212 research outputs found

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    Bidding Strategy for Networked Microgrids in the Day-Ahead Electricity Market

    Get PDF
    In recent years, microgrids have drawn increasing attention from both academic and industrial sectors due to their enormous potential benefits to the power systems. Microgrids are essentially highly-customized small-scale power systems. Microgrids’ islanding capability enables microgrids to conduct more flexible and energy-efficient operations. Microgrids have proved to be able to provide reliable and environmental-friendly electricity to quality-sensitive or off-grid consumers. In addition, during the grid-connected operation mode, microgrids can also provide support to the utility grid. World-widely continuous microgrid deployments indicate a paradigm shift from traditional centralized large-scale systems toward more distributed and customized small-scale systems. However, microgrids can cause as many problems as it solves. More efforts are needed to address these problems caused by microgrids integration. Considering there will be multiple microgrids in future power systems, the coordination problems between individual microgrids remain to be solved. Aiming at facilitating the promotion of microgrids, this thesis investigates the system-level modeling methods for coordination between multiple microgrids in the context of participating in the market. Firstly, this thesis reviews the background and recent development of microgrid coordination models. Problems of existing studies are identified. Motivated by these problems, the research objectives and structure of this thesis are presented. Secondly, this thesis examines and compares the most common frameworks for optimization under uncertainty. An improved unit commitment model considering uncertain sub-hour wind power ramp behaviors is presented to illustrate the reformulation and solution method of optimization models with uncertainty. Next, the price-maker bidding strategy for collaborative networked microgrids is presented. Multiple microgrids are coordinated as a single dispatchable entity and participate in the market as a price-maker. The market-clearing process is modeled using system residual supply/demand price-quota curves. Multiple uncertainty sources in the bidding model are mitigated with a hybrid stochastic-robust optimization framework. What’s more, this thesis further considers the privacy concerns of individual microgrids in the coordination process. Therefore a privacy-preserving solution method based on Dantzig-Wolfe decomposition is proposed to solve the bidding problem. Both computational and economic performances of the proposed model are compared with the performances of conventional centralized coordination framework. Lastly, this thesis provides suggestions on future research directions of coordination problems among multiple microgrids

    A Distributed and Robust Energy Management System for Networked Hybrid AC/DC Microgrids

    Get PDF

    Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm

    Full text link
    The implementation of a multi-microgrid (MMG) system with multiple renewable energy sources enables the facilitation of electricity trading. To tackle the energy management problem of a MMG system, which consists of multiple renewable energy microgrids belonging to different operating entities, this paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework. To enhance the generalization ability of dealing with various uncertainties, we also propose an improved multi-agent soft actor-critic (MASAC) algorithm, which facilitates en-ergy transactions between multi-agents in MMG, and employs automated machine learning (AutoML) to optimize the MASAC hyperparameters to further improve the generalization of deep reinforcement learning (DRL). The test results demonstrate that the proposed method successfully achieves power complementarity between different entities, and reduces the MMG system operating cost. Additionally, the proposal significantly outperforms other state-of-the-art reinforcement learning algorithms with better economy and higher calculation efficiency.Comment: Accepted by Energie

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Resilience-driven planning and operation of networked microgrids featuring decentralisation and flexibility

    Get PDF
    High-impact and low-probability extreme events including both man-made events and natural weather events can cause severe damage to power systems. These events are typically rare but featured in long duration and large scale. Many research efforts have been conducted on the resilience enhancement of modern power systems. In recent years, microgrids (MGs) with distributed energy resources (DERs) including both conventional generation resources and renewable energy sources provide a viable solution for the resilience enhancement of such multi-energy systems during extreme events. More specifically, several islanded MGs after extreme events can be connected with each other as a cluster, which has the advantage of significantly reducing load shedding through energy sharing among them. On the other hand, mobile power sources (MPSs) such as mobile energy storage systems (MESSs), electric vehicles (EVs), and mobile emergency generators (MEGs) have been gradually deployed in current energy systems for resilience enhancement due to their significant advantages on mobility and flexibility. Given such a context, a literature review on resilience-driven planning and operation problems featuring MGs is presented in detail, while research limitations are summarised briefly. Then, this thesis investigates how to develop appropriate planning and operation models for the resilience enhancement of networked MGs via different types of DERs (e.g., MGs, ESSs, EVs, MESSs, etc.). This research is conducted in the following application scenarios: 1. This thesis proposes novel operation strategies for hybrid AC/DC MGs and networked MGs towards resilience enhancement. Three modelling approaches including centralised control, hierarchical control, and distributed control have been applied to formulate the proposed operation problems. A detailed non-linear AC OPF algorithm is employed to model each MG capturing all the network and technical constraints relating to stability properties (e.g., voltage limits, active and reactive power flow limits, and power losses), while uncertainties associated with renewable energy sources and load profiles are incorporated into the proposed models via stochastic programming. Impacts of limited generation resources, load distinction intro critical and non-critical, and severe contingencies (e.g., multiple line outages) are appropriately captured to mimic a realistic scenario. 2. This thesis introduces MPSs (e.g., EVs and MESSs) into the suggested networked MGs against the severe contingencies caused by extreme events. Specifically, time-coupled routing and scheduling characteristics of MPSs inside each MG are modelled to reduce load shedding when large damage is caused to each MG during extreme events. Both transportation networks and power networks are considered in the proposed models, while transporting time of MPSs between different transportation nodes is also appropriately captured. 3. This thesis focuses on developing realistic planning models for the optimal sizing problem of networked MGs capturing a trade-off between resilience and cost, while both internal uncertainties and external contingencies are considered in the suggested three-level planning model. Additionally, a resilience-driven planning model is developed to solve the coupled optimal sizing and pre-positioning problem of MESSs in the context of decentralised networked MGs. Internal uncertainties are captured in the model via stochastic programming, while external contingencies are included through the three-level structure. 4. This thesis investigates the application of artificial intelligence techniques to power system operations. Specifically, a model-free multi-agent reinforcement learning (MARL) approach is proposed for the coordinated routing and scheduling problem of multiple MESSs towards resilience enhancement. The parameterized double deep Q-network method (P-DDQN) is employed to capture a hybrid policy including both discrete and continuous actions. A coupled power-transportation network featuring a linearised AC OPF algorithm is realised as the environment, while uncertainties associated with renewable energy sources, load profiles, line outages, and traffic volumes are incorporated into the proposed data-driven approach through the learning procedure.Open Acces
    • …
    corecore