = 𝑉𝑘𝐼𝑘
∗, 𝐼𝑘

∗ being the conjugate of the injected current at bus k. By 

taking the real and imaginary parts of the power balance equation and doing some simplifications, 

the nonlinear power flow equations are given by 

 
𝑃𝑘 = 𝑉𝑘 ∑ 𝑌𝑘𝑛

𝑁

𝑛=1
𝑉𝑛 cos(𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛) = 𝑃𝐺𝑘

− 𝑃𝐷𝑘
 

(16) 
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 𝑄𝑘 = 𝑉𝑘 ∑ 𝑌𝑘𝑛

𝑁

𝑛=1
𝑉𝑛 sin(𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛) = 𝑄𝐺𝑘

− 𝑄𝐷𝑘
 (17) 

where 𝑆𝐺𝑘
= 𝑃𝐺𝑘

+ 𝑗𝑄𝐺𝑘
 is the generation and 𝑆𝐷𝑘

= 𝑃𝐷𝑘
+ 𝑗𝑄𝐷𝑘

 is the load demand at bus k. 

These nonlinear power balance equations are solved using iterative methods such as the Newton-

Raphson algorithm [75]. 

The DCPF approximation is a standard approach widely used in the literature for assessing line 

overloads without the need for solving the full AC equations. The DCPF assumes flat voltage 

profiles for the entire network and neglects the reactive power. It also assumes that the angular 

separation across any transmission line is small enough so that sin(𝜃𝑖 − 𝜃𝑗) ≈ 𝜃𝑖 − 𝜃𝑗 . These 

assumptions lead to the linearization of Eqs. (16) and (17) that can be solved without the need for 

iterative approaches.  

4.2 Tripping mechanism 

Here we present the proposed tripping mechanism that allows for consideration of uncertainty 

injected from highly variable renewable energy sources. The proposed method consists of 

stochastic line overloading model and thermal overloading relay simulation. 

4.2.1 Stochastic line overloading model 

Based on the adopted uncertainty model presented in chapter 2, we present each power signal in 

the network (e.g. injected power and line flow) with two terms accounting for time-varying mean 

and uncertainty. Next, with a Gaussian assumption for the distribution of 𝐹𝑙(𝑡) in  [24] we can 

estimate the overloading probability of lines and ultimately derive an average overloading time 
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that will be used in the proposed tripping mechanism combined with the thermal balance of 

overhead lines. The following equations show the process to obtain average overloading time 

based on the model presented in [24] 

 𝜌𝑙(𝑡) ≅ 𝑄(𝑎𝑙) (18) 

 𝑎𝑙 =
𝐹𝑙

𝑚𝑎𝑥 − 𝜇𝐹𝑙
(𝑡)

𝜎𝐹𝑙
(𝑡)

 (19) 

Where 𝜌𝑙(𝑡) is the overloading probability, 𝑎𝑙 is the normalized overload distance of the lth line 

and Q-function as 𝑄(𝑥) = ∫ 𝑒
−𝑡2

2⁄ /(√2𝜋)𝑑𝑡
∞

𝑥
. 𝜇𝐹𝑙

(𝑡) is the average flow at time 𝑡 and 𝜎𝐹𝑙
(𝑡) is 

the variance of the flow process at time 𝑡. Finally, using the normalized overload distance (𝑎𝑙) and 

overloading probability (𝜌𝑙) for each line we can calculate the mean overload time for flow process 

𝐹𝑙(𝑡) as follows [24]: 

 𝜏�̅�
𝑢 =

2𝜋𝜌𝑙𝑒𝑎𝑙
2/2

𝐵𝑊𝑙
 (20) 

where 𝐵𝑊𝑙 is the equivalent bandwidth of the flow process for the lth line and can be calculated 

using the spectral power density (SPD) of the flow process discussed earlier [82]. 

4.2.2 Thermal overloading relays 

The trip time of thermal overload relays is determined based on the maximum allowable current 

flowing in the conductor without causing thermal instability. Generally, the overload relays for 

HV transmission lines have time-dependent tripping characteristic, which is determined using the 

well-known dynamic thermal balance between heat gains and losses in the conductor [85]. The 
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maximum or hot spot temperature determines the time to trip for thermal relays and considering 

initial operation current and applying necessary changes, the time to trip can be calculated using a 

variation form of the tripping mechanism introduced in [86] in which we replace the current with 

the flow measured in per unit value assuming a flat voltage profile V=1.0 p.u. across the whole 

network, which is valid for the DC flow analysis. 

 𝑡𝑡𝑟 = 𝑇𝑡ℎ. ln (
𝐹2 − 𝐹𝑜𝑝

2

𝐹2 − 𝐹𝑚𝑎𝑥
2) (21) 

where 𝐹 is overloaded line flow (p.u.), 𝐹𝑜𝑝 is initial operating flow (p.u.), 𝐹𝑚𝑎𝑥 is the line flow 

threshold, and  𝑇𝑡ℎ is thermal time constant which is related to conductor type and environmental 

parameters such as wind speed and ambient temperature [87]. In this study, it is assumed that all 

transmission lines use typical HAWK (477 kcmil) ACSR conductor with 𝑇𝑡ℎ=450 sec. 

In the proposed CF models, for the tripping mechanism, both relay time to trip and overloading 

probability are considered simultaneously to select the most probable line trip during the escalation 

phase of CF. At every time step, first, the time to trip for each overloaded line is calculated, then 

using normalized overload distance (𝑎𝑙) and overloading probability (𝜌𝑙) the mean overload time 

(𝜏�̅�
𝑢) is determined. If relay time to trip is larger than the mean overload time, the trip timer is set 

to zero, otherwise, the trip timer is set to the relay time to trip. This tripping mechanism enables 

us to model the stochastic process of CF and identify the most probable path for its propagation. 

After every line trip, the topology of the grid changes and so as the flow distribution across the 

grid network. Therefore, some new lines may become overloaded and some of the overloaded lines 

may not be overloaded anymore. Therefore, an update of line states after every line trip in the relay 
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tripping time is necessary. The time to trip of each overloaded transmission line is determined 

according to (14) and then after every line outage, the time to trip for other overloaded lines are 

updated. Note that updating stage for trip time considers the overload duration for each relay from 

the first overloading instant. In other words, the relay model is with memory, since the overloaded 

lines are already heated up due to excess power flowing through them and the new time to trip 

accounts for the gained heat. This concept is illustrated in Figure 13. 

(a) 

 

(b) 

 
Figure 13. Memory effect in relay time to trip calculation: a) line flows for 3 different lines, b) relay time to trip for the 

corresponding lines 

Figure 13 (a) shows the power flow of three different transmission lines each overloaded initially. 

The time to trip for each relay is shown in Figure 13 (b). According to the tripping mechanism 

explained earlier, after the first trip (𝑡 = 𝑇𝐴) all other relays need to update their timers. With 

memory effect assumption for relay operation, the new time to trip for relay C is 𝑡1
𝐶

𝑡𝑟
. Note that 
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this updated time to trip is smaller than that of memoryless operation (�́�1
𝐶

𝑡𝑟
). Also note that for 

relay B, the overload flow at 𝑡 = 𝑇𝐴 is larger than initial overload flow at 𝑡 = 0, hence the new 

time to trip is smaller while the overload flow for relay C at 𝑡 = 𝑇𝐴 is smaller than initial overload 

flow at 𝑡 = 0 which means larger time to trip. However, for both cases with memory effect for 

relay operation, the new time to trip equals the time to trip calculated by Eq. (21) minus the total 

time duration from the first overload instant till the updating time. 

4.3 Island detection and power balance 

Successive line tripping during the escalation phase of CF usually causes the formation of several 

islands in the power network. The electrical frequency of the system is driven based on the power 

balance according to the well-known electro-mechanical equation [88] 

 ∑ 𝑃𝐺𝑒𝑛 − ∑ 𝑃𝐿𝑜𝑎𝑑 = 𝐻. 2𝜋
𝑑𝑓

𝑑𝑡
 (22) 

where  ∑ 𝑃𝐺𝑒𝑛 is the total produced power, ∑ 𝑃𝐿𝑜𝑎𝑑 is the total consumed power, 𝐻 is the global 

inertia, and 𝑓 is the electrical frequency of the system. The frequency in power systems is 

considered a global parameter and cannot be influenced by a small section. However, when a part 

of the network becomes islanded, the inertia and the load balance depend only on generators and 

loads inside the island where shedding actions may be necessary. Therefore, it detecting the formed 

islands during cascading failures process is a critical component of a CF simulation model that 

allows to model the corrective actions that is likely to take place in the real time operation of power 

systems. 

4.3.1 Island detection method 
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An automatic island detection algorithm inspired by the approach proposed in [88] is used after 

each trip to identify newly formed islands. Clusters of the generator(s) and the load(s) that are not 

connected to the grid are called island(s). The algorithm consists of three steps; connectivity check, 

critical events identification, and island identification. Connectivity check determines how many 

islands are present in the power system, and their structure. Critical event detection identifies 

which breakers should create an island if opened. And the final step, island detection, identifies 

the buses belonging to each possible island and calculates their load balance. The actual dispatch 

of the network is not required for the algorithm since it only depends on gird topology (grid 

incidence matrix 𝐴) and generators location. Assuming the resistance for all lines in the network 

equal to 1 Ω and using the Kirchhoff’s current and voltage laws, the equations describing system 

behavior are solved. To detect buses belonging to each island, generators are activated (assuming 

output current of 1 A) one at a time. After identifying all present separate islands in the grid, their 

power balance is maintained by shedding actions. For detailed island detection algorithm please 

refer to [88]. 

4.3.2 Power balance algorithm 

In the power balance algorithm for any island, the total load and total generation capacity are 

compared to each other. If the total demand exceeds the maximum available generation, some load 

shedding is necessary to maintain the power balance. Similarly, if total demand is smaller than the 

current generation, one or several generation units should drop their generation. The flow chart of 

the automatic power balance algorithm is shown in Figure 14. Suppose that there are k separate 

islands in the grid at 𝑡 = 𝑡0. If a line trip at 𝑡 = 𝑡0 + ∆𝑡 results into the formation of a new island, 

it is necessary to run the power balance algorithm for both newly formed island and the mother 
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island that it separated from. Therefore, the power balance algorithm will balance the generation 

and load for the two clusters for the next power flow solution. 

 

Figure 14. Flow chart of the power balance algorithm for newly formed islands in the power grid 

The power balance algorithm starts with collecting generation and load settings of the two new 

islands. The bus type vector for each island is defined as 𝑺 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑚} where 𝑠𝑖 ∈ [0,1]. For 

each bus 𝑠𝑖=1 represents a generation bus and 𝑠𝑖=0 is either load or connection bus. If there is no 
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generation bus in each island (∑ 𝑠𝑖=0), the total cluster is de-energized and the algorithm will cut 

the total load of the island. Otherwise, a comparison is made between the total load and the total 

generation and maximum available generation to balance the power accordingly to minimize the 

total load loss. Note that generation or load adjustment is distributed meaning that balancing 

adjustment is applied as a percentage to every generator or load. 

4.4 Line flow process estimation 

The most critical parameter in the simulation of cascading failure path and impact is the line flow 

process. The accurate estimation of the line flow process will have a big impact on overall grid 

vulnerability evaluation under different operating conditions. Moreover, the high level of 

uncertainty injected from renewable energy generation will directly affect the line flow estimation. 

Because of the nature of the random nature of renewable energy generation as well as the 

uncertainty coming from electrical load prediction, the line flow process can be considered as a 

random variable with variable mean and covariance. Earlier we assumed a Gaussian model for this 

random variable and showed that given the mean and covariance matrix, we can estimate the 

overloading status of the line during cascading failure. Therefore, the estimation of line flow means 

the estimation of its statistical parameters, mean and covariance. In this section, we will discuss 

how the flow process is estimated for DC and AC cascading failure model. 

4.4.1 Line flow process based on DC power flow 

The linear property of DCPF allows us to express the statistics of the flows as a linear function of 

the statistics of the operating conditions. If time-varying mean and covariance of the injected 

power are written as: 
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 𝜇𝑃(𝑡) = [
𝜇𝑔(𝑡)

−𝜇𝑙(𝑡)
],   Σ𝑃(𝑡, 𝜏) = [

Σ𝑔𝑔(𝑡, 𝜏) Σ𝑔𝑙(𝑡, 𝜏)

Σ𝑙𝑔(𝑡, 𝜏) Σ𝑙𝑙(𝑡, 𝜏)
] (23) 

then, the line flows mean and covariance are [24]: 

 𝜇𝐹(𝑡) = √𝑦𝑡 (�̃�𝑡
𝑇

)
†

𝜇𝑃(𝑡) (24) 

 Σ𝐹(𝑡, 𝜏) = √𝑦𝑡 (�̃�𝑡
𝑇

)
†

Σ𝑃(𝑡, 𝜏)(�̃�𝑡)
†

√𝑦𝑡 (25) 

where √𝑦𝑡 = 𝑑𝑖𝑎𝑔{√𝑦𝑙(𝑡)} is the diagonal entries of the square matrix of line admittances and 

�̃� = √𝑦𝐴 with 𝐴 the line-node incidence matrix. Here (. )† represents pseudo inverse [24]. 

The variance for the flow process of each line can then be calculated by taking square root of each 

diagonal element in the covariance matrix with 𝜎𝐹𝑙
(𝑡) = √Σ𝐹𝑙,𝑙

(𝑡, 0). 

4.5 Mixed OPF-stochastic DC CF model 

In this section, the simulation results based on the proposed mixed OPF-stochastic DC CF model 

are presented. Also, based on a single N-2 contingency simulation in a standard 300 bus system 

with different wind integration scenarios, the preliminary analysis of the impacts of penetration of 

renewable energy on grid vulnerability will be evaluated. 

4.5.1 Cascading failure simulation with the DC model 

Three different scenarios are considered to study the impact of wind uncertainty on grid 

vulnerability and for each of them, some of the conventional generators in the original IEEE 300 

bus system are replaced with wind farms. In the first and second scenarios 11 conventional 
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generators are replaced with wind generators at buses 80, 88, 125, 128, 156, 199, 222, 256, 258, 

262, 295. In the third scenario, 6 conventional generators are replaced with wind farms. In this 

scenario, as the wind generator capacity increases the capacity of the corresponding conventional 

generator on the bus decreases proportionally to maintain a fixed total generation capacity. The 

load and generation data are received from the Electric Reliability Council of Texas (ERCOT) 

with 4-second sampling rate. The high sampling rate for data allows us to capture high-frequency 

dynamics of different sources. These data are for numerous wind generators, load demand, and 

different types of conventional generations. In this study, fossil fuel generators and co-generation 

are used as conventional generation and load data are scaled according to the original settings of 

the IEEE 300 bus system. Uncertainty modeling of loads and generations are based on the model 

proposed earlier in chapter 2. The Autoregressive Moving Average (ARMA) forecasting technique 

is employed to model the initial uncertainty signal coming from wind generation and electrical 

loads based on the actual data. The increased uncertainty level models the use of different 

forecasting techniques and horizons with different accuracy and characteristics and illustratively 

shows how the accuracy of the forecasting method affects the results. Simulations of the CF 

scenarios are performed in the MATLAB environment and MATPOWER is used for OPF and PF 

calculations [89]. Wind installation settings are shown in Table IV for the three studied scenarios. 

Note that wind generation capacity is selected the same as the IEEE-300 bus system original setting 

for conventional generators in first and second scenarios. 
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Table IV. Wind generation locations for simulation scenarios 

 Penetration level Wind generation location (bus number) 

First scenario 𝜶 = 0.036 
𝐴={80,88,125,128,156,199,222,256,258, 

262,295} 

Second 

scenario 
𝜶 = 0.2 𝐵={98,120,170,215,249,265} 

Third scenario 

𝜶 = 0.036 𝐴ሖ= 𝐴 

𝜶 = 0.05 𝐴ሖ={ 𝐴,69} 

𝜶 = 0.09 𝐴ሖ={ 𝐴,69,131,169} 

𝜶 = 0.105 𝐴ሖ={ 𝐴,69,131,169,254} 

𝜶 = 0.125 𝐴ሖ={ 𝐴,69,131,169,254,260} 

𝜶 = 0.150 𝐴ሖ={ 𝐴,69,131,169,254,260,215} 

𝜶 = 0.173 𝐴ሖ={ 𝐴,69,131,169,254,260,215,248} 

𝜶 = 0.223 𝐴ሖ={ 𝐴,69,131,169,254,260,215,248,122,255} 

Forth scenario 

𝜶 = 0.0 𝐵={98,120,170,215,249,265} 

𝜶 = 0.1 𝐵={98,120,170,215,249,265} 

𝜶 = 0.2 𝐵={98,120,170,215,249,265} 

𝜶 = 0.3 𝐵={98,120,170,215,249,265} 

The initial operating equilibrium and conditions (𝐺(0), 𝐿(0), 𝜃(0), 𝐹(0)) are taken or derived from 

the power flow solution. The equivalent bandwidth of the flow process for each line under the 

initial uncertainty level is then calculated and stored to use later on stochastic tripping mechanism. 

Since the original setting of the IEEE 300 bus system does not provide enough information on line 

capacities, they are set as 𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝜂|𝐹(0)|, 2.0(𝑝. 𝑢. )} with 𝜂=1.20. Here we take 𝐹(0) as 

the rational flow distribution under normal operating conditions and assume that the line capacity 

allows a load increase up to 20% [24]. Note that we select a near congestion operating conditions 

for the grid to better see the impact of increased uncertainty from wind generation on multiple line 

overloads leading to CFs. The minimum of line capacity is set to be 2.0 p.u. so that the vibration 

in the lines which usually carry small flows will not cause frequent line trips. 

A) Wind uncertainty level and grid vulnerability 
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The first and second scenarios are considered to study the impacts of forecasting relative error 

which comes into the picture in the form of uncertainty from wind generation. For the first 

scenario, the uncertainty signal magnitude for the wind generator is increased by factor 𝛾 =
𝜖𝑤

𝑛𝑒𝑤

𝜖𝑤
𝑖𝑛𝑡  

where 𝜖𝑤
𝑛𝑒𝑤 is the new uncertainty of wind power and 𝜖𝑤

𝑖𝑛𝑡 is the initial uncertainty. 

In the first scenario to see the impact of larger forecasting errors on grid vulnerability to overload 

CFs, 𝛾 is increased from 1 to 5 with 0.25 steps to find the uncertainty level in which the first CF 

occurs. All other settings of the system remains the same during the first scenario. Table V shows 

the results for increased wind uncertainty level in the first scenario. 

Table V. Cascading Failure results for the first scenario: wind uncertainty level 

𝜸 

Total 

trip 

count 

# of 

formed 

islands 

Total 

LS a 

(MW) 

LS a (%) First tripped line b Second tripped line b 

2.00 0 0 0 0.0 - - 

2.25 0 0 0 0.0 - - 

2.50 68 18 7941 32.0 365 @ 54.7 205 @ 55 

2.75 70 19 8344 33.6 99 @ 44.8 205 @ 44.9 

3.00 71 19 8496 34.2 117 @ 44.8 207 @ 44.9 

3.25 72 20 8966 36.1 365 @ 44.6 205 @ 45 

3.50 74 21 9135 36.8 117 @ 30.4 205 @ 30.5 

3.75 75 21 9397 37.8 115 @ 29.2 205 @ 29.3 

4.00 80 22 9749 39.2 365 @ 29.2 205 @ 29.4 

4.25 83 23 10005 40.3 365 @ 28.2 205 @ 28.3 

4.50 83 23 10092 40.6 205 @ 24.9 117 @ 25.1 

4.75 83 24 10495 42.3 365 @ 15.8 205 @ 16.1 

5.00 86 25 10665 43.0 99 @ 15.6 205 @ 15.7 
aLoad Shedding 
bLine number @ time (min) 

For 𝛾 between (1-2.25), there is no tripped line thus no CF happens for this uncertainty range. 

Moving beyond 𝛾=2.25 multiple line overloads are observed that leads to a series of CFs that forms 

multiple islands and isolated buses. Automatic power balance on each island causes the load to be 

dropped to a certain level that can be supplied by generators inside the island. Successive line trips 
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continue until all line flows drop safely below line thresholds. Also, the first and second tripped 

lines and their respective times are given to identify the most vulnerable lines in the network for a 

given wind uncertainty. 

𝛾 is increased further to see the impacts of even larger uncertainty levels on the severity of CF. 

Figure 15 shows the total number of tripped lines and total load shedding percent for different 

wind uncertainty levels in the first scenario. As the 𝛾 increases, the more lines get tripped during 

CF which in turn leads into the formation of more islands and larger load shedding as shown in 

Figure 15. 

 

Figure 15. The total number of line trips and total load shedding versus uncertainty level (γ) for the first scenario 

The evolution process of CFs for different wind uncertainty level is shown in Figure 16 for the 

first scenario. All the curves are comparable to actual failures recorded in history and reported in 

[22]. Each evolution curve consists of two phases, the escalation phase in which the line trip rate 

is as high as 12 lines per minute, and the damping phase with line trip rate of approximately one 

line per minute. Also, it is found that as wind uncertainty level increases, the first trip happens 

earlier than lower wind uncertainty level which indicates that the minimum safety time of the entire 
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network decreases under the same operating conditions. For example, the black bold line shows 

the cumulative number of line trips for uncertainty level increased by a factor of 5. As compared 

with uncertainty level increased by factor 2.5 (green line with square marker), the former results 

into a higher number of tripped lines due to the high level of wind uncertainty. Also, high 

uncertainty level causes contingency in multiple lines earlier compared to lower uncertainty levels. 

For example, the earliest cascading process is associated with the highest uncertainty level, 𝛾=5, 

as indicated in Table IV and happens after 15 minutes of the beginning of the simulation, which 

implies that as more uncertainty is injected to the grid, its survival time gets shorter. 

 

Figure 16. The evolution process of CFs for different wind uncertainty levels for the first scenario 

For the second scenario, 6 wind generators are installed on the network accounting for 20% 

penetration ratio. Note that for this scenario, the total generation capacity of the grid before and 

after installation of the wind generators are the same. Next, a single N-2 contingency applied to 

initiate CF under various levels of wind uncertainty. Figure 17 shows the total number of tripped 

lines and total load shedding percent for different wind uncertainty levels in the second scenario. 

The total load shedding is almost the same for wind uncertainty level increased by up to 3.5 fold. 
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However, the load shedding dramatically increases as the wind uncertainty level increases by 4.5 

fold. The same pattern is visible for the number of line trips with various wind uncertainty level.  

 

Figure 17. The total number of line trips and total load shedding versus uncertainty level (γ) for the second scenario 

The evolution process of CFs for different wind uncertainty level is shown in Figure 18 for the 

second scenario. As we increase the wind uncertainty level, the line trips happen earlier before 

applying N-2 contingency. For the highest uncertainty level, 𝛾 = 4.5, the cascading trips escalades 

very quickly and propagates to a larger portion of the grid. 

 

Figure 18. The evolution process of CFs for different wind uncertainty levels for the second scenario 
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B) Wind penetration level and grid vulnerability 

The third and forth scenarios aim to investigate the impacts of increased penetration level of wind 

energy on grid vulnerability to cascading overload failures. For these scenarios, wind penetration 

ratio is defined as 𝛼 =
∑ 𝑃𝐺,𝑤𝑖𝑛𝑑

𝑚𝑎𝑥

∑ 𝑃𝐺,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 , where ∑ 𝑃𝐺,𝑤𝑖𝑛𝑑

𝑚𝑎𝑥  is the total wind generator capacity and ∑ 𝑃𝐺,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥  

is the total grid generation capacity. For the third scenario, by replacing more conventional 

generators from the original setting of the network with wind generators in addition to those 

already installed, 𝛼 is increased to see the impacts of higher wind penetration on grid vulnerability. 

Note that small to medium generators are selected to be replaced with additional wind farms to 

have smaller steps for 𝛼. All other settings of the system remains the same. 

The results for increased wind penetration for the third scenario are shown in Table VI. Starting 

from initial 𝛼=0.036, there are no line trips until 𝛼=0.09 where line 137 gets tripped at minute 2. 

To see further impacts of higher wind penetration, 𝛼 is increased to 0.223 by replacing more mid-

size conventional generators with wind generators. Figure 19 shows the total number of trip lines 

and load shedding for each penetration level 𝛼 for the third scenario. It is found that the higher the 

wind penetration ratio, the more line trip and load shedding occurs in the network. In other words, 

given the same settings for all other generations and loads of the network, under congestion 

conditions in the network, installing more wind farms increases the risk of blackout due to 

cascading overload failures. 
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Table VI. Cascading failure results for the third scenario: wind penetration level 

𝜶 Total trip 

count 

# of formed 

islands  

Total LS a 

(MW) 

LS a 

(%) 

First tripped line b Second tripped line b 

0.036 0 0 0 0 - - 

0.05 0 0 0 0 - - 

0.09 68 20 8149 33 137 @ 2 101 @ 3.8 

0.105 72 21 10156 41.1 137 @ 2 274 @ 3.8 

0.125 75 23 10701 43.3 137 @ 2 83 @ 2.7 

0.15 81 24 10890 44 137 @ 2 83 @ 2.5 

0.173 94 27 11650 47.2 137 @ 2 83 @ 2.4 

0.223 98 30 13958 56.5 137 @ 2 274 @ 2.3 
aLoad Shedding 
bLine number @ time (min) 

 

Figure 19. The total number of line trips and total load shedding versus wind penetration level (α) for the third scenario 

It is also observed that for all CFs beyond 𝛼=0.09, line 137 is the first line getting tripped and it 

happens almost at the same time for all 𝛼 above 0.09. This could be explained considering the 

location of the new wind farm installation.  A certain wind farm added to the network at a particular 

location injects additional uncertainty to one of the backbone transmission lines in the network 

leading to further line trips and propagation of CFs. However, the second line trip is different for 

each penetration level which determines the cascading path and eventually the total number of 

trips and load shedding. This is particularly interesting for planning purposes, since this will detect 

the most vulnerable lines of the network. 
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The evolution process of CFs for the third scenario is shown in Figure 20 for each penetration 

level. The triggering event for every one of them is the same, however, due to a different level of 

uncertainty coming from wind generation, each failure evolves into a different path. This 

potentially identifies the weakest backbone line of the network according to the new configuration 

of wind generators. For example, the black bold line shows the cumulative number of line trips for 

9% wind penetration level where starts nearly 5 minutes after the simulation start and stabilizes at 

minute 28. While increasing wind penetration to 22.3% (green line with square marker) results 

into higher tripping rate, as large as 20 lines per minute during escalation phase of cascading 

failure, and the more total number of tripped lines. 

 

Figure 20. The evolution process of CFs for different wind penetration levels in the third scenario. 

For the forth scenario, the wind penetration ratio, 𝛼, increases from 0 up to 0.3 by increasing the 

capacity of installed wind generators and reducing the capacities of conventional generators 

proportionally. This scenario is designed to examine the case where the installation locations are 

fixed while the penetration increases. A single N-2 contingency initiates the cascading failure in 

the simulations. The results for increased wind penetration for the forth scenario are shown in 
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Table VII. Starting from 𝛼 = 0, no cascading event happens in the grid and consequently no load 

shedding results at the end of simulation. As the capacity of wind increases, more lines get tripped 

and more load shedding occurs in the grid at the end of the simulation. Note that, for all wind 

penetration levels, a same N-2 contingency is applied to the grid at the same time to initiate the 

cascading failure. 

Figure 21 shows the total number of trip lines and load shedding for each penetration level 𝛼 for 

the forth scenario. Similar to the third scenario, it is found that the higher the wind penetration 

ratio, the more line trip and load shedding occurs in the network.  

Table VII. Cascading failure results for the forth scenario: wind penetration level 

𝛂 Total trip 

count 

# of formed 

islands 

Total LSa 

(MW) 

LS (%) First tripped 

lineb 

Second 

tripped line 

0 7 3 0 0 88 @ 4 194 @ 4 

0.1 43 8 50.70 0.20 88 @ 4 194 @ 4 

0.2 49 12 2231 9.07 88 @ 4 194 @ 4 

0.3 116 26 4638 18.86 88 @ 4 194 @ 4 
aLoad Shedding 
bLine number @ time (min) 

 

Figure 21. The total number of line trips and total load shedding versus wind penetration level (α) for the forth scenario 
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The evolution process of CFs for the forth scenario is shown in Figure 22 for each penetration 

level. The triggering event (N-2 contingency) for every one of them is the same, however, due to 

a different level of uncertainty coming from wind generation, each failure evolves into a different 

path. As can be seen from the figure, the increased wind penetration results into more tripping 

event and consequently more islands will be formed in the network as shown in Table VII. 

 

Figure 22. The evolution process of CFs for different wind penetration levels in the forth scenario 

C) Overload distance analysis during cascading failure 

As mentioned earlier, the overload distance of line flows can be a good indicator of the behavior 

of the power grid during normal operation and CF. The Mahalanobis overload distance (𝐷𝑚) 

shows the overload distance of the whole network and considers the correlation between line flows 

using flow covariance matrix, while the Euclidian overload distance (𝐷𝑒) assumes no correlation 

among the line flows and considers them as independent random variables. Figure 23 shows both 

𝐷𝑚 and 𝐷𝑒 during normal operation of the system (without an increase in wind uncertainty) and 

CF resulting from increased wind uncertainty by the factor 𝛾=4.5. 
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Figure 23. Mahalanobis and Euclidian overload distance during normal and CF in the IEEE 300 bus system. 

From Figure 23 we can see that Mahalanobis overload distance (𝐷𝑚) is always greater than 

Euclidian overload distance (𝐷𝑒) either for normal operation or during the CF. This verifies the 

fact that in an actual power network, the line flows have a strong correlation with each other that 

causes a more robust and reliable operation compared to independent line flows. The first line trip 

happens at 𝑡=25 min. From 𝑡=0 to first tripping instant 𝐷𝑒 is smaller for the case leading to CF. 

This is because of increased wind uncertainty compared to normal operation. In other words, 

increased uncertainty in line flows results into smaller overload distance and consequently higher 

chance for CF in the power system. Another interesting finding is that both 𝐷𝑚 and 𝐷𝑒 show an 

increasing trend as line tripping spreads throughout the grid. This is because of the load shedding 

actions to maintain power balance for newly formed islands in the network. As more generation 

units are separated from formed islands, larger portions of electrical loads get curtailed which 

means a reduction in line flows and according to 𝑎𝑙 =
𝐹𝑙

𝑚𝑎𝑥−𝜇𝐹𝑙
(𝑡)

𝜎𝐹𝑙
(𝑡)

 the overall distance of line flows 

from their threshold increases. This also explains why all CFs tend to stop after several line trips 

if appropriate load shedding mechanisms were employed in the operation and control of the grid. 



 

59 

  

4.5.2 Discussion on the results of the DC model 

Two scenarios are considered to study the impact of wind generation uncertainty on CFs using the 

DC proposed model. First, it is found that increased uncertainty injected from wind generation 

could cause cascading failures in the grid and the higher the injected uncertainty the more severe 

the situation in terms of the total number of tripped lines and load shedding. Second, our analyses 

show that given the current operating condition of the grid, increasing wind penetration to a certain 

level may result in cascading overload failures and higher penetration makes the grid more 

vulnerable to failures. In addition, overload distance of the network as a measure of grid safety to 

CF is analyzed for normal and contingency operating conditions. Simulation results suggest that 

appropriate management of uncertainties via energy storage or advanced forecasting techniques is 

necessary in order to achieve sustained growth of renewable generation in current grid operation. 

Despite all the advantages that DC approximation of power flow offers (e.g. fast and guaranteed 

convergence of power flow problem), we are not able to simulate and evaluate the voltage-related 

failures during cascading failure with this model. The voltage related failures could potentially 

play a significant role in determining the ultimate outcome of a cascading failure event and thus, 

the results obtained using DC model might not reflect the true impact of renewables on grid 

vulnerability. For example, in [90] the impacts of intermittent RE resources on voltage dynamics 

is investigated. In another work in [91], authors study the effects of higher and lower penetration 

of distributed wind generation on the voltage dynamics in a faulted system. The effects of replacing 

conventional generation by wind and solar generation on the grid voltage performance are 

examined in [52] and the issues resulting from such generation alteration are identified. These 

studies suggest that variability of RE generation can have a big impact on voltage dynamics 
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therefore, the DC model might underestimate the severity of CF due to its flat voltage profile 

assumption.  

Therefore, our next step is to enhance the proposed CF model by incorporating the full AC power 

flow model to acquire voltage profiles and simulate under/over voltage relays during CF. Another 

enhancement that we will make on the proposed methodology involves determining the location 

of the integration of renewables based on actual GIS information of the test system and renewable 

growth potential maps.
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5 Enhanced cascading failure model based on AC power flow 

In this chapter, several enhancements on the proposed mixed OPF-stochastic CF model that has 

been presented in the previous chapter will be made. The enhancements come in the form of a) 

revising the way renewable energy resources are being integrated to the grid, b) incorporating full 

AC power flow model instead of DC approximation, and C) implementing under/over voltage 

relays to capture voltage related failures during a cascading failure event. 

5.1 Modeling integration of renewable energy resources 

The renewable generation accounts for 50% of the U.S. new energy installation capacity with the 

wind energy ranking second after hydropower in terms of percentage of total generation. It is 

critical to systematically evaluate the impacts this shifting in energy portfolio would have on grid 

vulnerability. In the DC model presented in the previous chapter, the spatial correlation of installed 

wind generators has been neglected and it was assumed that every new wind installation randomly 

replaces a conventional generator in the original setting of the network. In this paper, a 

methodology for more realistic modeling of wind penetration to the bulk energy systems (BES) by 

integrating geographical information of the network topology and wind installation potential for a 

given geographical area is proposed. The wind energy as a form of renewable energy resource will 

be used in our analyses that has the potential to be integrated into the grid in larger scales, thus 

having a more significant impact on grid operation. Other forms of renewable energy resources 

such as photovoltaic will have a similar impact considering its random nature and uncertainty in 

output power. 
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To accurately model wind penetration to BES, one should take into account the land potential of 

wind capacity to simulate the probable generation expansion planning scenarios in the near future. 

In other words, wind potential capacity maps such as the ones published by National Renewable 

Energy Laboratory (NREL) can give useful insights on the probable location and capacity of the 

future wind farms integrating to the existing grid (Figure 24) [92]. The potential wind capacity 

map shows land area with a gross capacity factor of 35% and higher, which may be suitable for 

wind energy development. AWS Truepower produced the wind resource data with a spatial 

resolution of 200-m, which was binned into 20-km grid cells. Map shading shows the amount of 

area with the potential to be developed within each 20-km cell: the darker the color, the larger the 

potentially developable area within each cell. These maps exclude areas that cannot be used for 

development (e.g. wilderness, urban areas, etc.) Potential wind capacity maps are provided for a 

2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current 

technology options. 

 

Figure 24. South Carolina 110-meter potential wind capacity map combined with ACTIVSg500 synthetic network [32], [33]. 
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Using the potential wind capacity map and geographical information of the grid topology, we can 

determine the possible point of integration for potential wind farms. For this, we calculate the 

direct distance of each potential area from all substations of the grid. Then we choose the closest 

substation within a predefined radius of the area, say 20 km. Note that, this radius depends on 

various economic and technical parameters and is worthy of more investigation. Now, we have a 

potential area and substation pairs for the given network. Next, we sort the list of potential areas 

based on their maximum potential wind power (MW) installation capacity (Table VIII). 

Table VIII. Potential MW of wind integration for substations 

Substation ID Potential MW of Wind Candidate Buses 

4 695 [8;7;9] 

8 629 [20;19] 

151 596 [373;372;371] 

79 552 [190;189] 

67 505 [159;158] 

Inside every substation, there are multiple buses that can be selected as the point of coupling for 

wind farms. For this, we exclude load buses and select either generation or connection buses. Note 

that for the sake of consistency, we select buses with the same nominal voltage level throughout 

this process. The candidate buses for South Carolina 500-bus synthetic network are highlighted in 

Table VIII. 

The one-line diagram of ACTIVSg500 network which is a synthetic power system model that does 

not represent the actual grid is superimposed on wind potential map for South Carolina in Figure 

24. The ACTIVSg500 is developed as part of the ARPA-E Grid Data research project and contains 

no Critical Energy/Electric Infrastructure Information (CEII) [93]. Figure 25 shows the part of the 

network with a high concentration of wind farms. As an example to demonstrate the proposed 
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methodology we selected the top four locations to install wind farms. These locations are marked 

with green rectangles inside red circles. 

 

Figure 25. Location of four substations with integrated wind farms 

5.2 Mixed OPF-stochastic AC CF model 

Aside from high computational burden and non-convergent scenarios in ACPF, the direct 

estimation of the flow process for stochastic modeling of overloading relay is not possible due to 

the nonlinear relationship between injected power and line flow as random variables. Therefore, 

there is a need for a new methodology to estimate flow process statistics for AC model given the 

time-varying mean and covariance of the injected power to the grid. 

The Unscented Transformation (UT) method calculates the statistics of an output random variable 

undergoing a set of nonlinear transformations (e.g. ACPF) and has been applied to probabilistic 

power flow problem and state estimation [94], [95]. This chapter presents a novel CF model where 

the UT method is recursively used to calculate time-varying mean and covariance of the flow 
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process in full ACPF for stochastic overloading relay simulation under uncertain generation. We 

call the proposed model AC Unscented Transform (ACUT). The incorporation of ACPF 

constraints makes it possible to simulate voltage related failures during the cascade of the failures 

by implementing under-voltage load shedding (UVLS) relays. 

5.2.1 Line flow process based on AC power flow 

In the stochastic CF model in [42], we define the line flow as a random variable in the form of 

𝐹𝑙(𝑡) = 𝜇𝐹𝑙
(𝑡) + 𝜖𝐹𝑙

(𝑡). 𝜇𝐹𝑙
(𝑡) is a the time-varying mean of the flow process which is 

deterministic and 𝜖𝐹𝑙
(𝑡) is a zero mean component that has the same temporal (and spatial) 

covariance as the flow and can be assumed Gaussian within some small time window [𝑡0, 𝑡0 + 𝑇] 

[24]. According to (24) and (25), the DCPF enables us to directly model 𝜇𝐹𝑙
(𝑡) from the time-

varying mean of the injected power to the buses, 𝜇𝑃(𝑡), which can be estimated with forecasting. 

However, the linearity of the power flow equations does not hold true for full AC model, thus the 

direct estimation of flow mean from injected power is not valid. Next, we propose a novel approach 

to estimate the mean and covariance of the flow process based on the same statistics of the injected 

power with nonlinear ACPF equation based on the UT method. In the proposed approach, the 

active power for loads and wind generators are assumed to be random variables while the reactive 

power is assumed to be a function of the active power by means of randomly selected power factors 

within a pre-defined range (e.g. 0.9 to 0.95). 

5.2.2 Unscented transform 

The UT was developed to overcome the demerits associated with linearization process techniques 

and is applied to different uncertain problems with satisfactory performance [96]. The UT method 
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calculates the statistics of an output random variable undergoing a set of nonlinear transformations. 

Because it is easier to approximate a probability distribution than an arbitrary nonlinear function. 

The UT method produces appropriate samples of the input variables with sufficient information to 

accurately estimate the statistics of the output variable(s). Assume that 𝑷 is the vector of n random 

variables of the injected power (loads and wind farms) with �̅�(𝑡) = 𝜇𝑃(𝑡) as the mean and 𝚺𝑷𝑷(𝑡) 

as the covariance. If 𝑭 = 𝜓(𝑷) is the line flows where 𝜓 is the nonlinear ACPF functions, then 

the mean and covariance of 𝑭, �̅�(𝑡) and 𝚺𝑭𝑭(𝑡), respectively can be obtained through the following 

steps. For each time step t: 

1) Obtain 2n+1 samples of 𝑷 called sigma points using: 

 𝑝𝑡
0 = 𝜇𝑃(𝑡) (26) 

 𝑝𝑡
𝑘 = 𝜇𝑃(𝑡) + (√

𝑛

1 − 𝑊0
𝚺𝑷𝑷(𝑡))

𝑘

,    𝑘 = 1,2, … , 𝑛 (27) 

 𝑝𝑡
𝑛+𝑘 = 𝜇𝑃(𝑡) − (√

𝑛

1 − 𝑊0
𝚺𝑷𝑷(𝑡))

𝑘

,    𝑘 = 1,2, … , 𝑛 (28) 

2) Calculate the weights associated with each sigma point using the following: 

 𝑊0 = 𝑊0 (29) 

 𝑊𝑘 =
1 − 𝑊0

2𝑛
,    𝑘 = 1,2, … ,2𝑛 (30) 

Note that the associated weights must meet the following condition: 

 ∑ 𝑊𝑘

2𝑛

𝑘=0

= 1 (31) 
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(√(𝑛 1 − 𝑊0⁄ )𝚺𝑷𝑷(𝑡))
𝑘
in (7) and (8) is the kth row or column of matrix square root of 

((𝑛 1 − 𝑊0⁄ )𝚺𝑷𝑷(𝑡)). The matrix square root of positive definite matrix 𝑿 means that there is a 

matrix 𝒀 = √𝑿 such that 𝑿 = 𝒀𝒀𝑻 and it is calculated using numerically efficient and stable 

methods like Cholesky decomposition [96]. 𝑊0 controls the location of the points around the mean 

of 𝑷. 

3) Obtain the line flow sample points by feeding the sigma points to the nonlinear ACPF function: 

 𝐹𝑡
𝑘 = 𝜓(𝑷𝑡

𝑘) (32) 

Note that, 𝑷𝑡
𝑘 is the kth sample of the injected power vector, 𝑷, with 𝑘 = 0,1, … ,2𝑛 + 1 at time t 

calculated by eqs. (6), (7) and (8). It must be emphasized that in the UT method, the nonlinear 

function is considered as a black box; hence, no simplification or linearization is necessary. 

4) Ultimately, the mean and covariance of flow variable 𝑭 is calculated using: 

 �̅�(𝑡) = ∑ 𝑊𝑘𝐹𝑡
𝑘

2𝑛

𝑘=0

 (33) 

 𝚺𝑭𝑭(𝑡) = ∑ 𝑊𝑘(𝐹𝑡
𝑘 − �̅�(𝑡))

2𝑛

𝑘=0

(𝐹𝑡
𝑘 − �̅�(𝑡))

𝑇
 (34) 

In the UT method, the sample points are not selected randomly, rather they are chosen so that they 

have a predefined mean and covariance. This leads to an accurate estimation of statistics of the 

output variable. 

5.2.3 Flow uncertainty modeling based on ARMA technique 



 

68 

  

The stochastic overloading line tripping mechanism introduced in the previous chapter is based on 

modeling the uncertainty of line flow process. In order to accurately model the line flow 

uncertainty, it is necessary to model the uncertainty in generation and loads. The injected power 

to the grid is modeled as 𝑃(𝑡) = 𝜇𝑃(𝑡) + 𝜖𝑃(𝑡) where 𝜇𝑃(𝑡) is the mean of the injected power and 

can be modeled as the forecasted wind generation or load. The Autoregressive Moving Average 

(ARMA), a widely used technique in time-series analysis, is used to model the 𝜇𝑃(𝑡) and 𝜖𝑃(𝑡) as 

discussed earlier in chapter 2. 

To capture the fast dynamics of the flow process and analyze the impacts of highly variable wind 

generation, actual load and wind generation data with a 4-second sampling rate is used in the 

simulation. Such high-resolution data along with the highly variable nature of wind generation 

cause the ARMA model to be unstable if it is constructed based on the original time-series. 

Therefore, it is necessary to smooth out the time-series before estimating ARMA model parameters 

for each forecasting step. The smoothing is performed by sliding window averaging with width T 

(e.g. T=15). The ARMA(p,d,q) with d being the differencing order is used to forecast and model 

time-varying mean and uncertainty of the injected power. Figure 26 shows the time-series of a 

select wind farm output power and ARMA forecasting with (p,d,q) = (3,1,0). At each step, using 

M=30 previous observations, the ARMA parameters are estimated and the next sample is 

forecasted. Performing estimation and forecasting recursively, the time-varying mean of the 

injected power is modeled as shown in Figure 26. The forecasting error and its associated 

bandwidth are also shown in Figure 26. The ARMA forecast results into zero mean error with a 

variance of 3.37 MW. 
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Figure 26. Time-varying mean and uncertainty modeling of a select wind farm using ARMA(3,1,0) with M=30 and T=15 

5.2.4 Non-convergent AC power flow 

Even after enforcing power balance for the islands formed in the network, the AC power flow may 

not converge. This is one of the challenges of incorporating AC power flow calculation in CF 

simulation and could be due to various reasons. Following discusses two of the most probable 

reasons for non-convergent AC power flow and the actions taken to address the situation. 

 AC power flow does not converge if the system load exceeds the steady-state loading limit: 

The steady-state loading limit is determined from a nose curve where the nose represents the 

maximum power transfer that the system can handle given a power transfer schedule. To determine 

the steady-state loading limit, the basic power flow equations 

 𝑔(𝑥) =  [
𝑃(𝑥) − 𝑃𝑖𝑛𝑗

𝑄(𝑥) − 𝑄𝑖𝑛𝑗] = 0 (35) 

are restructured with a scaling factor 𝜆 as: 
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 𝑓(𝑥, 𝜆) = 𝑔(𝑥) − 𝜆𝑏 = 0 (36) 

where 𝑥 ≡ (Θ, 𝑉𝑚), the vector of system state variables (i.e. voltage phase angles and magnitude), 

and 𝑏 is a vector of power transfer given by 

 𝑏 =  [
𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑖𝑛𝑗
− 𝑃𝑏𝑎𝑠𝑒

𝑖𝑛𝑗

𝑄𝑡𝑎𝑟𝑔𝑒𝑡
𝑖𝑛𝑗

− 𝑄𝑏𝑎𝑠𝑒
𝑖𝑛𝑗

] (37) 

where  𝑃𝑏𝑎𝑠𝑒
𝑖𝑛𝑗

 and 𝑄𝑏𝑎𝑠𝑒
𝑖𝑛𝑗

 are injected real and reactive power for the base case, respectively (usually 

set to zero), and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖𝑛𝑗

 and 𝑄𝑡𝑎𝑟𝑔𝑒𝑡
𝑖𝑛𝑗

 are target injected real and reactive power, respectively that 

for our case is the current dispatched power for the non-converged PF. The effects of the variation 

of loading or generation can be investigated using the continuation power flow (CPF) by 

composing the b vector appropriately [21]. To check if this is the case, we run a CPF that gradually 

increase the loading/generation. If the resulting scaling factor (𝜆𝑚𝑎𝑥
𝑐𝑝𝑓

) associated with the maximum 

loading the system can handle is less than 1, it indicates that the load for the case exceeds the 

steady-state loading limit, and loads must be scaled down at least by a factor of 𝜆𝑚𝑎𝑥
𝑐𝑝𝑓

 to get a 

convergent power flow solution. 

 The Newton-Raphson algorithm is sensitive to the initial guess: 

In the proposed model, the power flow is solved for each island using the current system state (i.e. 

voltage magnitudes and angles) as the initial guesses for the Newton-Raphson (NR) algorithm. If 

the PF does not converge, then an OPF is run for the island with voltage constraints relaxed. This 

can sometimes help find a new equilibrium for the system and calculate the new voltage profiles. 

Note that here the reactive power limits are imposed and if no solution within the generator limits 

can be found then the island will be flagged as total shut down. Also note that in the current model, 
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the switched shunts are not modeled and the simulations are for the network with all fixed shunts 

in service. 

Figure 27 shows the flowchart of non-convergent power flow handling in the simulation of ACUT 

cascading failure model. As explained above, the first step when the power flow does not converge 

is to run a CPF to check if the load has exceeded the steady-state loading limit. If after this step, 

we still have a non-converged PF, we try to generate a new initial guess for the NR algorithm. At 

this stage, we create a loop that incrementally drops the load and runs an OPF to finally achieve a 

converged solution. The load shedding resulting from this step will be attributed to voltage-related 

failures since it is the voltage that constraints the problem. 

 

Figure 27. Flowchart of non-convergent power flow handling in CF simulation 
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5.3 Comparison of flow process with different models 

Here we investigate how different assumptions and power flow models affect the estimation of 

line flow process in a power grid network. The ACTIVSg500 synthetic network is used for all 

power flow and CF simulation in this chapter. 

The time-varying mean of the flow process, 𝜇𝐹(𝑡), is estimated for AC and DC power flow models. 

For the DC model, the linear property of the power flow equations results into the direct estimation 

of 𝜇𝐹(𝑡) and Σ𝐹(𝑡, 𝜏). While for the AC model the linear assumption is not valid anymore and the 

UT method is utilized to estimate the 𝜇𝐹(𝑡) and covariance of the flow process. For the sake of 

comparison, 𝜇𝐹(𝑡) is also calculated assuming linear relationship for ACPF. As a ground truth, 

𝜇𝐹(𝑡) is also estimated using ARMA technique introduced earlier. The analysis is performed for 

two different wind penetration levels to investigate the impact of higher generation variability on 

the estimation of flow process. Figure 28 shows the flow process of a select line in ACTIVSg500 

case. 

(a) 
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(b) 

 
Figure 28. Flow process of line 426 for different models with a) 5% and b) 35% wind penetration level 

Figure 28 (a) shows the flow process with 5% wind penetration level. The wind penetration level 

𝛼 is defined as 𝛼 = ∑ 𝑃𝑤 ∑ 𝑃𝑡𝑜𝑡⁄  where 𝑃𝑤 is the installed wind power capacity and 𝑃𝑡𝑜𝑡 is the total 

generation capacity of the grid. In Figure 28 (a) the 𝜇𝐹(𝑡) estimated with both UT method (purple 

dotted line) and linear assumption for ACPF (solid red line) is close to the reference 𝜇𝐹(𝑡) obtained 

with ARMA modeling (yellow dashed line). However, as the wind penetration increases to 35% 

the 𝜇𝐹(𝑡) estimated with the linear assumption for ACPF shows a large difference from the true 

mean with an average of 100 MW difference while the 𝜇𝐹(𝑡) estimated with UT method still gives 

a close value to the true mean of the flow process (Figure 28 (b)). This confirms that as the 

penetration of wind generation to the grid increases the nonlinearity of ACPF emerges more 

evidently in the estimation of the flow process and the need for a statistical tool like UT can be 

justified. Note that the selected line is one of the inner branches of the grid carrying injected power 

from multiple wind farms. For both penetration levels, the 𝜇𝐹(𝑡) calculated with DCPF shows a 

big difference from the true mean which is due to neglecting line loss and other simplifications 

made in the model. This demonstrates the necessity of full ACPF model incorporation for accurate 

estimation of the flow process in the simulation of CF in power grids. Table IX shows the 



 

74 

  

realization of flow uncertainty in the same selected line for different models. Similar to 𝜇𝐹(𝑡), the 

estimation of flow uncertainty, 𝜖𝐹(𝑡), with the UT method generates accurate results compared to 

the ground truth. While, the DC approximation clearly results into a non-zero mean signal with 

erroneous bandwidth estimation. For the higher wind penetration levels, both DC and AC with 

linear assumption provide an erroneous estimation of the 𝜖𝐹(𝑡) both in variance and bandwidth. 

Figure 29 shows the uncertainty of the selected line and its associated bandwidth calculated using 

the UT method. As assumed in the proposed stochastic overloading model, the flow uncertainty is 

a zero mean signal. 

Table IX. Estimated flow uncertainty based on different models 

Model 5% wind penetration 35% wind penetration 

 Variance BW Mean Variance BW Mean 

ARMA 12.8 108 -0.08 131 109 -0.09 

UT 11.4 107 0.24 127 108 -0.69 

DC 11.6 25.9 16.26 916 32.3 39.23 

AC (linear) 11.5 107 0.24 924 17.3 67.31 

 

Figure 29. Line flow uncertainty and bandwidth for the selected line modeled with the UT method 
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5.4 Simulation of CF based on the ACUT model 

In this section, cascading failure simulations under three N-2 contingency scenarios to evaluate 

the performance of the model and assess the blackout size are presented. We will show how the 

incorporation of AC power flow model can result in different vulnerability evaluation by enabling 

us to simulate and perform under/over voltage load shedding during the escalation phase of 

cascading failures. Figure 30 shows the flowchart of the simulation procedure based on the ACUT 

model. In this figure, the colored blocks represent developed algorithms to successfully implement 

AC power flow in cascading failure simulation. 

 

Figure 30. Flowchart of simulation procedure with ACUT model 
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5.4.1 N-2 contingency simulation results 

In this section, the new proposed framework for grid vulnerability studies on a 500-bus synthetic 

power grid with 597 branches called ACTIVSg500 [93] is evaluated. The ACTIVSg500 is chosen 

because it offers detailed information on grid data including transmission line rate A capacities 

and geographical information of network substations which is based on the footprints of South 

Carolina. To illustrate the effectiveness of the proposed CF modeling with all discussed 

enhancement, three N-2 contingency scenarios are considered to study the overall grid 

vulnerability and performance of the relays. For all scenarios, four wind farms are installed in the 

buses identified in section 5.1, which corresponds to about 5% wind penetration to the grid. Table 

X shows the maximum wind capacity (MW), installation factor, and rated power of installed wind 

farms. Installation factor is defined as the fraction of potential wind capacity installed at each 

location. 

Table X. Characteristics of installed wind farms at ACTIVSg500 synthetic network 

Bus number 
Max wind 

potential (MW) 
Installation 

factor 
Rated power of wind 

farm (MW) 
8 695 0.15 104.25 
19 629 0.15 94.35 

372 596 0.18 107.28 
189 552 0.20 110.40 

Note that in the new time-delayed overload real implementation, tripping multiple lines at one 

instance is possible because of the memory operation of the relays. Therefore, the state of the 

system and probability of a line to get tripped depends both on the current state of the system as 

well as its past states. In other words, the proposed CF model is not a Markovian process anymore. 

Table XI shows the size and statistics of three N-2 contingency scenarios. As expected, the more 

line outage happens in the network the more islands are formed and consequently the more load 

shedding becomes necessary to maintain the power balance of each island. This is not necessarily 
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true for UVLS though. For the second scenario, we have a total of 348 MW UVLS which is larger 

than both other scenarios. This is due to the independent operation of under-voltage relays which 

are triggered by a certain threshold for every voltage profile. 

Figure 31 shows the evolution process of the three scenarios and the total load shedding for them. 

All three curves are comparable with typical cascade evolution curves recorded in history in terms 

of rate of the outage. They usually consist of a slow start, the escalation phase, and settlement. 

However, sometimes after one or two line outage, the escalation phase starts (scenario 1). The 

impact of time-delay model for overload relay is visible in the evolution curve of the second 

scenario where at 𝑡 = 20 we see a pause in trips but when the timer for multiple overloaded lines 

reaches zero, the second escalation phase starts (𝑡 = 36). 

Table XI. Results of three N-2 contingency scenarios for different models 

N-2 Contingency Model Total trip count 
# of formed 

islands 
Total 

LS (%) 
Total UVLS 

(MW) 

Scr1:{95,231} 

ACUT 62 16 48.7 326 

Linear 

AC 
28 6 21.9 74.6 

DC 10 3 2.03 0 

Scr2:{63,231} 

ACUT 51 12 44.6 348 

Linear 

AC 
26 6 21.9 74.6 

DC 8 3 2.03 0 

Scr3:{193,234} 

ACUT 41 7 38.2 38 

Linear 

AC 
53 13 62.9 49 

DC 11 4 8.20 0 
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Figure 31. The evolution process and total load shedding percent of CFs for different scenarios based on the proposed model 

Figure 32 demonstrates the performance of the UVLS relay during CF. At around minute 14, due 

to a line trip in the network, the voltages on bus 418 and bus 341 start to drop. When the voltage 

drops below the UVLS relay activation threshold (0.87 p.u.) the relay starts to shed the load on the 

two buses by 25% for each time step to recover the voltage. After about 30 seconds, the load on 

bus 418 drops to 4.8 MW which helps boost the voltage to 0.88 p.u. Then, the UVLS stops load 

shedding. However, for bus 341, the load shedding continues until all the load on the bus is shut 

down before boosting the voltage above the threshold. 
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Figure 32. Voltage and load profiles for two select buses during failures 

This is an example of a condition during CF where voltage related failures lead to further load 

shedding in order to maintain voltage stability of the network and prevent voltage collapse. 

Obviously, this condition could not be simulated based on the DC model and this confirms that 

the DC CF models may underestimate the severity of blackouts for real scenarios.
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6 Validation of the proposed ACUT model 

In this chapter, first it is emphasized why it is important to validate and benchmark the proposed 

cascading failure models and then choosing one of the available options for benchmarking, the 

performance of ACUT model will be compared with a number of existing and accepted CF models 

in the literature under fair comparison settings. 

6.1 Introduction 

Cascading failures are typically triggered by one or more disturbance events, such as a set of the 

transmission line or generator outages. Triggering events can result from a variety of exogenous 

threats, such as earthquakes, weather-related disasters, hidden failures, operator errors, and even 

deliberate acts of sabotage. The dependent outages in a cascade can result from a wide variety of 

different mechanisms including thermal overloads, voltage instability, and angular instability [32]. 

Because the resulting blackouts can be large and costly, utilities are increasingly required by 

reliability regulators to systematically study and manage the cascading outage risk in their system. 

In response to increasing regulations and several large cascading blackouts [98]–[100], a growing 

number of tools are being developed in industry and academia to address this analysis need. Given 

that these tools are increasingly being used to make large investment decisions, and the critical 

importance of managing the risk of massive cascading blackouts, it is important that cascading 

failure analysis tools be tested to ensure that they provide accurate and useful information. Doing 

so requires verification (ensuring that tools perform correctly), validation (checking the accuracy 

of the results), and benchmarking (a systematic, reproducible validation procedure). 
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A) Definitions 

Benchmarking is a process for measuring the performance of a tool, such as a software program 

or a business process, using a trusted procedure and/or dataset, in a way that allows one to 

compare the performance of one tool to another [101]. 

Cascading failure analysis is a relatively immature power systems application area due to many 

uncertainties and challenges of CF simulations. This is not the case with well-known analysis line 

power flow problems. Therefore, there exist a few benchmarks for CF analysis. Benchmarking 

essentially mean validation and verification of a method [102]. Verification means we check that 

tool that if it solves the problem that it is intended to solve. Validation, on the other hand, means 

checking the system and its answers to make sure they are accurate according to some set of criteria 

[103]. Benchmarking is the combination of these two processes to create reproducible results and 

comparing different approaches with each other. 

The following are a few examples of benchmarking approaches: 

1. Checking for internal validity. In the internal validation, we check the degree of consistency of 

the assumptions of a model with reality. Internal validation determines which set of assumptions 

are in line with reality and which are likely to produce misleading results [101]. 

2. Comparing simulation results with real data. In the case of CF due to various thresholds for 

different actions like tripping lines, it is very hard to get similar results as in real system or even 

similar results on an actual system for different conditions. One model may decide to trip a line 

under certain circumstance while others may decide not to, which will affect the overall grid 

vulnerability evaluation. Therefore, it is very difficult to obtain the exact same results from models 
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compared to the actual system however, we can alleviate this by engineering judgment and 

comparing the statistics of CF instead of their exact sequence of events [101]. 

3. Comparing the performance of one tool with another tool (cross-validation). This is one of the 

more established benchmarking technique where we compare different models with each other and 

finding their similarities and differences [101]. 

4. Checking for reproducibility. It is important that a tool produces the same results with the same 

assumptions and data for multiple runs. Due to the randomness factor incorporated in many CF 

models, their results will be somewhat different for each run. Therefore, we need to find an optimal 

number of simulations to make sure that the results are dependable [101]. 

5. Sensitivity analysis. It is important to check how the results change with change in various input 

parameters. This way, we can identify those parameters that have big impacts on the outcomes. 

6.2 Approaches to validating cascading failure simulations 

There is a measure of consensus in the power system engineering community to effectively 

validate well-understood problems, such as power flow and standard contingency analysis. We 

measure the extent to which models align with actual measurements. However, this type of 

consensus does not yet exist for cascading failure simulation and analysis [101]. 

The diversity of mechanisms involved in CF and the difficulty in their accurate modeling is one 

of the main reasons for this lack of consensus. However, given all the difficulties and challenges 

with the simulation of CF, following is the list of approaches that can be usefully employed for CF 

analysis validation. 
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1. Validation: Comparing Models to Real Data: One approach to compare models to real data is 

to compare simulated event sequences to historical cascade sequences. When we can reproduce a 

similar sequence of tripping events, it means that the proposed model is a good representative of 

the actual grid. However, it is not an indicator of the general validity of the model across all 

operating conditions, rather it shows that there is no big difference in the evolution of the cascade 

between the actual events and the model. 

Moreover, comparison of statistics of simulation which those of historical data is both feasible and 

easy. Indeed there are distinctive patterns in the observed statistics of historical cascading 

blackouts, which can be reproduced in simulators [104]–[107]. Therefore, we can run simulations 

for an appropriate sample size of initiating events and then calculate different statistics and 

compare them to those of actual events [108]. In this case, if there is a big gap between the 

simulation and actual results, we can say that the simulation model is not valid. Another useful 

statistical measure is the observed frequency of cascades of various sizes [101].  

2. Cross-Validation: Comparing Models to Each Other: Another practical benchmarking method 

is the comparison of CF results statistics for two or more models. This way, we can see the impact 

of certain modeling assumptions and check if a parameter variation results in a significant 

disagreement between the two models. In this case, there is a need for a more detailed analysis of 

that parameter. 

Based on the above discussions, we can list the following highlights that are important to notice 

when performing validation and benchmarking on the proposed cascading failure model: 

 The useful measures to consider when comparing statistics from a simulation with those of 

actual events and results of other models include line outages, load shed, and energy 
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unserved. Publishing the statistics of other quantities (for example, propagation or cascade 

spreading) is helpful too. 

 The simulation should clearly specify how the method samples from the potential operating 

conditions, initial faults, and the progress of the cascades. 

 We need to distinguish models that try to reproduce in detail features of certain historical 

events with those that aim to asses overall risk of CF in long-term planning studies. 

6.2.1 Data and test cases for the simulations 

In order to have common ground with the existing cascading failure models, it is necessary to 

employ power grid test cases that first of all are accurately modeled and a true representative of 

the system behavior and second of all include enough details to accurately model them for dynamic 

analysis of cascading failure. One of the critical parameters for cascading failure simulation is the 

transmission line threshold or thermal stability capacity. Another important set of data especially 

if one aims to study the voltage/var dynamics, is the dynamic model of generators and controllers 

employed in the system.  

Data: 

Following is the set of data that can be very useful for the validation and benchmarking process: 

1. Historical Blackout Size Data: The blackouts in North America since 1984 has been published 

by the North American Electric Reliability Corporation (NERC). These data indicate that there are 

approximately 13 very large blackouts (above ~ 300 MW) per year. The affected people and size 

of blackout in terms of MW load shed are reported in the NERC publications. These data are 

available on the Internet [109]. 
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2. Transmission Line Outage Data: Transmission owners in the USA are required to report higher 

voltage transmission line and transformer outage data to NERC for the Transmission Availability 

Data System (TADS) [101]. These data describe the details of component outages (e.g. time and 

cause) within NERC region. BPA offers more than a decade worth of data for transmission element 

outage [110]. We can find a way of validating cascading failure simulations by quantifying the 

line outages propagation in real data. 

3. Reports on Historical Outages: there are reports on actual outages in [98], [100], [111], [112] 

with many useful details. It helps with understanding the different and complex nature of 

mechanisms involved in actual cascading events. 

Power system test cases: 

As mentioned earlier, the power system test cases play an important role in the simulation of 

cascading failure. Since blackouts resulting from cascading failure are widespread, the size of the 

test case used for simulation needs to be large enough to accurately simulate the propagation of 

the cascades in the network. Another problem for many public test cases is the lack of coordinated 

line rating limits. There are some available sources for the test cases as listed below: 

1. Small, Publicly Available Test Cases: there exist a number of public test cases that were mainly 

developed to serve as the standard test cases for methodology benchmarking and performance 

evaluation. Some of these test cases are suitable for cascading failure analysis. 

2. Public Test Cases Based on Industry Data: there exist several test cases that either come with 

industrial power system analysis software or offered by some regulatory organization that 

sometimes needs a particular process in order to get access to them. The examples of these cases 
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are the New Brunswick (NB) Test System [113], the NETS-NYPS 68-Bus Test System [114], the 

MATPOWER Polish Test Cases [89], and WECC Reduced 200-Bus System [115]. 

3. Synthetic Power Networks: these power systems are designed to address the lack of access to 

accurate and detailed power system data for the research community due to security reasons. 

Examples of these test cases are the RT-nestedSmallWorld and ACTIVSg cases. 

6.3 Validation and benchmarking of the ACUT model 

In this section, the proposed model is compared with widely used CF models in the literature as 

well as historical data from real power systems. The benchmarking is based on the statistics of 

blackout size and total outage numbers. The benchmark includes DC OPA [2], AC OPA [43], 

Manchester model [44], and historical data from [116]. The AC OPA, DC OPA, and Manchester 

model data are from [117]. The CF simulations are performed on the standard RTS-96 3-area 

system model for AC OPA, DC OPA, and Manchester model and ACTIVSg500 synthetic grid is 

used for CF simulation of ACUT model. Table XII shows the details of the three systems used in 

validation procedure. 

Table XII. Comparison of the three systems used in validation [117] 

 ACTIVSg500 RTS-96 3-area Historical data (WECC) 

Number of buses 500 73 20131 

Number of branches 597 120 25156 

 The load shedding is reported as per unit of peak demand. For the proposed method, we simulated 

1000 randomly selected N-2 contingency scenarios with the same system state (i.e. same loading 

level and same line trip time) without any penetration of RE. 



 

87 

  

Figure 33 shows the distribution of load shed in the form of the survival function of data from the 

proposed method versus other methods in the literature. The survival function is equivalent to 1- 

(cumulative distribution function) and shows the probability that the demand loss is larger than a 

given value, given that the demand loss occurred in the system. The mathematical definition of 

survival function is given below: 

 𝑆(𝑡) = 𝑃({𝑇 > 𝑡}) = ∫ 𝑓(𝑢)𝑑𝑢 = 1 − 𝐹(𝑡)
∞

𝑡

 (38) 

where 𝑓(𝑢) is the probability distribution function of the demand loss and 𝐹(𝑡) is the cumulative 

distribution function (CDF) of the load shedding. 

Therefore, for all methodologies, the limit of this probability is 1 when demand loss approaches 0. 

The way in which the survival function decreases as blackout size increases shows the decreasing 

frequencies of large-scale blackouts. The figure is plotted on a log-log scale so that the smaller 

probabilities of the larger blackouts can be seen. 

 

Figure 33. Distribution of load shed for different CF models 
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As can be seen in Figure 33, the probability of load shed for historical blackout data declines 

roughly linearly on a log-log plot which means that the corresponding distribution is a “heavy-

tail” one. This implies that large blackouts are rarer than smaller blackouts, but not so rare that 

their risk is smaller. A similar linear pattern can be seen for other methodologies that employ 

ACPF including the proposed ACUT methodology. On the other hand, the DC OPA model shows 

a steep decline for the probability of large blackouts thus underestimating their probability of 

occurrence. This is because in the DC OPA methodology, the system does not have voltage 

stability issue, and loads can always be supplied by local generators, therefore the probability of a 

complete blackout is almost zero for this model. 

Figure 34 shows the distribution of the number of line outages in the CF data for different 

methodologies in the form of the survival function. It shows the probability that the total number 

of line outages is larger than a given value, given that at least one line outage occurred in the 

system. Therefore, this probability would be 1 when the number of line outages is 1. However, 

this is not the case for the historical data and the CF simulations for the proposed methodology in 

this paper, because they are multiplied by the ratio of the number of lines in the RTS by the number 

of lines in the real system for the historical data and ACTIVSg500 for our simulations. This makes 

it possible to compare the statistics for systems of different sizes. Again, the log-log plot helps to 

show the frequency of the larger cascades that are likely to be more consequential. 
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Figure 34. Distribution of the number of line outages for different CF models 

In Figure 34 the distribution of the number of line outages for historical data shows a linear decline 

on the log-log plot similar to the load shed distribution. The distribution of the number of line 

outages for the proposed model shows a similar linear decline with a knee point for larger blackouts 

meaning that wide-spread outages are less likely. The distribution for other methodologies is 

steeper though with lower probabilities for large numbers of outages. The comparison is limited 

not only by historical data being collected from systems different than the RTS and ACTIVSg500 

but also particularly by the larger size of real systems. The small size of the RTS could limit the 

cascading characteristics observed. This can also be observed by the fact that as the system size 

grows, the probability curve becomes more linear on the log-log plot. Note that the historical data 

is for the largest system and ACTIVSg500 with 597 branches is larger than the RTS-96 with 120 

branches. Note that the proposed model is simulated on ACTIVSg500 original setting with no 

renewables integrated into it. This is important in order to have a fair comparison with other models 

as they are simulated CF for a traditional power system with no RE integration. 
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As illustrated in Figure 33 and Figure 34 the ACUT model shows a comparable statistical pattern 

of blackout size to the actual grid and other existing AC models. This means that the proposed 

model performs acceptably for traditional vulnerability studies of power system with no RE 

penetration while it also allows for simulating a large set of MC simulations of CF in the presence 

of intermittent renewables. 
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7 Overall conclusions and future work 

7.1 Conclusions 

This dissertation made efforts to develop tools and models for cascading failures (CF) in the power 

system with the presence of intermittent renewable energy (RE) resources, which reveals the 

impact of wind energy penetration on the line flow and voltage dynamics. A time-domain 

statistical model was adopted for uncertainty injected from erratic renewables and electrical loads. 

Utilizing a set of high-resolution generation and load data from utility companies in North 

America, the dissertation analyzed and characterized a number of uncertainty sources based on the 

size and dynamics of its uncertainty. 

Next, using the adopted uncertainty model we developed a CF simulator based on DC 

approximation of power flows that allows preliminary vulnerability analysis considering RE 

penetration. This model uses a mixed OPF-stochastic method which enables us to see the impact 

of flow variation due to uncertainty injected from RE. It also incorporates the thermal relay 

operation mechanism to realistically simulate the cascade of line tripping events. 

The limitation of DC power flow in the calculation of voltage profiles prevents us from the 

simulation of voltage-related failures during CF that could potentially underestimate the severity 

of blackout resulting from CF in power systems. Therefore, this concern motivated us to make 

several enhancements to the model to simulate CF under more realistic conditions. One 

enhancement was on the method with which we increased RE penetration to the grid. In our initial 

model, we randomly replace the existing conventional generators with RE generators without 

taking into account the actual potential integration location. We considered more realistic 
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assumptions in the modeling of wind power penetration using geographical information of grid 

topology and wind potential map for a given geographical area which indicates the most probable 

point of interconnection for RE units. The second and most critical enhancement was the 

incorporation of the full AC power flow (ACPF) model in the proposed CF simulator. This has 

enabled us to simulate voltage-related failures during the escalation phase of CF by accessing the 

voltage profiles. Due to the non-linear property of ACPF, we also employed unscented transform 

(UT) to estimate line flow process statistics from injected power statistics. We call the enhanced 

model ACUT CF model. 

Finally, we have benchmarked ACUT model with historical blackout data as well as a number of 

existing CF models in the literature. The model generates comparable statistics of blackout size in 

terms of demand loss to existing methodologies and can successfully simulate under-voltage load 

shedding during the cascades. But the distribution of the number of line trips contains a big 

mismatch from historical data, especially in the heavy-tailed distribution. The comparison is 

limited not only by historical data being collected from systems different than the test cases used 

for CF simulations but also particularly by the larger size of real systems. The small size of the 

test system could limit the cascading characteristics observed. 

The work on the statistical analysis of actual power system data resulted in the identification of a 

set of key characteristic metrics of the power system network. Furthermore, a set of statistical 

analysis tools in MATLAB GUI-based application called GridStat Analysis Toolkit is developed 

based on synthetic grid modeling study. The developed toolkit is capable of performing statistical 

analysis on realistic and standard power system test cases in four categories of 1) Topological 

analysis, 2) Grid parameter statistics, 3) Voltage interdependence and 4) Grid scaling properties. 
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7.2 Future work 

This dissertation made preliminary efforts to develop tools and models for studying the impact of 

wind turbine (WT) penetration on grid vulnerability to CF. The next steps might be a) validation 

of the model’s accuracy, b) MC simulations of CF with various levels of RE penetration to evaluate 

grid vulnerability, c) enhancing the model by considering generator ramp rates constraint in OPF 

calculations and d) enhancing ACUT tripping mechanism. 

7.2.1 Validation of the model’s accuracy 

Although we made some efforts to validate the ACUT model by comparing the CF statistics in 

terms of demand loss and number of trips with other existing CF models in the literature and 

historical blackout data, the comparisons were limited. In order to fully validate the accuracy of 

the proposed model, it is necessary to consider other measures such as the line tripping rate, the 

number of resulted failures after each failure at different stages of CF, and the number of islands 

formed in the grid. Also, note that in order to have a fair comparison, it is necessary to simulate 

CF in a relatively large test case to match the size of the actual grid when comparing the statistics 

with those of historical data. 

7.2.2 Monte-Carlo simulations of CF based on the ACUT model 

In order to evaluate the impact of high penetration of RE on grid vulnerability, there is a need to 

run a large number of Monte-Carlo (MC) simulations of different N-1, N-1-1, and N-2 contingency 

to determine the scale of blackout resulting from CF. For this, it is recommended to replace 

conventional generators in a test system such as IEEE300, IEEE118, and a synthetic grid such as 
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ACTIVSg500 with RE generation units and trigger a CF by applying different contingency 

scenarios. 

Critical parameters that need to be taken into consideration are the location of integration of RE 

units, the number of RE units, and the penetration ratio or the total capacities of RE units. Another 

important factor that has to be considered is the total generation capacity of the grid before and 

after RE installation since this will have a significant impact on overall grid vulnerability and 

resulting load shedding after CF simulation. 

It is recommended to run MC simulations on different power system test cases with different 

characteristics. One particular factor is the loading level of a grid that could potentially have a 

huge impact when analyzing the grid vulnerability. Also, it is a good practice to simulate a given 

network under various loading level to take into account the seasonal effect on grid loading and 

make a comparison on the grid vulnerability under various scenarios. 

7.2.3 Generator ramp rate constraints in OPF calculations 

One critical assumption in the proposed model is that conventional generators in the grid are 

capable of absorbing the uncertainty injected by RE to the grid and maintain power balance at all 

time. In other words, we do not consider ramping constraints for conventional generators and this 

means that we assume infinite capability for the grid to absorb variation of injected power from 

RE resources. In the case of wind generators due to the actual inertia of wind turbines, a sudden 

big change of output power is not common. However, the solar PV farms are integrated to the grid 

via the use of power electronic devices such as inverters thus eliminating the traditional inertia of 

the generation. This means that the grid can experience a sudden big change of injected power 
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from big PV units due to cloud coverage for example. Therefore, it is necessary to consider the 

ramp rate of existing conventional generators of the system and design a new mechanism that can 

handle scenarios where the load power cannot be maintained due to high variation from RE. Table 

XIII shows the ramping capabilities for thermal units in three North American power systems. 

Table XIII. Thermal generator ramping capabilities in MW/min for three actual power systems [118] 

Measured Thermal Generation (MW/min) CAISO PJM WAPA 

Fastest unit MW/min ramp capacity (up/down) 8.6/-7.8 9.1/-8.9 2.4/-2.4 

Average unit MW/min ramp capacity (up/down) 1.6/-1.6 0.8/-0.8 0.6/-0.7 

Total capacity (up/down) 215/214 291/-306 17/-20 

Total simultaneous capacity (up/down) 168/-175 160/-288 9/-19 

Maximum used capability (up/down) 42/-66 54/-61 3/-6 

Based on data from Table XIII, if the rate of output power from RE is bigger than the total 

simultaneous ramping capacity of thermal units, it means that the power balance cannot be kept 

with current dispatch and there is a need for load shedding (or generation curtailment). It also can 

cause frequency deviation due to the power imbalance that can cause frequency relays to operate 

which can potentially result in further tripping actions. 

Therefore, in order to simulate a more accurate system behavior, it is recommended to incorporate 

generator ramp constraints into initial OPF as well as during cascading failure simulations. The 

challenge would be having a dynamic simulation step size instead of a fixed one accounting for 

fast dynamics of RE and slow response time of conventional generators.  

7.2.4 Enhancing the ACUT tripping mechanism 

The tripping mechanism in the proposed CF model is based on statistical estimation of the flow 

process for AC power flow and thermal relays operational scheme. In our simulations, we do not 

consider other protective schemes such as frequency relays and distance relays. 
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It is essential to thoroughly investigate the actual mechanism of power grid protection system to 

accurately simulate the line trips during CF. Particularly, the impact of flow process bandwidth on 

relay operation seems very interesting and critical in the evaluation of the true impact of RE 

uncertainty on grid vulnerability. 
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Appendix A: Synthetic grid modeling for vulnerability studies 

In this chapter, we perform a set of statistical analyses on transmission network parameters for the 

real-world power system to extract some validation and tuning metrics as well as some statistics 

to help us model the transmission lines accurately in grid vulnerability studies. This will also 

contribute to the “Synthetic Grid Modeling” project which is an ongoing effort to address the 

problem of limited access to actual grids in the research community. 

1.1 Introduction 

Synthetic power networks are emerging as a potential solution for the lack of test cases for 

performance evaluation in power system research and development. Generally, access to real data 

in critical infrastructure like power networks is limited due to confidentiality requirements. Utility 

companies and regulatory agencies don’t share such data and strictly limit access to actual power 

systems data for the public and researchers due to their sensitivity. On the other hand, it is 

important that new concepts and algorithms developed by researchers be evaluated in relatively 

large and complex networks with the same characteristics as actual grids so that they can be 

reproducible by peers. For example, authors in [119]–[121] have developed a new storage 

management and energy management algorithms which enable a bidirectional power flow from 

Microgrids to power networks that need evaluation with realistic grid topology and in [122] the 

proposed voltage control algorithm needs to be tested and verified on several realistic power 

system test cases. Since Synthetic power networks are entirely fictitious but with the same 

characteristics as realistic networks, they can be freely published to the public to facilitate the 

advancement of new technologies in power systems. 
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Development of efficient synthetic power system models requires that their size, complexity, and 

electrical and topological characteristics match with those of real power grids. Power networks are 

complex infrastructures with various components. In addition to topological characteristics of 

power networks, they include several components with different electrical characteristics such as 

different types of transformers, switched shunt reactive power compensation, remote tap changing 

bus voltage regulation, etc. Development of synthetic power networks with the same complexity 

that can simulate the exact behavior of actual grids needs a comprehensive study of different 

components from both electrical and topological perspectives. For example, authors in [123] used 

historical data and probabilistic methods for reliability assessment of the distribution system. Also, 

the increasing level of renewable generation in power systems has introduced an unprecedented 

level of uncertainty into grids [124]. In the literature, many studies are dedicated for characterizing 

actual power networks mainly from topological perspectives such as ring-structured power grid 

developed in [125] and tree-structured power grid model to address the power system robustness 

[26], [126]. Small world approach described in [127] served as a reference for the works of [28], 

[128], [129] to develop an approach for generating truly synthetic transmission line topologies. A 

random topology power network model, called RT-nestedSmallWorld, is proposed in [129] based 

on comprehensive studies on the electrical topology of some real-world power grids. The impacts 

of different bus type assignments in synthetic power networks on grid vulnerability to cascading 

failures are investigated in [130]. 

In [93] the authors presented a substation placement method and transmission lines assignment 

from real energy and population data based on methodology introduced in [131], [132]. The 

proposed methodology employs a clustering technique to ensure that synthetic substations meet 
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realistic proportions of load and generation. However, the authors will continue to augment test 

cases by adding additional complexities such as transmission network electrical parameters 

assignment. In another study, the authors performed a statistical analysis on transmission line 

capacity regarding both topology and electrical parameters. However, all these studies focus 

mainly on topology-related parameters of transmission lines and ignore electrical parameters such 

as the impedance of transmission lines and transformers. For the validation purposes, [133] 

reported some initial study results on the statistics of transmission line parameters. Reference [134] 

studied the statistical properties of the transmission network and extract the empirical probability 

density functions (PDF) for some of its electrical parameters. 

1.2 Characterizing electrical parameters of the transmission network 

In this section, we mainly focus on the statistical analysis of transformers and transmission lines 

electrical parameters such as per unit impedance, nominal capacity and X/R ratio. The goal of this 

section is to a) provide a well-defined “rules” for transmission network parameters as potential 

validation metrics for existing synthetic grid models and b) to provide guidelines on how to 

accurately configure them in synthetic models for grid vulnerability studies applications. A very 

large sample of actual operating transformers and transmission lines from two real-world power 

systems is used to extract the statistical characteristics of their parameters. 

A) Grid transformers 

Generally, in power systems branches are referred to transmission lines or transformers between 

two buses in the network. Also, in some cases, shunts are considered in the branch category. In 

this paper, we first perform some statistical analysis on transformers electrical parameters 
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extracted from two real-world power systems. Next, transmission lines from the same networks 

will be studied to extract some statistics for their critical parameters. 

1. Per unit impedance using the system MVA base or transformer’s power rating? 

In power system analysis the use of per unit system to express the system quantities as fractions 

of a defined base unit quantity is common. This is important especially for transformers as the 

voltage level is different for their terminals and per unit system simplifies transformer calculations. 

Another advantage for this expression is that similar types of apparatus like transformers will have 

the impedances lying within a narrow numerical range when expressed as a per-unit fraction of the 

equipment rating, even if the unit size varies widely. However, per unit impedances of power grid 

components are usually converted to new values using a common system-wide base for application 

in power system analysis like power flow or economic power flow calculations. This conversion 

depends on the reference voltage base for different zones in the system and a predefined unique 

power base for the entire system according to the following simple equation: 

 𝑍𝑝.𝑢.
𝑟𝑎𝑡𝑖𝑛𝑔

= 𝑍𝑝.𝑢.
𝑠𝑦𝑠𝑡𝑒𝑚

× (
𝑆𝐵𝑎𝑠𝑒

𝑟𝑎𝑡𝑖𝑛𝑔

𝑆𝐵𝑎𝑠𝑒
𝑠𝑦𝑠𝑡𝑒𝑚) (39) 

where 𝑍𝑝.𝑢.
𝑠𝑦𝑠𝑡𝑒𝑚

 is the per unit impedance calculated using a system-wide common base 𝑆𝐵𝑎𝑠𝑒
𝑠𝑦𝑠𝑡𝑒𝑚

 

and 𝑍𝑝.𝑢.
𝑟𝑎𝑡𝑖𝑛𝑔

 is the new per unit impedance calculated using 𝑆𝐵𝑎𝑠𝑒
𝑟𝑎𝑡𝑖𝑛𝑔

. Note that, here the voltage 

bases are selected the same as the nominal voltage of transformer terminals for each zone to 

simplify the calculations. 

In the power grids, the use of different voltage levels is a common practice to decrease the power 

loss through transmission lines. Thus there are transformers with different turn ratios to couple the 
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areas with different voltage levels. In this study, the transformers are grouped into different 

categories based on their high voltage terminals. This is because as the nominal voltage level 

increases the transformer size gets larger, so studying them in groups based on voltage level seems 

reasonable for extracting validation metrics. The purpose of statistical experiments in this study is 

to identify several validation metrics for transformers parameters including their impedances to 

help validate synthetic power networks. This would be even more helpful if the range for different 

parameters can be specified for typical power system components. The first experiment tries to 

find the relationship between the MVA rating of the transformer and its per unit impedance. These 

analyses are performed on both per unit values in system base and converted values to transformers 

own MVA ratings. The original power system data used in this study offer transformer impedance 

in per unit calculated based on the common base for the system. Figure 35 shows the scatter plot 

of transformers per unit reactance (X) and MVA rating for the original and converted per unit 

reactance of transformers. Note that although transformers with high voltage terminal of 115 kV 

are selected for this comparison, the results are fairly consistent for other voltage levels as shown 

in Figure 36. 

  
(a) (b) 

Figure 35. Scatter plot of per unit reactance versus MVA rating of the transformer for a) system common base and b) converted 

to transformer own MVA rating 
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138 kV 230 kV 

Figure 36. Scatter plot of per unit reactance versus MVA rating of the transformer for 138 and 230 kV transformers 

The scatter plot for per unit reactance on system common base shows a descending trend as the 

size of transformer increases which means there is relatively large correlation coefficient between 

the two as shown in Figure 35 (a). In this case, the per unit reactance values span from nearly 0 to 

2.75 p.u which is relatively a large range for this parameter. However, when we consider the same 

scatter plot for converted per unit reactance to transformer own MVA rating, this range narrows 

down to [0, 0.5] p.u putting at least 80% of them within even a narrower range of [0.05, 0.2] p.u. 

In addition, almost zero correlation coefficient means that this range is independent of transformer 

size and voltage level. 

The same scatter plots for converted values of per unit reactance versus MVA rating of 

transformers for other voltage levels are depicted in Figure 36. It is found that per unit reactance 

of transformers in power systems regardless of their size lie within a narrow range when calculated 

on their own power base and statistics reflect what is known from engineering practice. This can 

be a potential validation metric for synthetic power networks transformers along with other 

statistical measures such as their probability distribution. 
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2. Transformer parameter distribution 

Transformer parameters statistics are derived using over 30000 actual power transformers. The 

database includes different types of transformers such as fixed step-down and step-up 

transformers, three winding transformers, On-load Tap Changer (OLTC) transformers, and 

autotransformers. A negative impedance often occurs in the star modeling of a three winding 

transformer due to how the leakage reactance is measured/modeled [23]. Also, Network 

equivalencing methods can create negative impedances which can affect the statistics of 

transmission network parameters. To avoid such a scenario, data are filtered by 𝑅 > 0, 𝑋 > 0 to 

exclude abnormal transformer parameters from samples. Also, due to lack of detailed information 

on some transformers, their MVA ratings are reported with either very large or zero values. These 

transformers too are excluded from samples to have accurate statistics. 

The probability distribution of transformer parameters is another measure that can be used along 

with parameter range as a validation metric in synthetic power networks. The probability 

distribution of a random variable, say transformer per unit reactance, is a function that describes 

how likely we can obtain the different possible values of the random variables. Using the database 

of real transformer data, we can get the empirical cumulative density function (CDF) of each 

parameter that can give us the empirical probability density function (PDF). Next, to provide a 

more systematic approach for generating synthetic models, we try to fit approximated distribution 

functions to empirical PDFs. The goodness of this fit can be measured with Kullback-Leibler 

divergence. 

3. Kullback-Leibler Divergence 
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In probability theory and information theory, the Kullback–Leibler (KL) divergence, also called 

discrimination information, is a measure of the difference between two probability distributions P 

and Q. It is not symmetric in P and Q. In applications, P typically represents the "true" distribution 

of data, observations, or a precisely calculated theoretical distribution, while Q typically accounts 

for a theory, model, description, or approximation of P [135]. Specifically, the KL divergence from 

Q to P denoted 𝐷𝐾𝐿(𝑃 ∥ 𝑄), is the amount of information lost when Q is used to approximate P. 

For discrete probability distributions P and Q, the KL divergence from Q to P is defined to be 

[136] 

 𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

 (40) 

In words, it is the expectation of the logarithmic difference between the probabilities P and Q, 

where the expectation is taken using the probabilities P. Therefore, smaller values for the 

divergence represents a more accurate fit for the empirical PDF of transformer parameters. 

4. Transformer per unit reactance 

Figure 37 shows the empirical PDF and the normal fit distribution of transformers per unit 

reactance for select voltage levels. The goodness of this fit is measured with Kullback-Leibler 

divergence. 
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Figure 37. Scatter plot of per unit reactance versus MVA rating of the transformer for 138 and 230 kV transformers 

5. Transformer capacity distribution 

Another key parameter of a transformer especially in gird vulnerability studies is its capacity or 

MVA rating. For the set of data from real-world power grids, there are transformers with different 

sizes from couple MVA to +1000 MVA. Also, due to the lack of detailed information in some 

cases, the MVA rating of some transformers are set to very large or small values. To exclude such 

cases, in addition to identifying the full range of transformer MVA rating, an 80% range centered 

at the median is defined to get rid of “extreme values” on both upper and lower bounds. This will 

give us a more useful range where most transformers fall in. Table XIV shows the median, mean, 

minimum and maximum range, and 80% range for transformers MVA ratings. 
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Table XIV. MVA rating statistics for 115, 138, and 230 kV transformers 

 Transformer MVA rating 

Voltage Levels (kV) Median Mean Range 80% range 

115 53 46.68 [3, 683] [22, 140] 

138 83 51.72 [3.3, 782] [39, 239] 

230 203 145.17 [10, 1610] [62.5, 470] 

Figure 38 depicts the empirical PDF of transformers MVA rating and the approximated fit 

distribution for 115 kV transformers. Note that the results for 138 kV and 230 kV transformers 

will be presented later in a table. According to the KL divergence, transformers capacity is 

approximated with Generalized Extreme Value (GEV) distribution with the minimum 𝐷𝐾𝐿 value 

where its CDF is represented by (41) 

 𝐹(𝑥|𝜁, 𝜇, 𝜎) = 𝑒𝑥𝑝 (− (1 + 𝜁
(𝑥 − 𝜇)

𝜎
)

−1
𝜁

) (41) 

where 𝜇 is location parameter, 𝜎 is scale parameter, and 𝜁 ≠ 0 is shape parameter. Using this 

mathematical distribution, one can generate reasonable values for transformer capacities in a given 

synthetic grid model. 

 

Figure 38. Empirical PDF and GEV-fit of MVA rating for 115 kV transformers 
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B) Transmission lines 

Transmission line parameters statistics are derived using over 50000 lines from real power 

systems. Transmission lines are categorized based on their nominal voltage level which ranges 

from 0.6 to 765 kV. Here we study lines with nominal voltage levels of 115, 138, 161, and 230 

kV. We studied per unit reactance, X/R ratio, and line capacities as three critical parameters of 

transmission lines to provide several validation metrics and guidelines for synthetic grid modeling. 

1. Transmission line  per unit reactance distribution 

Figure 39 shows the empirical PDF of the transmission line per unit reactance and the 

approximated fit distribution for different voltage levels. 

   
115 kV 138 kV 230 kV 

Figure 39. Empirical PDF and Exponential-fit of per unit reactance for 115, 138, and 230 kV transmission lines 

It is found that for all three voltage levels, per unit reactance is mostly less than 0.02 p.u. and the 

density drops exponentially as reactance increases. According to the KL divergence, transmission 

line reactance is approximated with Exponential distribution with the minimum 𝐷𝐾𝐿 value where 

its PDF is represented by (42) 

 𝑓(𝑥|𝜇) =
1

𝜇
𝑒

−𝑥
𝜇  (42) 
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Using this mathematical distribution, one can generate reasonable values for the transmission line 

per unit reactance in a given synthetic grid model. Note that, the distribution of per unit reactance 

for transmission lines is very different from Normal distribution for those of transformers. This is 

because of per unit conversion for transformers and implies that in order to have a more stabilized 

range for lines reactance, it is better to study their actual distributed reactance (Ω/km). This will 

be presented in our next comprehensive study. 

2. Transmission line capacity distribution 

Transmission line capacity is a critical parameter in various analysis such as optimal power flow 

(OPF) analysis, contingency analysis, and power grid expansion planning. Therefore, here we 

studied the distribution of line capacity for different voltage levels to identify a useful guideline 

and range for actual capacities in the real grids. Figure 40 shows the empirical PDF of transmission 

line capacity and the approximated Normal distribution with best-estimate parameters based on 

𝐷𝐾𝐿 for three different voltage levels. Note that, unlike transformers, the distribution of MVA 

rating for transmission lines is approximated with normal distribution with higher mean values for 

each voltage level. 

   

115 kV 138 kV 230 kV 
Figure 40. Empirical PDF and Normal-fit of line capacity for 115, 138, and 230 kV transmission lines 
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1.2.1 Overall statistics of electrical parameters 

The distribution fitting results for all other parameters and variables of the transmission network 

is presented in Table XV. 

Table XV. Distribution fitting results for branch parameters 

Parameter 

name 

Fit distribution properties 

Distribution type The goodness of fit (𝑫𝑲𝑳) Distribution parameters 

Voltage level 

(kV) 

115 138 161 230 115 138 161 230 115 138 161 230 

Transformer 

reactance 

(p.u.) 

Normal Normal Normal Normal 0.057 0.041 0.050 0.031 𝜇=0.121 

𝜎=0.045 

𝜇=0.121 

𝜎=0.041 

𝜇=0.115 

𝜎=0.040 

𝜇=0.125 

𝜎=0.042 

Line length 

(km) 

GEV* GEV GEV GEV 0.055 0.061 0.055 0.075 𝜁=0.276 

𝜇=5.68 

𝜎=4.37 

𝜁=0.299 

𝜇=6.63 

𝜎=5.12 

𝜁=0.226 

𝜇=9.80 

𝜎=7.19 

𝜁=0.397 

𝜇=10.16 

𝜎=8.95 

Line per 

reactance 

(p.u.) 

Exp. Exp. Exp. Exp. 0.038 0.027 0.068 0.034 𝜇=0.029 𝜇=0.023 𝜇=0.025 𝜇=0.015 

Line 

distributed 

resistance 

(𝛀/𝒌𝒎) 

GEV GEV GEV GEV 0.043 0.039 0.033 0.035 𝜁=0.249 

𝜇=0.07 

𝜎=0.06 

𝜁=0.275 

𝜇=0.06 

𝜎=0.05 

𝜁=0.175 

𝜇=0.06 

𝜎=0.04 

𝜁=0-

0.11 

𝜇=0.05 

𝜎=0.03 

Transformer 

capacity 

(MVA) 

GEV GEV GEV GEV 0.155 0.087 0.067 0.088 𝜁=0.565 

𝜇=46.68 

𝜎=36.92 

𝜁=0.372 

𝜇=51.72 

𝜎=36.79 

𝜁=0.219 

𝜇=80.39 

𝜎=49.54 

𝜁=0.029 

𝜇=145.1 

𝜎=95.55 

Line capacity 

(MVA) 

Normal Normal Normal Normal 0.145 0.110 0.262 0.119 𝜇=156.2 

𝜎=61.37 

𝜇=214.8 

𝜎=78.53 

𝜇=264.0 

𝜎=83.74 

𝜇=525.8 

𝜎=175.1 

Transformer 

X/R ratio 

GEV GEV GEV GEV 0.052 0.077 0.074 0.045 𝜁=-

0.008 

𝜇=25.12 

𝜎=11.54 

𝜁=-

0.028 

𝜇=26.18 

𝜎=10.67 

𝜁=-

0.024 

𝜇=27.42 

𝜎=12.90 

𝜁=-

0.099 

𝜇=37.70 

𝜎=16.41 

Line X/R 

ratio 

Normal Normal Normal Normal 0.117 0.103 0.134 0.102 𝜇=4.472 

𝜎=2.022 

𝜇=5.385 

𝜎=2.330 

𝜇=6.115 

𝜎=2.019 

𝜇=8.689 

𝜎=2.462 
*Generalized Extreme Value 

1.3 The interdependence of transmission network parameters on voltage level 

The use of multiple voltage levels in power systems is a common practice to decrease the energy 

loss in the transmission network [23]. The multi voltage-level structure of the power grid may 

cause grid components such as transmission lines and transformers to have various voltage 

dependence. Studying the interdependence of transmission branch parameters and variables on 
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voltage levels may provide useful insights as well as multiple validation metrics and tuning criteria 

for developing synthetic power networks. 

The literature review on synthetic grid modeling development and validation studies suggests that 

there is a need for a comprehensive statistical study on the voltage dependence of transmission 

network electrical and non-electrical parameters and variables. This study will be useful in 

providing both validation metrics for existing grid models and generating and tuning new synthetic 

grid cases. 

A) Data filtering method 

Access to real-world power system data is restricted to researchers due to security reasons. Many 

publicly available test cases were modified from their original settings to provide an abstract 

version for testing new algorithms and methodologies. Many of these equivalencing cause critical 

parameters of the grid to be altered and thus not reflect the actual structural and operational features 

of the realistic grids. Therefore, here we used a large sample of real-world power system data to 

extract the statistics of different parameters. These data are collected by FERC and provide a range 

of parameters and variables for two real-world power networks in North America. 

We mainly focus on transmission network that consists of transmission lines and transformers to 

study the interdependence of various branch parameters and variables on voltage level. Initial 

observations on the data indicate that for any examined parameter most of its values concentrate 

within a recognizable region.  However, there always exist a small number of outlier values that 

may span an extraordinarily wide range. For instance, a negative impedance often occurs in the 

star modeling of a three winding transformer due to how the leakage reactance is 
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measured/modeled [23]. Also, network equivalization methods may create negative impedances 

which can affect the statistics of transmission network parameters. In order to appropriately deal 

with such data and avoid erroneous disturbance on statistical analysis, raw grid data are filtered to 

exclude outliers based on boxplot method a useful graphical display for describing the behavior of 

the data in the middle as well as at the tails of the distributions. Following is the description of a 

standard box plot presentation of the data: 

 lower quartile (Q1): the 25th percentile of the data set 

 upper quartile (Q3): the 75th percentile of the data set 

 interquartile range (IQ): the upper and lower quartile difference (Q1-Q3) 

 lower inner fence: defined as Q1-1.5×IQ  

 upper inner fence: defined as Q3+1.5×IQ 

 lower outer fence: defined as Q1-3×IQ 

 upper outer fence: defined as Q3+3×IQ 

 mild outlier: a point beyond an inner fence (either side) 

 extreme outlier: a point beyond an outer fence (either side) 

The box plot uses the median and the lower and upper quartiles. A box plot is constructed by 

drawing a box between the upper and lower quartiles with a solid line drawn across the box to 

locate the median. For this study, we excluded the extreme outliers from the data set to remove 

their impacts on derived statistics. 

Our statistical study on transmission network electrical parameters in the previous section mainly 

focused on categorizing their empirical probability density functions (PDFs). In this section, we 

will focus on the interdependence of several parameters and variables of transmission network on 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm
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the nominal voltage level. The parameters include transmission lines distributed reactance and 

resistance (𝛺/𝑘𝑚), transmission line length (km), transformers per unit reactance (p.u.), and 

transformers and transmission lines capacity (MVA) and X/R ratio and the operation variables that 

are examined include transmission line real power flow, current, voltage drop, and real power loss. 

We will examine both interdependence of parameters on voltage level and their PDFs. In addition, 

we will compare the statistics of three synthetic grid models called ACTIVSg cases that are 

published in [93] and available in [137]. This is to show a potential application of the statistics 

presented in this paper and shows how we can tune the critical parameters of a synthetic grid so 

that they become consistent with real-world networks. 

1. Transformer per unit reactance 

In this study, the transformers are grouped based on their high voltage side into eight categories 

from 69 to 735 kV. The original data acquired from FERC were reported in per unit values based 

on the system-wide common base. As found in [134], the transformer per unit X calculated based 

on its own MVA rating falls within a narrow range that is consistent for all voltage levels. In other 

words, there exists no interdependence between per unit reactance and the transformers voltage 

level after this conversion. Figure 41 shows the interdependence of transformer per unit X on 

voltage level where black dots are average reactance for each voltage level and dashed blue line is 

the average of all data points. The box plot of the data is also shown in the figure where the range 

of the data and outliers can be recognized. In order to validate the statistics of ACTIVSg cases, the 

average transformer per unit reactance for these cases are shown in Figure 41. It is found that all 

three ACTIVSg cases are within the scope and present independent values from voltage level 

which is consistent with what is found from FERC data. 
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Figure 41. The interdependence of transformer per unit reactance on the voltage level 

2. Transmission line length 

The line length (km) data reported from FERC is approximate evaluation using Geographical 

Information System (GIS) data and great circle method. While this approximation may not exactly 

reflect the line length, the data can be used to examine the interdependence of average line length 

on voltage level. This interdependence is shown in Figure 42 where black dots represent the 

average line length for each voltage level in km and blue dashed curve shows a power function 

that is fit to the data according to minimum Root Mean Squared Error (RMSE) criteria and is 

formulated as: 

 𝑙(𝑉𝐵) = 0.001521 × 𝑉𝐵
1.738 (43) 

This helps us identify the relationship of line length and voltage level in real-world power systems 

that can be used in tuning procedure for synthetic grids. Note that power function is selected for 

curve fitting to simplify the result validation. As shown in Figure 42, all three synthetic cases show 
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a similar trend with close values to those from real data except 500 kV lines for ACTIVSg2000 

where they seem a bit shorter than those are in real networks. 

 

Figure 42. The interdependence of transmission line length on the voltage level 

3. Transmission line distributed reactance 

The transmission line distributed reactance (Ω/𝑘𝑚) which is calculated using per unit reactance 

and line length is another independent parameter from voltage level similar to transformer 

reactance. The distributed reactance is calculated based on 

 𝑋(Ω/𝑘𝑚) =
𝑋𝑝𝑢. 𝑉𝐵

2

𝑙. 𝑆𝐵 
 (44) 

in which using system common base 𝑆𝐵 and voltage base 𝑉𝐵 for each transmission line the actual 

reactance in ohms is first calculated; then using the approximated line length 𝑙 in km, the distributed 

reactance in Ω/𝑘𝑚 is derived. In Fig. 24, similar to transformer reactance, the blue dashed line is 

the average of all black dots that represent mean distributed reactance for each voltage level. There 
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is no visible interdependence between distributed reactance and the nominal voltage level of lines 

meaning that power function representation of distributed reactance is in the form of 

 𝑋𝑑(𝑉𝐵) = 0.4174 × 𝑉𝐵
0 (45) 

It is also shown that for transmission line distributed reactance, the ACTIVSg500, and 

ACTIVSg2000 cases show comparable values with those of FERC data and there is no visible 

trend in the data, while the ACTIVSg200 case seems to have some extraordinary large exceptions. 

 

Figure 43. The interdependence of transmission line distributed reactance on the voltage level 

4. Transformer and transmission line capacity 

Figure 44 shows the interdependence of transformers and transmission lines capacity on voltage 

level. For both parameters, there is a visible trend in their capacity and that is the higher the voltage 

level the bigger the capacity. This is consistent with the common engineering practice in the power 

systems. The fitted curves based on power function for these parameters are shown in Figure 44 

(a) and (b) with mathematical expressions in Eqs. (46) and (47), respectively. 
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 𝑆𝑡𝑟𝑎𝑛𝑠.
𝑟𝑎𝑡𝑖𝑛𝑔(𝑉𝐵) = 0.1809 × 𝑉𝐵

1.325 (46) 

 𝑆𝑙𝑖𝑛𝑒
𝑟𝑎𝑡𝑖𝑛𝑔(𝑉𝐵) = 0.1295 × 𝑉𝐵

1.565 (47) 

This can be useful in the capacity assignment for transmission network in the synthetic grid 

creation. Comparison of transformer and transmission lines capacity in the synthetic cases shows 

that for transformers although they have comparable capacities, for some voltage levels (161 in 

ACTIVSg2000 and 138 in ACTIVSg500) we can see oversized transformers. While the capacities 

of transmission lines in all three synthetic cases are perfectly matching with statistics from real 

data in terms of both interdependence on voltage level and average capacities. 

(a) 
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(b) 

 
Figure 44. The interdependence of transformer and transmission line capacity on the voltage level 

1.4 Introducing voltage-level dependent parameters to synthetic grid 

electrical topology 

The random-topology synthetic grid network proposed in [129], called RT-nestedSmallWorld, 

models the admittance matrix (𝑌𝑏𝑢𝑠) in per unit form and assigns the bus types of the network 

based on the statistical properties of actual power systems featuring the same kind of small-world 

electrical topology as the real power grids. 

However, transformers and transmission lines cannot be distinguished in per unit format while 

according to [134] these two elements exhibit different electrical characteristics. Also, our voltage-

level dependence analyses on the actual power grids reveal a strong correlation between 

parameters and geographical information. Therefore, the study of transmission network electrical 

and non-electrical parameters dependence on the nominal voltage could help enhance our random-

topology grid model by adding geographical information into the electrical topology of the 

synthetic grid. A similar approach has been employed in the synthetic grid modeling in [93] to 
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design the grid topology based on geographical location of population centers and generation and 

load proportions. 

In this section, we introduce a new framework to enhance the RT-nestedSmallWorld synthetic grid 

model by integrating voltage-level dependent parameters to the electrical topology of the 

developed synthetic network. The proposed methodology consists of two phases as illustrated in 

Figure 45. 

 

Figure 45. The flowchart of the proposed algorithm for enhanced E-topology: (a) phase I and (b) phase II 

A) Phase I of the proposed methodology 
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A set of statistical analyses will be performed on a large set of real-world power system data to 

extract critical characteristics of the power systems for enhancing the electrical topology of the 

synthetic grid. This phase includes the following three steps to extract the necessary information 

for the next phase as shown in Figure 45 (a). 

- Step 1: The empirical marginal probability density function (PDF) for individual transmission 

network parameters and variables will be examined and a standard distribution function will be 

fitted to the empirical PDF. This is used to assign random parameter values to synthetic grids so 

that they exhibit consistent statistics with actual grids. 

- Step 2: Parameters and variables of the transmission network are categorized based on their 

nominal voltage level. The transformers are categorized based on their nominal high-voltage. 

Then, the average parameter/variable value is studied to mathematically formulate how it scales 

with voltage level. The relationship is modeled based on curve fitting using power function in the 

form of 𝑓(𝑉𝐵) = 𝛼. 𝑉𝐵
𝛽, where 𝑉𝐵 is the nominal base voltage in kV. 

- Step 3: The physical constraints by Kirchhoff’s and Ohm’s laws are used to verify the 

voltage/parameter relationships extracted from empirical data in step 2. This helps make sure that 

the mathematical representation of voltage dependence is consistent with the actual constraints 

that are unique to the power grids. 

B) Phase II of the proposed methodology 

The implementation of the proposed methodology is the next step to enhance the E-topology of 

the developed synthetic grid in [138]. This can be achieved by integrating rough geographical data 

in the form of line lengths and use the findings of the phase I to tune the electrical properties of 
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the synthetic grid topology for an accurate representation of the power system. We start with the 

random topology network generated based on the algorithm proposed in [129]. The initial line 

impedances are randomly generated from a specified heavy-tailed distribution, and then sorted by 

magnitude and group into local links, rewire links, and lattice connection links according to 

corresponding portions derived from statistical analysis of actual grids. The line impedances in 

each group are assigned at random to the corresponding group of links in the topology. Next, based 

on the following algorithm, we tune the line impedances and at the same time introduce additional 

details to our synthetic grid in the form of network nominal voltage levels and line lengths. 

- Step 1: The statistical studies on FERC data shows that in power grid networks, generation and 

load (G/L) buses tend to have low nominal voltage levels that are because of engineering practices 

in generators design. Table XVI shows the top six nominal voltage levels for G/L buses in FERC 

data and their respective shares in the entire North American network. The nominal voltage levels 

for G/L buses are randomly assigned based on each level’s probability. 

Table XVI. Nominal voltage levels and their respective probability for FERC data 

Generation buses Load buses 

Nominal voltage 

(kV) 

Probability Nominal voltage 

(kV) 

Probability 

13.8 0.40 69 0.27 

18 0.09 115 0.21 

69 0.05 138 0.12 

13.2 0.03 13.8 0.05 

34.5 0.03 34.5 0.04 

115 0.03 161 0.04 

- Step 2: According to the analysis of actual grid data and common engineering practice in power 

systems, each branch connecting either generation or load buses to connection buses is, in fact, a 

transformer. Therefore, the transformers are placed and accordingly their per unit reactance is 

assigned based on the stable range identified in phase I (shown in Figure 41). 
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- Step 3: The remaining branches represent the high voltage transmission network. Figure 46 shows 

the per unit line impedance (𝑍𝑝𝑟) and approximated length for FERC data. It is found that the 

scatter plot shows a high correlation between the nominal voltage level of the line and its 𝑍𝑝𝑟 so 

that each voltage level represents a cluster of data. The range of line impedance can be divided 

into three zones representing small, medium and large values. Then, for each branch in our 

developed synthetic network, the nominal voltage level is selected according to the probability of 

each level shown in Table XVII. The impedance zone to choose from is determined based on the 

𝑍𝑝𝑟 value generated randomly from the heavy-tailed distribution in our initial synthetic grid. Note 

that Table XVII is derived from actual grid data and zonal analysis shown in Figure 46. 

 

Figure 46. The scatter plot of per unit impedance and approximate line length for transmission lines of North American power 

network from FERC data 
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Table XVII. Nominal voltage level selection probabilities for each impedance zone 

 Probability of selection 

Nominal voltage level (kV) Zone 1 Zone 2 Zone 3 

69 0.155 0.341 0.454 

115 0.281 0.240 0.183 

138 0.202 0.135 0.081 

161 0.060 0.052 0.023 

230 0.132 0.056 0.036 

345 0.036 0.008 0.001 

500 0.018 0.0002 0 

735 0.002 0 0 

- Step 4: Given the nominal voltage level of the transmission line, one can estimate an approximate 

length for the line according to the linear regression model fitted to each cluster of impedance data 

in Figure 46. Next, the analysis conducted in phase I helps to calculate the actual line impedance 

using the average distributed reactance and resistance (Figure 43) and the approximate length as 

𝑍𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑙 × 𝑍𝑑, where 𝑙 is the approximate line length (km) and 𝑍𝑑 is the average distributed 

impedance. Note that in transmission networks usually, the line impedance is dominant, hence the 

resistance can be neglected in these calculations. 

- Step 5: The new 𝑍𝑝𝑟 is then calculated by converting the actual impedance to the per unit using 

impedance base 𝑍𝐵 =
𝑉𝐵

2

𝑆𝐵
 with 𝑆𝐵 as the system common base. 

The proposed approach allows for the integration of geographical data to the synthetic grids in the 

form of line approximate length and at the same time, it helps assign nominal voltage levels to the 

transmission network. This will enhance the E-topology of the synthetic grid since a strong 

correlation has been found between the nominal voltage level of the network and various electrical 

and non-electrical parameters. A similar approach can be employed to tune/adjust other parameters 

of the network such as branch capacities once the voltage levels are known. Finally, the validation 
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process based on DC power flow solutions will follow and if necessary tuning/adjustment of the 

parameters will be performed to ensure having a feasible power flow solution and similar 

characteristics for the transmission network as real grids. 

1.5 GridStat Analysis Toolkit 

The popularity of statistical analysis on power system along with a diverse range of topological 

and electrical features of the power grid motivated us to develop a framework that offers a 

systematic grid statistical analysis toolkit. The toolkit provides an interactive input-output structure 

where the user can perform a wide range of statistical analyses on a power grid and compare its 

statistics with a reference grid. In this paper, we introduce our GridStat Analysis Toolkit developed 

using MATLAB Graphical User Interface (GUI), present its wide range of functions, and then 

demonstrate its usability by running analysis on three different categories of power system 

networks. We then discuss and identify critical metrics of power system networks which are 

consistent for various networks and will serve as the minimum requirement to pass the validity 

test for synthetic grids. 

GridStat Analysis Toolkit is designed to perform a wide range of statistical analyses on power 

system networks. The tool receives network data for the input grid and optionally for a reference 

grid in the standard power system data format. Following discusses data format, critical analytics 

incorporated into the developed toolkit, and an overview of the toolkit. 

1.5.1 Data format 

The data files used by GridStat Analysis Toolkit are Matlab M-files or MAT-files which define 

and return a single Matlab struct. Matlab M-files are plain text and thus can be edited by any 
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standard text editor. The power system cases that the toolkit accepts are MATPOWER cases. 

MATPOWER is an open-source MATLAB-based power system simulation package that provides 

a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward 

researchers, educators, and students [89]. In this format, the fields of Matlab struct are bus, branch, 

and gen which are matrices and baseMVA which is a scalar. The rows of the matrices correspond 

to a single bus, branch, or a generator while the columns correspond to various parameters similar 

to the standard IEEE CDF and PTI formats. Note that, any power system case can be easily 

reformatted to MATPOWER data format to input to the toolkit. 

1.5.2 Distribution fitting 

One of the important functionalities that the toolkit provides is plotting the empirical distribution 

of a wide range of electrical and non-electrical parameters of the grid and then fit a standard 

distribution function to the empirical data to mathematically model the distribution. The type of 

the distribution to fit is determined based on the goodness of fit meter which indicates how closely 

a particular distribution form represents the empirical data. There are several statistical methods 

to measure the goodness of the fit such as Kolmogorov-Smirnov test and Jarque-Bera test for 

normality check and the Kullback-Leibler (KL) divergence criteria to measure the similarities of 

the fit distribution and the empirical data. In our toolkit, the goodness of fit is measured by KL 

divergence and based on the best score (i.e. the distribution with the smallest KL divergence value) 

the best fit is selected [134]. 

1.5.3 GridStat Analysis toolkit overview 
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The power grid has unique features impacted by geographical and demographic characteristics of 

the society it is built in. In general, the topology of a power grid network can be represented as an 

undirected graph with small-world properties [127]. Statistical analysis of both topological and 

electrical metrics of a grid can reveal insightful information about the unique structure of these 

networks. Next step would be to mathematically model this statistical knowledge to build a set of 

unique, special, and characteristic set of metrics that can be used for validating various models and 

algorithms. Branch impedance, capacity, generation, and load settings, and loading status of 

transmission lines are among the properties with identified patterns. Also, different parameters in 

an actual transmission network have a correlation with other parameters. The connecting point for 

many of these correlations is the nominal voltage level of the network. 

This toolkit is designed with four main functions to statistically characterize any given power 

system and identify their distinguished patterns for better insights into unique features of power 

systems. These four functions (tabs) include the topological analysis, grid parameter statistics, 

nominal voltage interdependence, and grid scaling properties. Below we briefly discuss the 

functionalities of each tab in the toolkit. 

A) Topological analysis 

The power grid networks are generally a graph with known small-world properties and sparse 

connection. They have shorter average path length (in hops) and a much higher clustering 

coefficient, compared to similar size random graph networks [127]. There exist two main 

distinctions between power grids and small-world networks though: first, they have a very small 

average node degree (〈𝑘〉 =2~5) due to their sparsity which does not scale with network size. 

Second, the power grids exhibit a very special scaling properties in terms of their connectivity 
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metrics. In addition, the nodes in a power grid unlike other networks have types. They can be either 

a generation, a load, or a connection bus that cannot be interchanged with each other. In [139] a 

new topological metric is defined based on this special characteristic called bus type entropy that 

shows a unique statistical property. 

Figure 47 shows the Input/Topology tab of the developed toolkit. The statistical analysis in the 

GridStat Toolkit starts with Input/Topology tab where the user loads the input grid for analysis. 

The user also can optionally load a reference grid (e.g. an actual grid with similar size or a standard 

case) to compare the statistics of the two grids. Note that the reference grid will serve as the 

comparison reference in the other tabs. The “Analyze” button will perform a set of statistical and 

topological analyses to extract the characteristic topological metrics of each grid. Because the 

calculation of “Average path length” can be lengthy for larger network sizes based on Dijkstra’s 

algorithm [140], by default the toolkit will not calculate this metric unless the user selects “Average 

path length” checkbox provided. As an example, on a machine with Intel Core i7 @ 3.60 GHz 

CPU it takes 1.25 seconds to calculate all topological metrics except the “Average path length” for 

PEGASE2869 with 4582 links while if the checkbox is selected, it takes 30 minutes. Fig 1 shows 

the topological comparison of two similar size networks. ACTIVSg2000 is a synthetic grid and 

case2383 is an actual power system from MATPOWER’s database. 
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Figure 47. Topological analysis tab of the developed toolkit 

Next, the topological parameters that can be analyzed by the toolkit will be briefly discussed. 

1) Average node degree 〈𝑘〉: The node degree of bus i in a grid equals the total number of branches 

it connects and can be obtained from the ith diagonal entry of the Laplacian matrix, i.e., 𝑘𝑖 =

𝐿(𝑖, 𝑖) where 𝐿 = 𝐴𝑇𝐴 is the Laplacian matrix and 𝐴 ≔ (𝐴𝑙,𝑘)𝑚,𝑁 is the branch-node incidence 

matrix, arbitrarily oriented and defined as: 𝐴𝑙,𝑖 = 1; 𝐴𝑙,𝑗 = −1, if the lth branch is from node i to 

node j and 𝐴𝑙,𝑘 = 0, 𝑘 ≠ 𝑖, 𝑗. Then the average nodal degree of the grid is calculated as 〈𝑘〉 =

1

𝑁
∑ 𝐿(𝑖, 𝑖)𝑁

𝑖=1  [129]. 

2) Average path length 〈𝑙〉: Given the connecting topology of a grid, we can run the Dijkstra’s 

algorithm to calculate the shortest path length measured in hops between any two buses i and j, 

i.e., 𝑙𝑖𝑗. Then the average shortest path length of a grid is 〈𝑙〉 =
2 ∑ 𝑙𝑖𝑗𝑖,𝑗

𝑁(𝑁−1)
 [129]. 

3) The ratio of buses with 𝑘𝑖 > 〈𝑘〉 (𝜅): This ratio shows how sparse a power grid network is and 

it is defined as 𝜅 =
∑ 𝜎𝑗

𝑁
 where 
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 𝜎𝑗 = {
1  𝑖𝑓 𝑘𝑗 > 〈𝑘〉 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (48) 

4) Algebraic connectivity (𝜆2): A topology measure that is the second smallest eigenvalue of the 

Laplacian matrix, 𝜆2(𝐿), with [𝜆1, 𝜆2, … , 𝜆𝑁] = Eigen(𝐿) [129] and reflects the overall 

connectivity of a network. Note that the smallest eigenvalue of the Laplacian matrix is always zero 

and the number of zero eigenvalues in the Laplacian determines the total number of islanded areas 

in the network. 

5) Clustering coefficient 𝐶(𝐺): The clustering coefficient is defined by Watts and Strogatz [127] 

as the average of the clustering coefficient for each node, i.e. 𝐶(𝐺) =
1

𝑁
∑ 𝐶𝑖

𝑁
𝑖=1  where 𝐶𝑖 =

𝜆𝐺(𝑖)

𝜏𝐺(𝑖)
, 

𝜆𝐺(𝑖) is the number of edges between the neighbors of node i and 𝜏𝐺(𝑖) the total number of edges 

that could possibly exit among the neighbors of node i. For undirected graphs, obviously 𝜏𝐺(𝑖) =

𝑘𝑖(𝑘𝑖 − 1)/2 given 𝑘𝑖 as the node degree. 

6) Bus type entropy 𝑊(𝕋): It is a characteristic feature showing the bus types and link types in a 

power system as a scalar measure. It is defined as [139] 

 𝑊(𝕋) = − ∑ log(𝑟𝕋𝑖
)

𝑁

𝑖=1
− ∑ log(𝑅𝕃𝑗

)
𝑚

𝑗=1
 (49) 

where 𝑟𝕋𝑖
= 𝓃𝕋𝑖

/𝑁 represent the bus type ratio of bus i and 𝑅𝑅𝕃𝑗
= 𝓂𝑅𝕃𝑗

/𝑚 the corresponding 

link type ratio of the jth line; 𝓃𝑘 and 𝓂𝑘 representing the total number of buses and lines of 

different types in the grid that have some specified types respectively. The bus type vector is 𝕋𝑖 ∈

{1,2,3} where values assigned to generation, load, and connection buses, respectively. Similarly, 
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𝑅𝕃𝑗
∈ {1,2, … ,6} assuming each transmission branch is one of the following link types, i.e. {GG, 

GL, GC, LL, LC, CC}, respectively. 

7) Normalized bus type entropy distance 𝑑𝑊(𝕋∗, �̃�): It is the normalized distance of the bus type 

entropy for correlated bus type assignments {𝕋∗} and other randomized assignments based on 

permutation �̃� = ℘(𝕋∗). By the central limit theorem, the randomized entropy values may assume 

a normal (Gaussian) distribution. With the extracted distribution parameters (𝜇, 𝜎), a normalized 

distance can be defined to measure the difference between 𝕋∗ and �̃� as: 

 𝑑𝑊(𝕋∗, �̃�) =
𝑊(𝕋∗) − 𝜇

𝜎
 (50) 

B) Grid parameters statistics 

Figure 48 shows the second tab of the developed toolkit that is designed to individually analyze 

various electrical and non-electrical parameters of the input and reference grids. Here the 

“Analyze” button will calculate and prepare the empirical distribution of each parameter. Next, the 

user can select a parameter or a variable to plot its distribution. The list of examined parameters 

and variables with well-identified statistical patterns is given as follows: node degree, bus type 

entropy for randomly permuted G/L/C assignments, load and generation capacity, SIL fraction, 

MVA/SIL ratio, loading factor, line and transformer capacity (MVA), branch flow (MW), line 

power loss (MW), line and transformer parameters such as X and R in distributed and per unit 

forms, X/R ratios for transmission lines and transformers, branch angle difference, line length, and 

line voltage drop. 
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Figure 48. Parameter statistics tab of the developed toolkit 

If the loaded power system cases provide the nominal voltage level information, then the toolkit 

also has the ability to perform the statistical analysis on a certain voltage level network. The second 

popup menu lists all the nominal voltage levels of the input grid.  Note that it is possible that a grid 

test case may not include all the data of listed parameters for analysis. In that case, the 

corresponding analysis function will be disabled in the toolkit. Sometimes, network equivalisation 

or record inaccuracy may introduce erroneous values for some parameters (e.g. impedance) which 

can affect the statistical evaluation of those parameters. In order to appropriately deal with data 

with abnormal outliers which stay far away from recognized “normal range” and avoid erroneous 

disturbance on statistical analysis the checkbox “Remove Outliers” is provided in the toolkit. To 

remove outliers, the interquartile range (IQ=Q1-Q3) is defined where Q1 is the 25th percentile of 

the dataset and Q3 is the 75th percentile. Then thresholds Q1-3IQ and Q3+3IQ are defined as lower 

and upper outer fences, respectively. Finally, a point beyond an outer fence (either side) is 

identified as an extreme outlier and removed from the dataset. This will help find a better standard 

PDF function for the empirical distribution. Plotting the PDF of the selected parameter/variable 

will activate the “FIT” button which allows the user to select a standard fitting function and display 
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it over the empirical PDF. Below we discuss select parameters and variables that can be studied 

for their empirical distributions. 

1) Node degree distribution: The analysis shows that node degree distribution has an exponential 

tail similar to that of the geometric distribution. However, in [129] it is found that for small node 

degrees (e.g. 𝑘 ≤ 3), the empirical probability mass function (PMF) curve clearly deviates from 

that of a geometric distribution. Therefore, characterizing the node degree distribution based on 

node type seems more reasonable. The analysis on two North American power grids suggests that 

the node degree distribution can be expressed as a sum of a truncated geometric random variable 

and an irregular discrete variable. 

2) Bus type entropy for random assignment: The bus type entropy can be calculated for a given 

network with known topology and generation/load settings according to (10). We then can 

generate a synthetic power grid network with random bus type assignments that has the same bus 

type and link type ratios. If we plot the empirical PDF of bus type entropy for a large number of 

random assignments, we will see that the target entropy (entropy of the actual grid) locates on the 

far left side of average bus type entropy for random bus type assignments with the Normal 

distribution. This implies that the probability of generating a random bus type assignment as 𝑇∗ 

that has an entropy of 𝑊∗, tends to be very small and in fact, realistic power grids assume some 

“special” or correlated bus type assignment instead of a random one [139]. 

3) Load and generation capacity: The statistical analysis on generation capacity and demand 

within actual power grids like NYISO-2935 and WECC-16994 in [141] suggests that 99+% of the 

generation units (also loads) exhibit exponential distribution with less than 1% showing extremely 

large capacities (or demands) that are outliers. 
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4) SIL fraction: The surge impedance loading (SIL) fraction 𝛾 =
𝐹𝑖𝑗

𝑆𝐼𝐿𝑖𝑗
 is the ratio between the actual 

power flow of each line and the SIL of the line calculated as 𝑆𝐼𝐿 = 𝑆𝑏√
𝐵 [𝑝.𝑢.]

𝑋 [𝑝.𝑢.]
, where  𝑆𝑏 is the 

system base power, 𝐵 is line per unit susceptance, and 𝑋 is line per unit reactance. This variable 

can show the usage of the transmission line with respect to its SIL. It is found that the empirical 

PDF of SIL fraction can be best fit by exponential distribution based on actual data from FERC. 

C) Nominal voltage interdependence 

Earlier we investigated the interdependence of various branch electrical and non-electrical 

parameter on the nominal voltage level of the network and found that some parameters exhibit a 

strong correlation with the nominal voltage level while others are almost independent of the 

nominal voltage level. Recently, we introduced voltage level dependent parameters into our 

nestedSmallWorld random topology synthetic grid model in which by mathematically modeling 

the voltage interdependence we can more accurately model power system parameters. This also 

helps us incorporate geographical information of the grid to our synthetic networks since we found 

a strong correlation between geographical parameters and nominal voltage levels. 

Figure 49 shows the “Voltage interdependence” tab of the developed toolkit where one can analyze 

various parameters in terms of their relationship with the underlying nominal voltage level, given 

that the nominal voltage information is present in the input grid. It gives two options to the user: 

the box plot of the selected parameter/variable and interdependence on the nominal voltage level. 

The box plot is a useful graphical display for describing the behavior of the data in the middle as 

well as at the ends of the distributions. On each box, the central red mark indicates the median, 

and the bottom and top edges of the box indicate the 25th (Q1) and 75th (Q3) percentiles, 
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respectively. The whiskers extend to the most extreme data points not considered outliers, and the 

outliers are plotted individually using the red '+' symbol. The “Box Plot” button displays the box 

plot of the selected parameter to visualize the data and detect the range, median, and outliers in the 

original data of the input grid. The interdependence button will calculate the average values of the 

selected parameter for each nominal voltage level and then fit a power function in the form of 

𝑓(𝑣) = 𝑎. 𝑣𝑏 to the data to mathematically model them. In Figure 49 the interdependence of line 

capacity on the nominal voltage level and the fitted curve is shown for “ACTIVSg2k” synthetic 

case. 

 

Figure 49. Nominal voltage interdependence tab of the developed toolkit 

D) Grid scaling properties 

As mentioned earlier, one can identify special small-world properties and electrical parameter 

settings for power systems. In [139] a number of real-world power system networks are studied to 

identify the scaling properties of topological and electrical parameters of the grid. Among several 

parameters and variables, some exhibit very clear scaling properties including the average node 

degree, the average path length, algebraic connectivity, generation capacity, total demand, and 

transmission network capacity. As found in [129] the average node degree of a typical power grid 
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does not scale with the network size but remains within a very strict range. The algebraic 

connectivity of a grid also exhibits some special scaling property. Figure 50 shows the Scaling 

properties tab of the developed toolkit with the plot showing the algebraic connectivity of 

“ACTIVSg2k” with respect to that of real grids. 

 

Figure 50. Grid scaling properties tab of the developed toolkit 

The scaling properties of the input grid is analyzed and validated using a set of actual grids 

including the IEEE test cases, PEGASE systems that represent some European nation’s grid at 

different levels of network reduction, the North American power grid (FERC data), and the RTE 

system which is an equivalent of the French Grid. All of these cases are available in MATPOWER 

database except FERC data which are not publicly available cases. 

1.6 Case studies and discussions 

In this section, several case studies including IEEE standard test cases, real North American and 

European power grids, and synthetic networks are analyzed using the toolkit to extract featured 

metrics and showcase some of the functionalities of the toolkit. Then, we present a list of key 

characteristic metrics for power system networks that can serve as the minimum requirement to 

validate the synthetic grids. 
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1.6.1 Statistical analysis on sample networks using the toolkit 

Table XVIII lists the topological metrics for the select grids in the three categories. The topological 

metrics can contain critical information about the power system network. Some of these metrics 

are critical in validating the artificial and random topology power grid networks developed 

recently. They also may contain insightful information about the underlying geographical 

parameters of each grid and are unique. In general, the scaling properties of power system grids 

can be clearly identified in topological metrics. This is another critical piece of information that 

can be utilized in tuning bigger synthetic cases. According to Table 1, the following observations 

can be made: 

 Average node degree has a weak dependence on network size and does not scale. For the 

standard test cases, the average node degree is with 2.7 to 3.1 range. The IEEE-145 is an outlier 

with an average node degree of 6.24. 

 Algebraic connectivity shows a strong scaling property for all three categories. The algebraic 

connectivity of the network decreases as the size of the network increases. IEEE-145 shows an 

outlier for this metric which can be explained by its large number of branches. 

 Clustering coefficient and weighted clustering coefficient both show scaling properties with 

network size for all three categories. The two topological parameters decrease as the network 

size scales up. Again, IEEE-145 is an outlier here with a larger coefficient due to its higher 

number of branches. 

 The bus type entropy is the most stable topological metric. It does not exhibit scaling property 

with network size and is within a narrow band for networks of different sizes. The bus type 

entropy is a unique feature for power system networks and can be utilized for validation 
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purposes. 

Table XVIII. Comparison of topological metrics of different power system cases 

 Topological Metrics 

 Case N m 〈𝒌〉 𝝀𝟐 𝑪(𝑮) 𝑪𝒅(𝑮) 𝝆 𝑾(𝕋) 𝜿 

S
ta

n
d

ar
d

 t
es

t 

ca
se

s 

IEEE-14 14 20 2.857 0.458 0.367 0.354 -0.074 2.22 0.357 

IEEE-30 30 41 2.733 0.212 0.235 0.219 -0.087 2.503 0.233 

IEEE-57 57 80 2.807 0.092 0.122 0.135 0.19 2.445 0.228 

IEEE-118 118 186 3.153 0.028 0.165 0.157 -0.052 2.387 0.195 

IEEE-145 145 453 6.248 0.107 0.537 0.529 0.106 2.692 0.179 

IEEE-300 300 411 2.74 0.009 0.086 0.097 -0.214 2.667 0.247 

           

S
y

n
th

et
ic

 

g
ri

d
s 

ACTIVSg200 200 245 2.45 0.023 0.037 0.053 -0.395 2.475 0.21 

ACTIVSg500 500 597 2.388 0.008 0.017 0.025 -0.214 2.106 0.176 

ACTIVSg2000 2000 3202 3.202 0.004 0.004 0.004 0.116 2.277 0.21 

ACTIVSg10k 10000 12706 2.541 0 0.015 0.022 0.139 2.493 0.201 

ACTIVSg25k 25000 32230 2.578 0 0.019 0.03 0.24 2.186 0.216 

           

R
ea

l 
g

ri
d

s PEGASE89 89 210 4.719 0.154 0.192 0.334 0.405 1.873 0.202 

PEGASE1354 1354 1991 2.941 0.007 0.056 0.06 -0.044 2.697 0.143 

PEGASE2869 2869 4582 3.194 0.001 0.087 0.094 0.031 2.632 0.155 

WECC 20131 25156 2.499 N/A 0.027 0.035 0.102 2.4 0.152 

EI 62605 80595 2.575 N/A 0.029 0.035 0.028 2.353 0.154 

Table XIX shows the average value of select parameters in different nominal voltage levels for the 

cases that the nominal value of voltages is available. These results are generated by the voltage 

interdependence tab of the toolkit and extracted to the table. According to the table, the following 

observations can be made: 

 The average branch flow in MW is larger in higher voltage networks. This is consistent with 

the engineering design of power grid networks where higher voltage networks are intended for 

the transmission of a large quantity of power while lower voltage networks are more for 

distribution of the power. This pattern is fairly consistent for all three categories except the 

IEEE-300 where the 138 kV network has the highest flow average among all cases. 

 The average power loss shows an increasing trend with respect to the nominal voltage level for 

the standard cases and actual grids. This can be explained by the fact that higher voltage 

networks tend to carry greater currents thus assuming similar material in transmission lines, the 
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active power loss would be higher. The “ACTIVSg10k” and “ACTIVSg25k” do not show a 

similar trend and they are lightly loaded in 138, 161, and 230 kV networks. 

 While the average angle difference across the network branches shows an increasing trend for 

actual grids (WECC and EI), we cannot clearly identify a similar pattern for other cases. 

 The average parameter values for each individual voltage level exhibits a large range meaning 

that these operational parameters are heavily dependent on underlying geographical and social 

factors associated with each grid. 

The above statistical analyses demonstrate examples of the type of studies one can perform with 

the developed toolkit and identify distinguished patterns among different power systems, check 

the consistency and validity of synthetic grids, and possibly tune their electrical and topological 

parameters to match with actual grids. These analyses also provide insightful information about 

the complex nature of power system networks that differentiate them from other networks such as 

communication and traffic networks. Next, we present our list of key characteristic metrics of 

power system networks identified by extensive statistical analyses on a large set of real and 

artificial power system networks. 
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Table XIX. Comparison of select parameter voltage interdependence for different power system cases 

Select parameter voltage interdependence 

Parameter Average branch flow (MW) Average power loss (MW) Average angle difference (º) 

Nominal kV 11

5 

13

8 

16

1 

23

0 

34

5 

50

0 

115 138 161 230 345 500 115 138 161 230 345 500 

IEEE-118 - 33 - - 16
4 

- - 0.4
1 

- - 1.8
7 

- - 2.1
1 

- - 3.5
2 

- 

IEEE-145 - - - - - 16

0 

- - - - - 1.1

2 

- - - - - 1.5

8 

IEEE-300 46 16
8 

- 15
4 

24
7 

- 0.5
7 

0.4
7 

- 1.2
3 

1.3
9 

- 2.8
9 

1.9
9 

- 3.7
1 

2.4
7 

- 

ACTIVSg20

0 

14 - - 62 - - 0.0

3 

- - 0.1

2 

- - 0.4

6 

- - 1.2

3 

- - 

ACTIVSg50

0 

- 45 - - 14

5 

- - 0.0

5 

- - 0.1

8 

- - 0.5

4 

- - 1.3

2 

- 

ACTIVSg2k 63 - 91 14

0 

- 32

4 

0.3

0 

- 0.3

1 

0.7

7 

- 1.9

2 

1.3

3 

- 1.0

0 

2.8

7 

- 1.8

0 

ACTIVSg10

k 

41 44 45 93 15

6 

24

5 

0.0

8 

0.0

6 

0.0

6 

0.3

1 

0.2

9 

0.4

2 

0.4

5 

0.3

4 

0.4

0 

2.1

8 

1.3

4 

1.1

8 

ACTIVSg25

k 

31 52 34 95 20

2 

22

9 

0.0

3 

0.1

4 

0.0

2 

0.1

0 

0.7

8 

0.2

0 

0.2

4 

1.1

4 

0.1

3 

1.1

6 

1.7

2 

0.9

2 

WECC 26 20 30 96 18

6 

53

0 

0.0

5 

0.0

6 

0.1

4 

0.2

7 

0.6

6 

1.1

7 

0.5

0 

1.2

7 

1.6

1 

2.0

1 

2.4

2 

3.4

4 

EI 31 48 53 12

0 

23

9 

40

1 

0.0

7 

0.0

9 

0.1

2 

0.3

1 

0.7

9 

1.0

7 

0.8

6 

1.0

5 

1.1

3 

2.1

3 

2.4

9 

2.9

8 

1.6.2 Key characteristic features of the power system networks 

Here we discuss a list of key characteristic metrics of power systems that are unique and consistent 

for every power system network. They are found by analyzing a large set of different power system 

networks. These key features exhibit distinctive statistical patterns and scaling properties which 

can be used to benchmark synthetic grids against actual grids. 

Average node degree: As shown in Table XVIII, the average node degree is independent of the 

network size, and range from 2.5 to 3.2 for most real networks. This is a special characteristic 

topological parameter for power system networks and what makes them different from SmallWorld 

networks. Figure 51 shows the average node degree for real and synthetic grids which indicates 

this parameter is independent of network size. 
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Figure 51. Average node degree for real and synthetic grids 

The relative distance of correlated bus type assignment: The relative distance of bus type entropy 

in correlated assignments and randomized permutation for power grid networks exhibit a strong 

dependence on the network size that can be mathematically modeled. Figure 52 shows the distance 

for actual grids and synthetic grids. The approximate scaling function is derived as [139]: 

 𝑑𝑊(𝑛) = {
−1.39 ln 𝑛 + 6.79,                             ln 𝑛 ≤ 8

−1.25 × 10−13(ln 𝑛)15.1 + 0.43,   ln 𝑛 > 8
 (51) 

 

Figure 52. Scaling function of the relative distance of bus type entropy in random assignment for different network sizes 

Transformer per unit reactance: The transformer per unit reactance calculated based on its own 

MVA rating falls within a narrow range of [0, 0.25] p.u with 80% of them inside [0.05, 0.2] range. 
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The average transformer p.u. reactance is independent of the voltage level and network size as 

shown in Figure 53 for North American networks and ACTIVSg cases. 

 

Figure 53. Average transformer p.u. reactance in its own MVA for EI, WECC, ACTIVSg500, and ACTIVSg2000 

Transmission line X/R ratio: Our statistical analyses on a set of real-world power system data 

indicate that the ratio of transmission line reactance over its resistance (X/R) shows a heavy 

dependency on the nominal voltage level which can be estimated by a linear relationship. This is 

also consistent with engineering practice where higher voltage networks are designed to have 

lower resistance to minimize active power loss. 

The above list provides a set of critical parameters and metrics that exhibit unique characteristics 

of power system networks. Since the observed statistical ranges and patterns are consistent for 

many real-world and standard power system cases, therefore, this list provides a standard set of 

metrics to evaluate and validate the synthetic grids. In other words, if any artificial power system 

network does not meet any of these metrics, it lacks the minimum requirements to be considered 

a realistic test case. 
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