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Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is
inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there
are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless
send private classical information. Here, we ask how much private classical information a channel can
transmit if it has little quantum capacity. We present a class of channels N d with input dimension d2,
quantum capacity QðN dÞ ≤ 1, and private capacity PðN dÞ ¼ log d. These channels asymptotically
saturate an interesting inequality PðN Þ ≤ ð1=2Þ½log dA þQðN Þ� for any channel N with input dimension
dA and capture the essence of privacy stripped of the confounding influence of coherence.
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Any communication link can be modeled as a (noisy)
quantum channel. Given a sender, Alice, and a receiver,
Bob, a quantum channel from Alice to Bob is a completely
positive trace preserving map from an input space A to an
output space B. The capability of a quantum channel for
communication is measured by various capacities, one for
each type of information to be transmitted. The classical
capacity CðN Þ quantifies the capability of a quantum
channel N for transmitting classical information, in bits
per channel use. The private capacity PðN Þ gives the
maximum rate of private classical communication and
quantifies the optimal performance for key exchange.
Finally, the quantum capacity QðN Þ, measured in qubits
per channel use, establishes the ultimate limit for trans-
mitting quantum information and the performance of
quantum error correction.
The three capacities mentioned above clearly satisfy

QðN Þ ≤ PðN Þ ≤ CðN Þ. The analogies between coherent
transmission and privacy, and between entanglement and
a private key, strongly suggest that QðN Þ ¼ PðN Þ.
Surprisingly, it was shown in [1] that not only can P
and Q differ, there are channels too noisy to transmit any
quantum information [that is, QðN Þ ¼ 0] but that can
nevertheless be used to establish privacy [PðN Þ > 0]. The
central idea of [1] concerns private states that by their
structure embody perfectly secure classical key, much as
maximally entangled pure states embody perfectly coherent
correlation.
While [1] draws a qualitative distinction between the

private and the quantum capacities, it remains unclear how
big the difference can be. If the capacities were always
close, then privacy and coherence would still be closely
related concepts and the distinction would have little
practical relevance. Our contribution is to present a class
of channels withQðN dÞ ≤ 1 and PðN dÞ ¼ logd, where d2

is the input dimension and log is taken base 2 throughout
the Letter. We further establish that such a separation is
tight, by proving an inequality,

PðN Þ ≤ 1

2
½logdA þQðN Þ�; ð1Þ

for any channel N with input dimension dA, quantifying
the effect of incoherence in the channel transmission on
privacy: inasmuch as a channel cannot simply transmit
quantum information, it must devote half of its input
space to acting as a “shield” system (as defined in [1]).
While Eq. (1) can be inferred from properties of squashed
entanglement of quantum states [2,3], this particular form
appears to be new. Our relatively simple proof involves
very different techniques.
As an aside, our channels combine features of private

states from [1] and retrocorrectable or random-phase-
coupling channels of [4–7] (these channels have large
assisted capacities but small C, P, and Q). In addition to
finding a very tight bound onQðN dÞ, we can also compute
both PðN dÞ and CðN dÞ, a relative rarity in quantum
information, especially for a highly nontrivial channel.
Upper bound on privacy.—Recall that any quantum

channel can be expressed as an isometry followed by a
partial trace, N ðρÞ ¼ trEUρU†, where U∶A → BE with
U†U ¼ I. The complementary channel acts as N̂ ðρÞ ¼
trBUρU†, and allows us to define the coherent information
of a channel as

Qð1ÞðN Þ ¼ max
ϕA

IcohðN ;ϕAÞ ≔ max
ϕA

½SðBÞ − SðEÞ�;

where the maximization is taken over input quantum states
ϕA, and SðBÞ, SðEÞ are the von Neumann entropies of
ρB ¼ N ðϕAÞ and ρE ¼ N̂ ðϕAÞ, respectively. In turn, the
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quantum capacity is proved [8–10] to be the regularized
coherent information: QðN Þ ¼ limn→∞ð1=nÞQð1ÞðN⊗nÞ.
We say that a quantum channel N is degradable if N̂ ¼
D∘N for some channel D [11] (N can be degraded to
generate N̂ ). For degradable channels, PðN Þ ¼ QðN Þ ¼
Qð1ÞðN Þ [12]. Degradable channels also provide a powerful
tool for upper bounding the capacities of general channels
[13]. If a channel N ¼ L∘M is a composition of two
channels L and M with M degradable, we have

QðN Þ ≤ PðN Þ ¼ PðL∘MÞ ≤ PðMÞ ¼ Qð1ÞðMÞ: ð2Þ

We now have all the tools for proving Eq. (1). For any
channel N , define M as

MðρÞ ¼ 1

2
½ρ ⊗ j0ih0j þN ðρÞ ⊗ j1ih1j�: ð3Þ

Then, N ¼L∘M, where LðσÞ ¼ ðN ⊗ Π0 þ I ⊗ Π1ÞðσÞ
and ΠiðμÞ ¼ hijμjii. To see thatM is degradable, note that
the complementary channel of M is

M̂ðρÞ ¼ 1

2
½jeihej ⊗ j0ih0j þ N̂ ðρÞ ⊗ j1ih1j�; ð4Þ

where jeihej is an orthogonal erasure flag. Choose a
degrading map D that first flips the flag qubit (the second
register), and then conditioned on the flag being j1i or j0i,
applies N̂ to the first register or resets it to jeihej. So,
M̂ ¼ D∘M. Now, applying Eq. (2),

PðN Þ ≤ Qð1ÞðMÞ
¼ max

ϕA

½SðB1B2Þ − SðE1E2Þ�

¼ max
ϕA

1

2
½SðϕAÞ þ SðN ðϕAÞÞ − SðN̂ ðϕAÞÞ�

≤
1

2
½log dA þQð1ÞðN Þ�:

This bound is, in fact, stronger than Eq. (1), since
Qð1ÞðN Þ ≤ QðN Þ.
Channel construction.—The family of channels N d

asymptotically saturating Eq. (1) is given by

(5)

The isometric extension of the channel N d is given by
the operations in the dashed box. N d has two input

registers A1 and A2, each of dimension d. A random
unitary V is applied to A2, followed by a controlled phase
gate P ¼ P

i;jω
ijjiihij ⊗ jjihjj acting on A1A2, where ω is

a primitive dth root of unity. Bob receives only A1 (now
relabeled B) and “V,” which denotes a classical register
with a description of V. The A2 register is discarded. The
complementary channel has outputs A2 and “V.” More
formally, let WV ¼ PðI ⊗ VÞ, N VðρÞ ¼ trEWVρW

†
V , and

N d ¼ EVN V ⊗ jVihVjVB
, where the register VB holds

“V.” The isometric extension is given by

UdjψiA1A2
¼

X
V

ffiffiffiffiffiffiffiffiffiffiffiffi
prðVÞ

p
ðWV jψiA1A2

Þ ⊗ jViVB
⊗ jViVE

;

and the complementary channel acts as N̂d ðρÞ ¼
trBVBUd ρU

†
d ¼ EV trBWVρW

†
V ⊗ jVihVjVB .

Here is the intuition behind the construction: The
classical capacity of this channel is at least logd, since
the d computation basis states of A1 are transmitted without
error. Furthermore, we will see that inserting a maximally
mixed state into A2 keeps the environment ignorant of
the transmitted message so PðN dÞ ≥ logd. However, as
the classical capacity is no greater than the output entropy,
and “V” is independent of the input, CðN dÞ ≤ log d,
so, CðN dÞ ¼ PðN dÞ ¼ log d. However, the channel is
constructed to suppress the quantum capacity, since
without knowing V, Alice cannot avoid the P gate from
entangling A1 with A2, thereby dephasing A1. We will
prove QðN dÞ ≤ 1.
Our proofs of the above statements hold for any V drawn

from a so-called exact unitary 2-design, and thus, V can be
a random Clifford gate [14]. In our work to lower bound
QðN Þ, a Haar distributed V is analyzed as a first attempt.
We expect a similar conclusion for random Clifford gate V.
Private capacity.—For an ensemble E ¼ fpi;ϕig and

channel N , the private information is defined as

Pð1ÞðN ; EÞ ¼ χðN ; EÞ − χðN̂ ; EÞ; ð6Þ

with Holevo information χðN ; EÞ ¼ SðρÞ −P
ipiSðρiÞ

evaluated on the induced ensemble N ðEÞ ¼ fpi; ρi ¼
N ðϕiÞg and average state ρ ¼ P

ipiρi [similarly for
χðN̂ ; EÞ]. For any ensemble E, Pð1ÞðN ; EÞ is an achievable
rate for private communication and thus a lower bound on
PðN Þ [10].
For our channel N d, choosing probabilities pi ¼ 1=d

and states ϕi ¼ jiihijA1
⊗ ðI=dÞA2

for i ¼ 1;…; d gives
χðN d; EÞ ¼ logd and χðN̂ d; EÞ ¼ 0, so PðN dÞ ≥ log d,
as claimed.
Bipartite states carrying a key (called private states) are

defined and characterized in [1]. We note that the Choi state
of N d with Alice holding R1; R2 is an exact private state
of key systems R1 and B and a single shield system R2.
We refer interested readers to Ref. [1] for further details.
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Upper bound on quantum capacity.—To get an upper
bound on QðN dÞ, we consider the asymptotic behavior of
the coherent information, Qð1ÞðN⊗n

d Þ, for arbitrarily large
n. We first define suitable notations. We group together the
first input A1 from all n channel uses, call it An

1 , and we
similarly define An

2 , B
n, Vn

B, and V
n
E. We use x to denote an

n-tuple of integers ðx1; x2;…; xnÞ, where each xi has range
f0; 1;…; d − 1g, and similarly for y. Finally, a random V is
drawn from each channel use, and we denote the tensor
product of n such independent and identically drawn
unitaries by V.
We consider the n-shot coherent information

Qð1ÞðN⊗n
d Þ ¼ maxϕAn

1
An
2

½SðBnVn
BÞ − SðEnVn

EÞ�. Since Bob

and the environment receive the same classical description
“V,” Qð1ÞðN⊗n

d Þ ¼ maxϕAn
1
An
2

½SðBnjVn
BÞ − SðEnjVn

EÞ�. First,
we show that the optimal input state has a special form.

Lemma 1: For the channel N d of Eq (5), the coherent
information IcohðN⊗n

d ;ϕAn
1
An
2
Þ is maximized on states of the

form

ϕAn
1
An
2
¼

X
x

pxjxihxjAn
1
⊗ jφxihφxjAn

2
; ð7Þ

where x ¼ ðx1;…; xnÞ and jxi ¼ ⊗n
i¼1 jxii is a standard

basis state on An
1 .

Proof: First, we show that the optimal state has the form

σAn
1
An
2
¼

X
x

pxjxihxjAn
1
⊗ φx

An
2
; ð8Þ

where φx
An
2
is potentially mixed. To see this, let ψAn

1
An
2
be an

arbitrary input state, and σAn
1
An
2
¼ ðP⊗n ⊗ IAn

2
ÞðψAn

1
An
2
Þ,

where PðρÞ ¼ ð1=dÞPd−1
i¼0 ZiρZ

†
i is the completely de-

phasing map. So, σAn
1
An
2
indeed has the form given by

Eq. (8). Now,

IcohðN⊗n
d ; σAn

1
An
2
Þ ¼ IcohðN⊗n

d ∘ðP⊗n ⊗ IAn
2
Þ;ψAn

1
An
2
Þ

¼ IcohðP⊗n∘N⊗n
d ;ψAn

1
An
2
Þ ≥ IcohðN⊗n

d ;ψAn
1
An
2
Þ;

since P commutes with N d, and P is unital so the entropy
cannot decrease. Meanwhile, the reduced state on EnVn

E
remains the same, so the coherent information cannot
decrease.
Next, we show that φx

An
2
in Eq. (8) can be taken to be pure.

Fix an arbitrary x. Let φx
An
2
¼ P

wqðwjxÞjμxwihμxwj, and for
each w, let

ηx;wAn
1
An
2
¼ pxjxihxj ⊗ jμxwihμxwj þ

X
y≠x

pyjyihyj ⊗ φy
An
2
:

We now show that

∃w0 s:t: IcohðN⊗n
d ; ηx;w

0
An
1
An
2
Þ ≥ IcohðN⊗n

d ; σAn
1
An
2
Þ: ð9Þ

To see this, note that for each x and w,
N⊗n

d ðσAn
1
An
2
Þ ¼ N⊗n

d ðηx;wAn
1
An
2
Þ, so those states have the same

entropy. For the complementary channel, observe that by
construction,

σAn
1
An
2
¼

X
w

qðwjxÞηx;wAn
1
An
2
;

so N̂⊗n
d ðσAn

1
An
2
Þ ¼ P

wqðwjxÞN̂⊗n
d ðηx;wAn

1
An
2
Þ, and by concav-

ity of entropy,

SðEnVn
EÞN̂⊗n

d ðσAn
1
An
2
Þ ≥

X
w

qðwjxÞSðEnVn
EÞN̂⊗n

d ðηx;w
An
1
An
2

Þ;

so Eq. (9) holds. Iterating this process gives an optimal state
of the form given by Eq. (7). ▪
The optimal input in Eq. (7) gives a conditional output

entropy of SðBnjVn
BÞ ¼ SðpxÞ ¼ −

P
xpx logpx. (Taking

classical distributions as diagonal density matrices, we use
S to denote both the von Neumann and the Shannon
entropies.) We need to compare SðBnjVn

BÞ to the condi-
tional output entropy of the environment, SðEnjVn

EÞ. To do
so, note that the controlled-phase gate for one channel can
be expressed as P ¼ P

ijiihij ⊗ Zi, where Zijji ¼ ωijjji.
For the n-tuple x, we define Zx ¼ Zx1 ⊗ � � � ⊗ Zxn . The
output state on the environment is

ρEn;Vn
E
¼ EV

X
x

pxρ
x;V
En ⊗ jVihVjVn

E
; ð10Þ

where

ρx;VEn ¼ ZxVjφxihφxjV†Z−x: ð11Þ

If, for each V and x ≠ y, ρx;VEn and ρy;VEn were orthogonal, we
would have SðEnjVn

EÞ ¼ SðpxÞ and Qð1ÞðN⊗n
d Þ ¼ 0.

Instead, we prove in the Supplemental Material (Lemma
I.2) [16] that the Hilbert-Schmidt inner product
EVtrρ

x;V
En ρy;VEn is low on average (over the choice of V).

Lemma 2: The states ρx;VEn given by Eq. (11) satisfy

EVtrρ
x;V
En ρy;VEn ≤

1

ðd − 1ÞdHðx;yÞ ;

where dHðx; yÞ ¼ jfijxi ≠ yigj is the Hamming distance
between x and y.
Next, we derive a lower bound on the output entropy

of the environment, by considering the Rényi-2 entropy of
many copies of ρVEn using Lemma 2.

Lemma 3: For an input given by Eq. (7), conditioned
on V, the output state on the environment ρVEn ¼P

x∈½d�npxρ
x;V
En satisfies
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EVtrðρVEnÞ2 ≤ 2n
X
x

p2
x; ð12Þ

and

SðEnjVn
EÞ ¼ EVSðρVEnÞ ≥ SðXÞ − n: ð13Þ

Proof: To prove the first statement Eq. (12),

EVtrðρVEnÞ2 ¼ EV

X
x;y

pxpytrðρx;VEn ρy;VEn Þ

≤
X
x;y

pxpy
1

ðd − 1ÞdHðx;yÞ

¼
Xn
w¼0

1

ðd − 1Þw
X
x

X
yjdHðx;yÞ¼w

pxpy

¼
Xn
w¼0

1

ðd − 1Þw
X
jej¼w

X
x

pxpxþe;

where the first inequality follows from Lemma 2. By the
Cauchy-Schwartz inequality,

X
x

pxpxþe ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

p2
x

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

p2
xþe

r
¼

X
x

p2
x:

We thus have

EVtrðρVEnÞ2 ≤
Xn
w¼0

1

ðd − 1Þw
X
jej¼w

X
x

p2
x

¼
Xn
w¼0

1

ðd − 1Þw
�
n
w

�
ðd − 1Þw

X
x

p2
x

¼ 2n
X
x

p2
x:

For the second statement Eq. (13), we first provide some
intuition and a proof sketch. By the convexity of − log,
Eq. (12) translates to

EVS2ðρVEnÞ ≥ S2ðXÞ − n; ð14Þ

where the Rényi-2 entropy S2 is defined as
S2ðρÞ ≔ − log trρ2. If we can turn S2 into S, we would
have Eq. (13). We cannot do so on one copy of ρVEn , but we
can almost do so on m copies of ρVEn if we restrict to the
“typical” approximation of ρVEn , explained below.
Consider the case that we input m copies of the state

given by Eq. (7) into mn copies of the channel N d.
Conditioning on the random unitaries of the channels, this
results in an output state ρV

m

Enm ¼⊗m
i¼1 ρ

Vi
En on the environ-

ment. The state ρV
m

Enm involves a mixture over ðXÞm, which is

m i.i.d. copies ofX. Let ~Xm be the restriction of ðXÞm to its
typical set fxm∶j − ð1=mÞ logpxm − SðXÞj ≤ ϵg. The typ-
ical set contains only xm with almost equal probabilities.
The asymptotic equipartition theorem (cf. Ref. [15], for
example) says that, for any ϵ > 0, ∃m such that with
probability at least 1 − ϵ, xm is in the typical set.
Consequently, the state ρV

m

Enm can be well approximated
by ~ρV

m

Enm, where the mixture is only taken over ~Xm.
Note that Eq. (12) applies to ~ρV

m

Enm , so

EVm trð~ρVm

EnmÞ2 ≤ 2mn
X

xm∈ ~Xm

�
pxmP

xm∈ ~Xm
pxm

�
2

: ð15Þ

Taking − log of the above and using convexity,

EVmS2ð~ρVm

EnmÞ ≥ S2ð ~XmÞ −mn: ð16Þ

Using the general property that S ≥ S2, and the continuity
of S, the left-hand side of the above equation is approx-
imately upper bounded by mEVSðρVEnÞ. On the right-hand
side, S2ð ~XmÞ ≈mSðXÞ because the typical set contains
roughly equiprobably elements, so the two entropies are
similar. Finally, dividing by m gives Eq. (13).
We provide an airtight proof in the Supplemental

Material (Lemma I.3) [16]. There, we have a version of
Eq. (13) that includes all the correction terms incurred by
the two approximations taken in the last paragraph. Then,
we show that when m is large and ϵ is small, the correction
terms vanish, thereby proving Eq. (13). ▪
Together, Qð1ÞðN⊗n

d Þ ≤ n, so QðN dÞ ≤ 1.
When proving the upper bound on Q, we cannot assume

a priori that the entropy of BnVn
B is maximal for the optimal

input, ruling out the simpler path to show that the entropy
of EnVn

E is maximal. Instead, we have to show that
SðBnVn

BÞ − SðEnVn
EÞ is small for all distributions.

Perhaps our technique has other applications. Also
Lemma 3 effectively converts a statement concerning the
Rényi-2 entropy into an analogue for the entropy for a large
family of states, which may be of interest elsewhere.
Achievable quantum rate.—We have shown that

QðN dÞ ≤ 1, but could it actually be 0? It turns out that
it cannot. In the Supplemental Material [16], we consider a
specific input state ϕA1A2

¼ ðI=dÞA1
⊗ j0ih0jA2

for one use
of the channel, and prove an explicit lower boundQðN dÞ ≥
Qð1ÞðN dÞ ≥ ð1 − γÞ log e ≈ 0.61 as d → ∞, where γ ¼
limt→∞ð

P
t
k¼1

1
k − ln tÞ is the Euler-Mascheroni constant.

Here, we provide some intuition behind the choice of the
input and the lower bound. First, note that the input (given
for one use of the channel) still has the form given by
Eq. (7) (with px ¼ 1=d for all x), so the subsequent
analysis holds. We revisit the discussion after Eq. (11),
but now with the converse in mind, and with n ¼ 1
(omitted): If for some V, ρx;VE and ρy;VE are not orthogonal,
then SðEjVEÞ < SðpxÞ and Qð1ÞðN dÞ > 0. For the specific
input state, ϕA1A2

¼ ðI=dÞA1
⊗ j0ih0jA2

, jφxi ¼ j0i for

PRL 113, 030502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
18 JULY 2014

030502-4



all x. So, for any x ≠ y, ρx;VE and ρy;VE are orthogonal only
for a vanishing fraction of all possible V, contributing to a
significantly large Qð1ÞðN dÞ.
Discussion.—In [1] it was shown that privacy and

distillable entanglement can be different, indeed privacy
can be nonzero even for bound-entangled states. What we
have shown is similar, but somewhat incomparable. Our
result is stronger in that the separation is maximal,
saturating Eq. (1), but it only applies to the channel case,
implicitly not allowing classical communication. The
two-way assisted quantum capacity Q2ðN dÞ is maximal
(not zero!) and equal to the private capacity log d. An open
question is how big the separation can be in the two-way
setting?
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