212 research outputs found

    Who Can Win a Single-Elimination Tournament?

    Full text link
    A single-elimination (SE) tournament is a popular way to select a winner in both sports competitions and in elections. A natural and well-studied question is the tournament fixing problem (TFP): given the set of all pairwise match outcomes, can a tournament organizer rig an SE tournament by adjusting the initial seeding so that their favorite player wins? We prove new sufficient conditions on the pairwise match outcome information and the favorite player, under which there is guaranteed to be a seeding where the player wins the tournament. Our results greatly generalize previous results. We also investigate the relationship between the set of players that can win an SE tournament under some seeding (so called SE winners) and other traditional tournament solutions. In addition, we generalize and strengthen prior work on probabilistic models for generating tournaments. For instance, we show that \emph{every} player in an nn player tournament generated by the Condorcet Random Model will be an SE winner even when the noise is as small as possible, p=Θ(lnn/n)p=\Theta(\ln n/n); prior work only had such results for pΩ(lnn/n)p\geq \Omega(\sqrt{\ln n/n}). We also establish new results for significantly more general generative models.Comment: A preliminary version appeared in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 201

    Manipulating Tournaments in Cup and Round Robin Competitions

    Full text link
    In sports competitions, teams can manipulate the result by, for instance, throwing games. We show that we can decide how to manipulate round robin and cup competitions, two of the most popular types of sporting competitions in polynomial time. In addition, we show that finding the minimal number of games that need to be thrown to manipulate the result can also be determined in polynomial time. Finally, we show that there are several different variations of standard cup competitions where manipulation remains polynomial.Comment: Proceedings of Algorithmic Decision Theory, First International Conference, ADT 2009, Venice, Italy, October 20-23, 200

    Single-Elimination Brackets Fail to Approximate Copeland Winner

    Get PDF
    Single-elimination (SE) brackets appear commonly in both sports tournaments and the voting theory literature. In certain tournament models, they have been shown to select the unambiguously-strongest competitor with optimum probability. By contrast, we reevaluate SE brackets through the lens of approximation, where the goal is to select a winner who would beat the most other competitors in a round robin (i.e., maximize the Copeland score), and find them lacking. Our primary result establishes the approximation ratio of a randomly-seeded SE bracket is 2^{- Theta(sqrt{log n})}; this is underwhelming considering a 1/2 ratio is achieved by choosing a winner uniformly at random. We also establish that a generalized version of the SE bracket performs nearly as poorly, with an approximation ratio of 2^{- Omega(sqrt[4]{log n})}, addressing a decade-old open question in the voting tree literature

    Condorcet-Consistent and Approximately Strategyproof Tournament Rules

    Get PDF
    We consider the manipulability of tournament rules for round-robin tournaments of nn competitors. Specifically, nn competitors are competing for a prize, and a tournament rule rr maps the result of all (n2)\binom{n}{2} pairwise matches (called a tournament, TT) to a distribution over winners. Rule rr is Condorcet-consistent if whenever ii wins all n1n-1 of her matches, rr selects ii with probability 11. We consider strategic manipulation of tournaments where player jj might throw their match to player ii in order to increase the likelihood that one of them wins the tournament. Regardless of the reason why jj chooses to do this, the potential for manipulation exists as long as Pr[r(T)=i]\Pr[r(T) = i] increases by more than Pr[r(T)=j]\Pr[r(T) = j] decreases. Unfortunately, it is known that every Condorcet-consistent rule is manipulable (Altman and Kleinberg). In this work, we address the question of how manipulable Condorcet-consistent rules must necessarily be - by trying to minimize the difference between the increase in Pr[r(T)=i]\Pr[r(T) = i] and decrease in Pr[r(T)=j]\Pr[r(T) = j] for any potential manipulating pair. We show that every Condorcet-consistent rule is in fact 1/31/3-manipulable, and that selecting a winner according to a random single elimination bracket is not α\alpha-manipulable for any α>1/3\alpha > 1/3. We also show that many previously studied tournament formats are all 1/21/2-manipulable, and the popular class of Copeland rules (any rule that selects a player with the most wins) are all in fact 11-manipulable, the worst possible. Finally, we consider extensions to match-fixing among sets of more than two players.Comment: 20 page

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Refinements and Randomised Versions of Some Tournament Solutions

    Get PDF
    We consider voting rules that are based on the majority graph. Such rules typically output large sets of winners. Our goal is to investigate a general method which leads to refinements of such rules. In particular, we use the idea of parallel universes, where each universe is connected with a permutation over alternatives. The permutation allows us to construct resolute voting rules (i.e. rules that always choose unique winners). Such resolute rules can be constructed in a variety of ways: we consider using binary voting trees to select a single alternative. In turn this permits the construction of neutral rules that output the set the possible winners of every parallel universe. The question of which rules can be constructed in this way has already been partially studied under the heading of agenda implementability. We further propose a randomised version in which the probability of being the winner is the ratio of universes in which the alternative wins. We also investigate (typically novel) rules that elect the alternatives that have maximal winning probability. These rules typically output small sets of winners, thus provide refinements of known tournament solutions

    Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers

    Full text link
    We propose a Condorcet consistent voting method that we call Split Cycle. Split Cycle belongs to the small family of known voting methods that significantly narrow the choice of winners in the presence of majority cycles while also satisfying independence of clones. In this family, only Split Cycle satisfies a new criterion we call immunity to spoilers, which concerns adding candidates to elections, as well as the known criteria of positive involvement and negative involvement, which concern adding voters to elections. Thus, in contrast to other clone-independent methods, Split Cycle mitigates both "spoiler effects" and "strong no show paradoxes."Comment: 71 pages, 15 figures. Added a new explanation of Split Cycle in Section 1, updated the caption to Figure 2, the discussion in Section 3.3, and Remark 4.11, and strengthened Proposition 6.20 to Theorem 6.20 to cover single-voter resolvability in addition to asymptotic resolvability. Thanks to Nicolaus Tideman for helpful discussio
    corecore