4 research outputs found

    Challenges associated with interpreting mechanisms of AF

    Get PDF
    Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF

    Probabilistic Interpolation of Uncertain Local Activation Times on Human Atrial Manifolds

    Get PDF
    Objective: Local activation time (LAT) mapping of the atria is important for targeted treatment of atrial arrhythmias, but current methods do not interpolate on the atrial manifold and neglect uncertainties associated with LAT observations. In this paper we describe novel methods to (i) quantify uncertainties in LAT arising from bipolar electrogram analysis and assignment of electrode recordings to the anatomical mesh, (ii) interpolate uncertain LAT measurements directly on left atrial manifolds to obtain complete probabilistic activation maps, and (iii) interpolate LAT jointly across both the manifold and different S1-S2 pacing protocols. Methods: A modified center of mass approach was used to process bipolar electrograms, yielding a LAT estimate and error distribution from the electrogram morphology. An error distribution for assigning measurements to the anatomical mesh was estimated. Probabilistic LAT maps were produced by interpolating on a left atrial manifold using Gaussian Markov random fields, taking into account observation errors and characterizing LAT predictions by their mean and standard deviation. This approach was extended to interpolate across S1-S2 pacing protocols. Results: We evaluated our approach using recordings from three patients undergoing atrial ablation. Cross-validation showed consistent and accurate prediction of LAT observations both at different locations on the left atrium and for different S1-S2 intervals. Significance: Interpolation of scalar and vector fields across anatomical structures from point measurements is a challenging problem in biomedical engineering, compounded by uncertainties in measurements and meshes. New methods and approaches are required, and in this paper we have demonstrated an effective method for probabilistic interpolation of uncertain LAT

    Characterizing Atrial Fibrillation Substrate by Electrogram and Restitution Analysis

    Get PDF
    Vorhofflimmern ist die häufigste supraventrikuläre Arrhythmie in der klinischen Praxis. Es gibt Hinweise darauf, dass pathologisches Vorhofsubstrat (Fibrose) eine zentrale mechanistische Rolle bei der Aufrechterhaltung von Vorhofflimmern spielt. Die Behandlung von Vorhofflimmern erfolgt durch Ablation des fibrotischen Substrats. Der Nachweis eines solchen Substrats ist jedoch eine ungelöste Herausforderung, was durch die mangelnden positiven klinischen Ablationsergebnisse ersichtlich wird. Daher ist das Hauptthema dieser Arbeit die Charakterisierung des atrialen Substrats. Die Bestimmung von Signalmerkmalen an Stellen mit fibrotischem Substrat erleichtert die Erkennung und anschließende Ablation solcher Areale in Zukunft. Darüber hinaus kann das Verständnis der Art und Weise, wie diese Areale das Vorhofflimmern aufrechterhalten, die positiven Ergebnisse von Ablationseingriffen verbessern. Schließlich kann Restitutionsinformation ein weiteres Instrument zur Substratcharakterisierung sein, das bei der Unterscheidung zwischen pathologischen und nicht-pathologischen Arealen helfen und somit das Ablationsergebnis weiter verbessert. In dieser Arbeit werden zwei Ansätze zur Substratcharakterisierung vorgestellt: Zunächst wurde eine Charakterisierung des Substrats mit Hilfe des intraatrialen Elektrogramms vorgenommen. Dazu wurde eine Auswahl spezifischer Merkmale des Elektrogramms an Positionen evaluiert, die eine Terminierung von Vorhofflimmern nach Ablation zur Folge hatten. Die Studie beinhaltete 21 Patienten, bei denen eine Ablation nach Pulmonalvenenisolation das klinisch persistierende Vorhofflimmern beendete. Der klinisch vorgeschlagene Grenzwert der Spannungsamplitude von <0:5 mV wurde genutzt, um die Positionen der Ablation zu definieren. Die Bereiche, in denen das Vorhofflimmern erfolgreich terminiert wurde, wiesen ausgeprägte Elektrogramm-Muster auf. Diese waren gekennzeichnet durch kurze lokale Zykluslängen, die fraktionierte Potentiale und Niederspannungspotentiale enthielten. Gleichzeitig zeigten sie eine lokale Konsistenz und deckten einen Großteil der lokalen Vorhofflimmer-Zykluslänge ab. Die meisten dieser Bereiche wiesen auch im Sinusrhythmus pathologisch verzögerte atriale Spätpotentiale und fraktionierte Elektrogramme auf. Im zweiten Teil der Arbeit wurden Restitutionsdaten der lokalen Amplitude und der lokalen Leitungsgeschwindigkeit (CV) erfasst und genutzt, um daraus Informationen über das zugrunde liegende Substrat abzuleiten. Die Daten zur Restitution wurden von 22 Patienten mit Vorhofflimmern aus zwei Kliniken unter Verwendung eines S1S2-Protokolls mit Stimulationsintervallen von 180 ms bis 500 ms gewonnen. Um Restitutionsdaten der Patientengruppe zu erhalten, musste ein automatisierter Algorithmus entwickelt werden, der in der Lage ist, große Mengen an Stimulationsprotokolldaten zu lesen, zu segmentieren und auszuwerten. Dieser Algorithmus wurde in der vorliegenden Arbeit entwickelt und CVAR-Seg genannt. Der CVAR-Seg Algorithmus bietet eine rauschresistente Signalsegmentierung, die mit extremen Rauschpegeln getestet wurde, die weit über dem erwarteten klinischen Pegel lagen. CVAR-Seg wurde unter einer Open-Source-Lizenz für die Allgemeinheit bereitgestellt. Es ermöglicht aufgrund seines modularen Aufbaus den einfachen Austausch einzelner Verfahrensschritte durch alternative Methoden entsprechend den Bedürfnissen des Anwenders. Darüber hinaus wurde im Rahmen dieser Studie eine neuartige Methode, die sogenannte inverse Doppelellipsenmethode, zur Bestimmung der lokalen CV etabliert. Diese Methode schätzt die CV, die Faserorientierung und den Anisotropiefaktor bei beliebiger Elektrodenanordnung. In Simulationen reproduzierte die Doppelellipsenmethode die vorherrschende CV, Faserorientierung und Anisotropie genauer und robuster als die aktuell gängigste Methode. Zusätzlich erwies sich diese Methode als echtzeittauglich und könnte daher in klinischen Elektrophysiologiesystemen eingesetzt werden. Die Doppelellipsenmethode würde durch die lokalisierte Vermessung des Vorhofsubstrats ermöglichen während eines Kartierungsverfahrens gleichzeitig eine CV-Karte, eine Anisotropieverhältniskarte und eine Faserkarte zu erstellen. Die Restitutionsinformationen der Patientenkohorte wurden mit der CVARSeg-Pipeline und der inversen Doppelellipsenmethode ausgewertet, um Amplituden- und CV-Restitutionskurven zu erhalten. Zur Anpassung der Restitutionskurven wurde eine monoexponentielle Funktion verwendet. Die Parameter der angepassten Funktion, die die Restitutionskurven abbilden, wurden verwendet, um Unterschiede in den Restitutionseigenschaften zwischen pathologischem und nicht-pathologischem Substrat zu erkennen. Das Ergebnis zeigte, dass klinisch definierte pathologische Bereiche durch eine reduzierte Amplitudenasymptote und einen steilen Kurvenabfall bei erhöhter Stimulationsrate gekennzeichnet waren. CV-Kurven zeigten eine reduzierte Asymptote und eine große Variation im Parameter der den Kurvenabfall beschreibt. Darüber hinaus wurden die Restitutionsunterschiede innerhalb des Vorhofs an der posterioren und anterioren Wand verglichen, da die Literatur keine eindeutigen Ergebnisse lieferte. In dieser Arbeit wurde nachgewiesen, dass die posteriore Vorhofwand Amplituden- und CV-Restitutionskurven mit höherer Asymptote und moderaterer Krümmung verglichen mit der anterioren Vorhofwand aufweist. Um über den empirisch beschriebenen manuellen Schwellenwert hinauszugehen, wurde der Parameterraum, der von den Anpassungsparametern der Amplituden- und CV-Restitutionskurven aufgespannt wird, nach natürlich vorkommenden Clustern durchsucht. Obgleich Cluster vorhanden waren, deutete ihre unzureichende Trennung auf einen kontinuierlichen, sich mit dem Schweregrad der Substratpathologie verändernden Verlauf der Amplituden- und CV-Kurven hin. Schließlich wurde eine einfachere und schnellere Methode zur Erfassung von Restitutionsdaten vorgestellt, die einen vergleichbaren Informationsgehalt auf der Grundlage der maximalen Steigung anstelle einer vollständigen Restitutionskurve liefert. In dieser Arbeit werden zwei neue Methoden vorgestellt, der CVAR-Seg-Algorithmus und die inverse Doppelellipsenmethode, die eine Auswertung von S1S2 Stimulationsprotokollen und die Bestimmung der lokalen Leitungsgeschwindigkeit beschleunigen und verbessern. Darüber hinaus werden in dieser Arbeit Merkmale von pathologischem Gewebe definiert, die zur Identifizierung von Arrhythmiequellen beitragen. Somit trägt diese Arbeit dazu bei, die Therapie von Vorhofflimmern in Zukunft zu verbessern
    corecore