361 research outputs found

    Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in d-Dimensions

    Full text link
    Motivated by low energy consumption in geographic routing in wireless networks, there has been recent interest in determining bounds on the length of edges in the Delaunay graph of randomly distributed points. Asymptotic results are known for random networks in planar domains. In this paper, we obtain upper and lower bounds that hold with parametric probability in any dimension, for points distributed uniformly at random in domains with and without boundary. The results obtained are asymptotically tight for all relevant values of such probability and constant number of dimensions, and show that the overhead produced by boundary nodes in the plane holds also for higher dimensions. To our knowledge, this is the first comprehensive study on the lengths of long edges in Delaunay graphsComment: 10 pages. 2 figures. In Proceedings of the 23rd Canadian Conference on Computational Geometry (CCCG 2011). Replacement of version 1106.4927, reference [5] adde

    Stabbing line segments with disks: complexity and approximation algorithms

    Full text link
    Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii r>0r>0 where the set of segments forms a straight line drawing G=(V,E)G=(V,E) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for r[dmin,ηdmax]r\in [d_{\min},\eta d_{\max}] and some constant η\eta where dmaxd_{\max} and dmind_{\min} are Euclidean lengths of the longest and shortest graph edges respectively. Fast O(ElogE)O(|E|\log|E|)-time O(1)O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality rηdmaxr\geq \eta d_{\max} holds uniformly for some constant η>0,\eta>0, i.e. when lengths of edges of GG are uniformly bounded from above by some linear function of r.r.Comment: 12 pages, 1 appendix, 15 bibliography items, 6th International Conference on Analysis of Images, Social Networks and Texts (AIST-2017

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Revisiting Random Points: Combinatorial Complexity and Algorithms

    Full text link
    Consider a set PP of nn points picked uniformly and independently from [0,1]d[0,1]^d for a constant dimension dd -- such a point set is extremely well behaved in many aspects. For example, for a fixed r[0,1]r \in [0,1], we prove a new concentration result on the number of pairs of points of PP at a distance at most rr -- we show that this number lies in an interval that contains only O(nlogn)O(n \log n) numbers. We also present simple linear time algorithms to construct the Delaunay triangulation, Euclidean MST, and the convex hull of the points of PP. The MST algorithm is an interesting divide-and-conquer algorithm which might be of independent interest. We also provide a new proof that the expected complexity of the Delaunay triangulation of PP is linear -- the new proof is simpler and more direct, and might be of independent interest. Finally, we present a simple O~(n4/3)\tilde{O}(n^{4/3}) time algorithm for the distance selection problem for d=2d=2

    Parallel local search

    Get PDF
    corecore