1,199 research outputs found

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Multiple classifiers in biometrics. part 1: Fundamentals and review

    Full text link
    We provide an introduction to Multiple Classifier Systems (MCS) including basic nomenclature and describing key elements: classifier dependencies, type of classifier outputs, aggregation procedures, architecture, and types of methods. This introduction complements other existing overviews of MCS, as here we also review the most prevalent theoretical framework for MCS and discuss theoretical developments related to MCS The introduction to MCS is then followed by a review of the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. This review includes general descriptions of successful MCS methods and architectures in order to facilitate the export of them to other information fusion problems. Based on the theory and framework introduced here, in the companion paper we then develop in more technical detail recent trends and developments in MCS from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in the present paper, methods in the companion paper are introduced in a general way so they can be applied to other information fusion problems as well. Finally, also in the companion paper, we discuss open challenges in biometrics and the role of MCS to advance themThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of thisthis work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    Quality-Based Conditional Processing in Multi-Biometrics: Application to Sensor Interoperability

    Full text link
    As biometric technology is increasingly deployed, it will be common to replace parts of operational systems with newer designs. The cost and inconvenience of reacquiring enrolled users when a new vendor solution is incorporated makes this approach difficult and many applications will require to deal with information from different sources regularly. These interoperability problems can dramatically affect the performance of biometric systems and thus, they need to be overcome. Here, we describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign, whose aim was to compare fusion algorithms when biometric signals were generated using several biometric devices in mismatched conditions. Quality measures from the raw biometric data are available to allow system adjustment to changing quality conditions due to device changes. This system adjustment is referred to as quality-based conditional processing. The proposed fusion approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios. This allows the easy and efficient combination of matching scores from different devices assuming low dependence among modalities. In our system, quality information is used to switch between different system modules depending on the data source (the sensor in our case) and to reject channels with low quality data during the fusion. We compare our fusion approach to a set of rule-based fusion schemes over normalized scores. Results show that the proposed approach outperforms all the rule-based fusion schemes. We also show that with the quality-based channel rejection scheme, an overall improvement of 25% in the equal error rate is obtained.Comment: Published at IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Human

    Machine Learning for Biometrics

    Get PDF
    Biometrics aims at reliable and robust identification of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are fingerprint, face, iris, palmprint and voice, but there are many other possible biometrics, including gait, ear image, retina, DNA, and even behaviours. This chapter presents a survey of machine learning methods used for biometrics applications, and identifies relevant research issues. We focus on three areas of interest: offline methods for biometric template construction and recognition, information fusion methods for integrating multiple biometrics to obtain robust results, and methods for dealing with temporal information. By introducing exemplary and influential machine learning approaches in the context of specific biometrics applications, we hope to provide the reader with the means to create novel machine learning solutions to challenging biometrics problems

    Mouth Image Based Person Authentication Using DWLSTM and GRU

    Get PDF
    Recently several classification methods were introduced to solve mouth based biometric authentication systems. The results of previous investigations into mouth prints are insufficient and produce lesser authentication results. This is mainly due to the difficulties that accompany any analysis of the mouths: mouths are very flexible and pliable, and successive mouth print impressions even those obtained from the same person may significantly differ from one other. The existing machine learning methods, may not achieve higher performance and only few methods are available using deep learning for mouth biometric authentication. The use of deep learning based mouth biometrics authentication gives higher results than usual machine learning methods. The proposed mouth based biometric authentication (MBBA) system is rigorously examined with real world data and challenges with the purpose that could be expected on mouth-based solution deployed on a mobile device. The proposed system has three major steps such as (1) database collection, (2) creating model for authentication, (3) performance evaluation. The database is collected from Annamalai University deep learning laboratory which consists of 5000 video frames belongs to 10 persons. The person authentication model is created using divergence weight long short term memory (DWLSTM) and gated recurrent unit (GRU) to capture the temporal relationship in mouth images of a person. The existing and proposed methods are implemented via the Anaconda with Jupyter notebook. Finally the results of the proposed model are compared against existing methods such as support vector machine (SVM), and Probabilistic Neural Network (PNN) with respect to metrics like precision, recall, F1-score, and accuracy of mouth

    SURVEY OF SOFT BIOMETRIC TECHNIQUES FOR GENDER IDENTIFICATION

    Get PDF
    Biometrics checks can be productively utilized for localization of intrusion in access control systems by utilizing soft computing frameworks.Biometrics procedures can be to a great extent separated into conventional and soft biometrics. The study presents a survey of the available softtechniques and comparison for gender identification from biometric techniques
    corecore