The idea of counting the number of satisfying truth assignments (models) of a
formula by adding random parity constraints can be traced back to the seminal
work of Valiant and Vazirani, showing that NP is as easy as detecting unique
solutions. While theoretically sound, the random parity constraints in that
construction have the following drawback: each constraint, on average, involves
half of all variables. As a result, the branching factor associated with
searching for models that also satisfy the parity constraints quickly gets out
of hand. In this work we prove that one can work with much shorter parity
constraints and still get rigorous mathematical guarantees, especially when the
number of models is large so that many constraints need to be added. Our work
is based on the realization that the essential feature for random systems of
parity constraints to be useful in probabilistic model counting is that the
geometry of their set of solutions resembles an error-correcting code.Comment: To appear in SAT 1