92,196 research outputs found

    Learning to Reason: Leveraging Neural Networks for Approximate DNF Counting

    Full text link
    Weighted model counting (WMC) has emerged as a prevalent approach for probabilistic inference. In its most general form, WMC is #P-hard. Weighted DNF counting (weighted #DNF) is a special case, where approximations with probabilistic guarantees are obtained in O(nm), where n denotes the number of variables, and m the number of clauses of the input DNF, but this is not scalable in practice. In this paper, we propose a neural model counting approach for weighted #DNF that combines approximate model counting with deep learning, and accurately approximates model counts in linear time when width is bounded. We conduct experiments to validate our method, and show that our model learns and generalizes very well to large-scale #DNF instances.Comment: To appear in Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). Code and data available at: https://github.com/ralphabb/NeuralDNF

    Probabilistic Model Counting with Short XORs

    Full text link
    The idea of counting the number of satisfying truth assignments (models) of a formula by adding random parity constraints can be traced back to the seminal work of Valiant and Vazirani, showing that NP is as easy as detecting unique solutions. While theoretically sound, the random parity constraints in that construction have the following drawback: each constraint, on average, involves half of all variables. As a result, the branching factor associated with searching for models that also satisfy the parity constraints quickly gets out of hand. In this work we prove that one can work with much shorter parity constraints and still get rigorous mathematical guarantees, especially when the number of models is large so that many constraints need to be added. Our work is based on the realization that the essential feature for random systems of parity constraints to be useful in probabilistic model counting is that the geometry of their set of solutions resembles an error-correcting code.Comment: To appear in SAT 1

    Counting connected hypergraphs via the probabilistic method

    Full text link
    In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n][n] with mm edges, whenever nn and the nullity mn+1m-n+1 tend to infinity. Asymptotic formulae for the number of connected rr-uniform hypergraphs on [n][n] with mm edges and so nullity t=(r1)mn+1t=(r-1)m-n+1 were proved by Karo\'nski and \L uczak for the case t=o(logn/loglogn)t=o(\log n/\log\log n), and Behrisch, Coja-Oghlan and Kang for t=Θ(n)t=\Theta(n). Here we prove such a formula for any r3r\ge 3 fixed, and any t=t(n)t=t(n) satisfying t=o(n)t=o(n) and tt\to\infty as nn\to\infty. This leaves open only the (much simpler) case t/nt/n\to\infty, which we will consider in future work. ( arXiv:1511.04739 ) Our approach is probabilistic. Let Hn,prH^r_{n,p} denote the random rr-uniform hypergraph on [n][n] in which each edge is present independently with probability pp. Let L1L_1 and M1M_1 be the numbers of vertices and edges in the largest component of Hn,prH^r_{n,p}. We prove a local limit theorem giving an asymptotic formula for the probability that L1L_1 and M1M_1 take any given pair of values within the `typical' range, for any p=p(n)p=p(n) in the supercritical regime, i.e., when p=p(n)=(1+ϵ(n))(r2)!nr+1p=p(n)=(1+\epsilon(n))(r-2)!n^{-r+1} where ϵ3n\epsilon^3n\to\infty and ϵ0\epsilon\to 0; our enumerative result then follows easily. Taking as a starting point the recent joint central limit theorem for L1L_1 and M1M_1, we use smoothing techniques to show that `nearby' pairs of values arise with about the same probability, leading to the local limit theorem. Behrisch et al used similar ideas in a very different way, that does not seem to work in our setting. Independently, Sato and Wormald have recently proved the special case r=3r=3, with an additional restriction on tt. They use complementary, more enumerative methods, which seem to have a more limited scope, but to give additional information when they do work.Comment: Expanded; asymptotics clarified - no significant mathematical changes. 67 pages (including appendix
    corecore