17,367 research outputs found

    Audit-based Compliance Control (AC2) for EHR Systems

    Get PDF
    Traditionally, medical data is stored and processed using paper-based files. Recently, medical facilities have started to store, access and exchange medical data in digital form. The drivers for this change are mainly demands for cost reduction, and higher quality of health care. The main concerns when dealing with medical data are availability and confidentiality. Unavailability (even temporary) of medical data is expensive. Physicians may not be able to diagnose patients correctly, or they may have to repeat exams, adding to the overall costs of health care. In extreme cases availability of medical data can even be a matter of life or death. On the other hand, confidentiality of medical data is also important. Legislation requires medical facilities to observe the privacy of the patients, and states that patients have a final say on whether or not their medical data can be processed or not. Moreover, if physicians, or their EHR systems, are not trusted by the patients, for instance because of frequent privacy breaches, then patients may refuse to submit (correct) information, complicating the work of the physicians greatly. \ud \ud In traditional data protection systems, confidentiality and availability are conflicting requirements. The more data protection methods are applied to shield data from outsiders the more likely it becomes that authorized persons will not get access to the data in time. Consider for example, a password verification service that is temporarily not available, an access pass that someone forgot to bring, and so on. In this report we discuss a novel approach to data protection, Audit-based Compliance Control (AC2), and we argue that it is particularly suited for application in EHR systems. In AC2, a-priori access control is minimized to the mere authentication of users and objects, and their basic authorizations. More complex security procedures, such as checking user compliance to policies, are performed a-posteriori by using a formal and automated auditing mechanism. To support our claim we discuss legislation concerning the processing of health records, and we formalize a scenario involving medical personnel and a basic EHR system to show how AC2 can be used in practice. \ud \ud This report is based on previous work (Dekker & Etalle 2006) where we assessed the applicability of a-posteriori access control in a health care scenario. A more technically detailed article about AC2 recently appeared in the IJIS journal, where we focussed however on collaborative work environments (Cederquist, Corin, Dekker, Etalle, & Hartog, 2007). In this report we first provide background and related work before explaining the principal components of the AC2 framework. Moreover we model a detailed EHR case study to show its operation in practice. We conclude by discussing how this framework meets current trends in healthcare and by highlighting the main advantages and drawbacks of using an a-posteriori access control mechanism as opposed to more traditional access control mechanisms

    Obligations of trust for privacy and confidentiality in distributed transactions

    Get PDF
    Purpose – This paper aims to describe a bilateral symmetric approach to authorization, privacy protection and obligation enforcement in distributed transactions. The authors introduce the concept of the obligation of trust (OoT) protocol as a privacy assurance and authorization mechanism that is built upon the XACML standard. The OoT allows two communicating parties to dynamically exchange their privacy and authorization requirements and capabilities, which the authors term a notification of obligation (NoB), as well as their commitments to fulfilling each other's requirements, which the authors term signed acceptance of obligations (SAO). The authors seek to describe some applicability of these concepts and to show how they can be integrated into distributed authorization systems for stricter privacy and confidentiality control. Design/methodology/approach – Existing access control and privacy protection systems are typically unilateral and provider-centric, in that the enterprise service provider assigns the access rights, makes the access control decisions, and determines the privacy policy. There is no negotiation between the client and the service provider about which access control or privacy policy to use. The authors adopt a symmetric, more user-centric approach to privacy protection and authorization, which treats the client and service provider as peers, in which both can stipulate their requirements and capabilities, and hence negotiate terms which are equally acceptable to both parties. Findings – The authors demonstrate how the obligation of trust protocol can be used in a number of different scenarios to improve upon the mechanisms that are currently available today. Practical implications – This approach will serve to increase trust in distributed transactions since each communicating party receives a difficult to repudiate digitally signed acceptance of obligations, in a standard language (XACML), which can be automatically enforced by their respective computing machinery. Originality/value – The paper adds to current research in trust negotiation, privacy protection and authorization by combining all three together into one set of standardized protocols. Furthermore, by providing hard to repudiate signed acceptance of obligations messages, this strengthens the legal case of the injured party should a dispute arise

    Belief Semantics of Authorization Logic

    Full text link
    Authorization logics have been used in the theory of computer security to reason about access control decisions. In this work, a formal belief semantics for authorization logics is given. The belief semantics is proved to subsume a standard Kripke semantics. The belief semantics yields a direct representation of principals' beliefs, without resorting to the technical machinery used in Kripke semantics. A proof system is given for the logic; that system is proved sound with respect to the belief and Kripke semantics. The soundness proof for the belief semantics, and for a variant of the Kripke semantics, is mechanized in Coq

    A survey of security issue in multi-agent systems

    Get PDF
    Multi-agent systems have attracted the attention of researchers because of agents' automatic, pro-active, and dynamic problem solving behaviors. Consequently, there has been a rapid development in agent technology which has enabled us to provide or receive useful and convenient services in a variety of areas such as banking, transportation, e-business, and healthcare. In many of these services, it is, however, necessary that security is guaranteed. Unless we guarantee the security services based on agent-based systems, these services will face significant deployment problems. In this paper, we survey existing work related to security in multi-agent systems, especially focused on access control and trust/reputation, and then present our analyses. We also present existing problems and discuss future research challenges. © Springer Science+Business Media B.V 2011

    Designing privacy for scalable electronic healthcare linkage

    Get PDF
    A unified electronic health record (EHR) has potentially immeasurable benefits to society, and the current healthcare industry drive to create a single EHR reflects this. However, adoption is slow due to two major factors: the disparate nature of data and storage facilities of current healthcare systems and the security ramifications of accessing and using that data and concerns about potential misuse of that data. To attempt to address these issues this paper presents the VANGUARD (Virtual ANonymisation Grid for Unified Access of Remote Data) system which supports adaptive security-oriented linkage of disparate clinical data-sets to support a variety of virtual EHRs avoiding the need for a single schematic standard and natural concerns of data owners and other stakeholders on data access and usage. VANGUARD has been designed explicit with security in mind and supports clear delineation of roles for data linkage and usage

    Chip and Skim: cloning EMV cards with the pre-play attack

    Full text link
    EMV, also known as "Chip and PIN", is the leading system for card payments worldwide. It is used throughout Europe and much of Asia, and is starting to be introduced in North America too. Payment cards contain a chip so they can execute an authentication protocol. This protocol requires point-of-sale (POS) terminals or ATMs to generate a nonce, called the unpredictable number, for each transaction to ensure it is fresh. We have discovered that some EMV implementers have merely used counters, timestamps or home-grown algorithms to supply this number. This exposes them to a "pre-play" attack which is indistinguishable from card cloning from the standpoint of the logs available to the card-issuing bank, and can be carried out even if it is impossible to clone a card physically (in the sense of extracting the key material and loading it into another card). Card cloning is the very type of fraud that EMV was supposed to prevent. We describe how we detected the vulnerability, a survey methodology we developed to chart the scope of the weakness, evidence from ATM and terminal experiments in the field, and our implementation of proof-of-concept attacks. We found flaws in widely-used ATMs from the largest manufacturers. We can now explain at least some of the increasing number of frauds in which victims are refused refunds by banks which claim that EMV cards cannot be cloned and that a customer involved in a dispute must therefore be mistaken or complicit. Pre-play attacks may also be carried out by malware in an ATM or POS terminal, or by a man-in-the-middle between the terminal and the acquirer. We explore the design and implementation mistakes that enabled the flaw to evade detection until now: shortcomings of the EMV specification, of the EMV kernel certification process, of implementation testing, formal analysis, or monitoring customer complaints. Finally we discuss countermeasures
    corecore