58,199 research outputs found

    Can non-private channels transmit quantum information?

    Full text link
    We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions are necessarily private, this would imply a large violation of additivity for the private capacity. Specifically, we present channels which display either (1) A large joint quantum capacity but very small individual private capacities or (2) a severe violation of additivity for the Holevo information.Comment: We both think so. 4 pages and 3 figures explain wh

    Optimality of private quantum channels

    Full text link
    We addressed the question of optimality of private quantum channels. We have shown that the Shannon entropy of the classical key necessary to securely transfer the quantum information is lower bounded by the entropy exchange of the private quantum channel E\cal E and von Neumann entropy of the ciphertext state ϱ(0)\varrho^{(0)}. Based on these bounds we have shown that decomposition of private quantum channels into orthogonal unitaries (if exists) is optimizing the entropy. For non-ancillary single qubit PQC we have derived the optimal entropy for arbitrary set of plaintexts. In particular, we have shown that except when the (closure of the) set of plaintexts contains all states, one bit key is sufficient. We characterized and analyzed all the possible single qubit private quantum channels for arbitrary set of plaintexts. For the set of plaintexts consisting of all qubit states we have characterized all possible approximate private quantum channels and we have derived the relation between the security parameter and the corresponding minimal entropy.Comment: no commen

    Maximal Privacy Without Coherence

    Get PDF
    Privacy lies at the fundament of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N_d with input dimension d^2, quantum capacity Q(N_d) <= 1, and private capacity P(N_d) = log d. These channels asymptotically saturate an interesting inequality P(N) <= (log d_A + Q(N))/2 for any channel N with input dimension d_A, and capture the essence of privacy stripped of the confounding influence of coherence.Comment: 6 pages. Proof of Eq.(13) slightly revise

    Converse bounds for private communication over quantum channels

    Get PDF
    This paper establishes several converse bounds on the private transmission capabilities of a quantum channel. The main conceptual development builds firmly on the notion of a private state, which is a powerful, uniquely quantum method for simplifying the tripartite picture of privacy involving local operations and public classical communication to a bipartite picture of quantum privacy involving local operations and classical communication. This approach has previously led to some of the strongest upper bounds on secret key rates, including the squashed entanglement and the relative entropy of entanglement. Here we use this approach along with a "privacy test" to establish a general meta-converse bound for private communication, which has a number of applications. The meta-converse allows for proving that any quantum channel's relative entropy of entanglement is a strong converse rate for private communication. For covariant channels, the meta-converse also leads to second-order expansions of relative entropy of entanglement bounds for private communication rates. For such channels, the bounds also apply to the private communication setting in which the sender and receiver are assisted by unlimited public classical communication, and as such, they are relevant for establishing various converse bounds for quantum key distribution protocols conducted over these channels. We find precise characterizations for several channels of interest and apply the methods to establish several converse bounds on the private transmission capabilities of all phase-insensitive bosonic channels.Comment: v3: 53 pages, 3 figures, final version accepted for publication in IEEE Transactions on Information Theor
    • …
    corecore