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 Abstract 

In recent years, microgrids have drawn increasing attention from both academic and industrial 

sectors due to their enormous potential benefits to the power systems. Microgrids are essentially 

highly-customized small-scale power systems. Microgrids’ islanding capability enables 

microgrids to conduct more flexible and energy-efficient operations. Microgrids have proved to 

be able to provide reliable and environmental-friendly electricity to quality-sensitive or off-grid 

consumers. In addition, during the grid-connected operation mode, microgrids can also provide 

support to the utility grid. World-widely continuous microgrid deployments indicate a paradigm 

shift from traditional centralized large-scale systems toward more distributed and customized 

small-scale systems. However, microgrids can cause as many problems as it solves. More efforts 

are needed to address these problems caused by microgrids integration. Considering there will be 

multiple microgrids in future power systems, the coordination problems between individual 

microgrids remain to be solved. Aiming at facilitating the promotion of microgrids, this thesis 

investigates the system-level modeling methods for coordination between multiple microgrids in 

the context of participating in the market. Firstly, this thesis reviews the background and recent 

development of microgrid coordination models. Problems of existing studies are identified. 

Motivated by these problems, the research objectives and structure of this thesis are presented. 

Secondly, this thesis examines and compares the most common frameworks for optimization under 

uncertainty. An improved unit commitment model considering uncertain sub-hour wind power 

ramp behaviors is presented to illustrate the reformulation and solution method of optimization 

models with uncertainty. Next, the price-maker bidding strategy for collaborative networked 

microgrids is presented. Multiple microgrids are coordinated as a single dispatchable entity and 

participate in the market as a price-maker. The market-clearing process is modeled using system 

residual supply/demand price-quota curves. Multiple uncertainty sources in the bidding model are 

mitigated with a hybrid stochastic-robust optimization framework. What’s more, this thesis further 

considers the privacy concerns of individual microgrids in the coordination process. Therefore a 

privacy-preserving solution method based on Dantzig-Wolfe decomposition is proposed to solve 

the bidding problem. Both computational and economic performances of the proposed model are 

compared with the performances of conventional centralized coordination framework. Lastly, this 
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thesis provides suggestions on future research directions of coordination problems among multiple 

microgrids. 
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1 Introduction 

1.1 Background 

Over the last few years, changes in the consumers’ needs have been driving the reshapes in the 

electric power industry. In general, these changes are fueled by the following three aspects: (a) 

economic requirements; (b) environmental requirements; (c) technical requirements. Economic 

needs mean that, with the increase in consumption, customers now are looking for more affordable 

electricity. Environmental needs mean customers are concerning about the environmental 

pollution and the fossil fuel depletion caused by conventional generators, alternatively they are 

looking for other cleaner energy sources. The technical needs mean that, during some most recent 

natural disasters, customers find that existing power systems cannot withstand these extreme 

conditions all the time, more reliable power supply sources are needed in case of emergency [1],[2]. 

Driving by the above three emerging requirements, evolutions in power systems are taking 

place on both the generation side and the demand side. In terms of the generation side, on the one 

hand, driven by the government environmental-friendly policies, world-widely more and more 

renewable generators are being installed over the last few years or planned to be installed in the 

near future, with the form such as solar, wind, hydro, tidal, etc [3]. As shown in Figure 1.1, the 

global total installed renewable generation has doubled by 2018 compared with 2009. On the other 

hand, more and more conventional generators that rely on fossil fuel are being retired [4]. As a 

result, renewable generation is continuously taking more shares. However, the environmental 

benefits of renewable generation do not come without cost. Clean energy can cause as many 

problems as it may solve. The intermittency of renewable generation brings a lot of challenges to 

the daily operation of power systems, such as more and more severe ramp events in net load 

profiles, mismatches between peak generation and peak demand, etc [5],[6]. 
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Figure 1.1 Trend in global renewable energy installed capacity [7]  

 

Figure 1.2 Forecast of global distributed generation capacity [8] 

In terms of the demand side, consumers now are looking for a more reliable, affordable, and 
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especially for those sensitive consumers such as chips factory and big data centers [9]. Traditional 

centralized power systems are vulnerable to disasters, no matter natural ones (tsunami, hurricane, 

earthquake, and wild-fire) or man-made ones (cyber-attacks). It will take a long time to recover 

from a major outage [10]. As a result, nowadays more and more people are turning to distributed 

on-site generation for more reliable and resilience power supply. As shown in Figure 1.2, global 

deployment of distributed generation is expected to be doubled by 2025. However, these on-site 

energy resources also bring many problems to the daily operations of power systems, including 

increased short circuit levels, coordination between utility grid protection and DG protection 

measures, etc [11]. 

Microgrids have been regarded as promising solutions to solve the above problems and 

facilitate the transition into future power systems [13]. Microgrids are continuously gaining value 

in contemporary power systems and will continue to be valuable in future systems. Nowadays, 

microgrids can be found in hospitals, mining sites, factories, as well as university campuses. It is 

expected that annual revenue of microgrids will grow from $2.4 billion by 2016 to approximately 

$6 billion by 2023 [14]. According to the IEEE standard (IEEE Std. 2030.7) [15], a microgrid is 

defined as a group of distributed energy resources that are interconnected with each other inside a 

specific electric boundary. A microgrid can be connected to, or disconnected from the utility grid 

through the point of common coupling (PCC). By changing the connection status with the utility 

grid, a microgrid can operate in either grid-connected mode or islanded mode. A microgrid can be 

owned by either the system operator or a consumer. The key components of a microgrid may 

include, but not limited to the following energy sources: (a) dispatchable conventional generators, 

including combined heat and power units (CHP), fuel cells, diesel generators, micro-turbines; (b) 

non-dispatchable renewable generators, including solar, wind, small hydro, tidal generation; (c) 

energy storage systems; (d) responsive demands [16]. A typical microgrid configuration is 

demonstrated in Figure1.3. 
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1.2 Development of Microgrids 

1.2.1 Configurations of Microgrids 

Microgrids can be configured in different forms to serve different purposes [17]. With the 

development of microgrids, the configurations of microgrids will continue to change. Typical 

configurations may include: (a) authentic microgrids, which are self-governed and operated by the 

consumers, many of the currently deployed microgrids fit this category, including most 

demonstration projects like university campus microgrids; (b) virtual microgrids, which 

coordinates multiple DERs, such as EVs and DGs that located on different sites, to interact with 

the utility grid as a single dispatchable entity; (c) remote microgrids, which are operated in off-

grid mode to serve the electricity needs of remote off-grid communities, mining sites and military 

bases. [18]. Generally, a microgrid is configured as shown in Figure 1.3. 

 

Figure 1.3 A typical microgrid configuration 
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1.2.2 Benefits of Microgrids 

In conclusion, microgrids have the following benefits:  

 Microgrids can enhance the utility grid’s overall security and resiliency by providing 

necessary supports to the utility grid during catastrophic events. [10], [19]. Microgrids 

have proved themselves to be partners of utility grids during several major outages. For 

example, during the wildfire in 2007 in California State, the microgrid of University of 

California (San Diego) quickly responded and provided power support the system [22]. 

Another example is the campus microgrid located at New York University. In 2012, 

when Hurricane Sandy hit New York City and cut power to most parts of the downtown 

area, thanks to the microgrid, New York University was able to keep electricity supply 

[23]. 

 Microgrids can help those consumers who have high expectations in power quality and 

reliability [24]. Microgrids can reduce the consumers’ dependence on the utility grid 

and alternatively guarantee a more reliable, comprehensive, and environmental-friendly 

power supply to sensitive consumers, such as hospitals, factories, and military bases. 

On the one hand, microgrids provide near-demand generation, which can avoid most of 

the transmission and distribution power losses [19]. On the other hand, microgrids 

provide higher energy utilization rates of distributed energy sources, especially for 

renewable generation and energy storage devices. Due to the parallel and flexible 

operation mode, microgrids enable locally-customized operation schedules for DERs 

[20], [21]. 

 Microgrids can facilitate economic development. For one thing, deployments of 

microgrids will create more jobs, especially at local levels. Contractors, electricians, 

engineers, and researchers are needed in the planning, construction, and daily 

maintenance [25]. For another thing, energy transactions with the utility grid can 

increase the revenue of microgrid owners. This will further in return promote the 

investment into microgrid projects. 
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1.2.3 Current Studies on Microgrids 

Microgrid has been a very popular research topic in recent years. There have been extensive 

studies focusing on different aspects of microgrids, including both technical ones and economic 

ones. In terms of economic studies on microgrids, in recent years the energy transactions problems 

between microgrids and the utility grid have been a hot topic. With the capability of bi-directional 

energy transfer with the utility grid, fully-developed microgrids generally play as prosumers in the 

context of electricity market because they can either sell excessive energy generated by DERs to 

the utility grid when there is shortage in electricity supply, or purchase electricity from the utility 

grid when there is surplus in electricity supply. In addition to energy services, microgrids are also 

able to provide ancillary services to the utility grid, including the frequency regulation, reactive 

power and voltage control, spinning or non-spinning services, and the recently emerging flexible 

ramp products. [26][27][28]. 

 

Figure 1.4 Volatility in AESO pool prices (January to September, 2019) [34] 
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services. As shown in Figure 1.4, the volatility in market prices provides sufficient arbitrage 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

P
R

IC
E

DATE

Daily Average Electricity Price of AESO 

January Febulary March April May

June July August September



 

7 

 

opportunities to microgrids. To achieve full benefits of microgrids and maximize microgrids’ 

revenue in the market, a proper bidding strategy is of fundamental importance. This bidding model 

should be able to properly model the operations of individual DERs and mitigate uncertainties in 

the model. There have been extensive studies on the optimal energy management and bidding 

problems of microgrids. Microgrids are generally taken as price-takers in the market due to their 

relatively small capacity [29]. An optimal bidding strategy for microgrids in the day-ahead joint 

energy and ancillary service market is proposed in [26]. A three-stage robust-stochastic hybrid 

optimization based optimal bidding strategy considering flexible demands is proposed in [29]. A 

two-stage stochastic optimal bidding strategy considering consumers’ electricity and thermal 

needs is proposed in [30]. 

Considering that in the future there will be many microgrids in the system, MGs’ participation 

in the market presents a new problem. Most recent studies now begin focusing on the coordination 

problems between individual MGs when participating in the electricity market. Relations between 

individual MGs in the market can be summarized into two types: (a) non-collaborative; and (b) 

collaborative relations. Generally, the former non-collaborative relations involve the peer-to-peer 

(P2P) energy transactions between individual microgrids. This P2P transaction process can be 

modeled using non-cooperative game theories. [31][32]. However, there exists doubt about the 

real-world application feasibility of such P2P energy transactions. While in terms of the 

collaboration between MGs, individual MGs are networked and coordinated as a single 

dispatchable entity to participate in the market. This microgrids aggregation is further referred as 

networked microgrids (NMGs). The NMGs can avoid the problems caused by interconnections 

between each MG and the utility grids. What’s more, bidding models for a microgrid generally 

assume the MG to be price-takers due to their limited capacity, while the cooperative coordination 

between individual microgrids enables the NMGs entity to have a large aggregated capacity to 

compete with others in the market, and finally have impacts on the market price. [33] 
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1.3 Problems Statement 

1.3.1 Price-Maker Bidding Strategy 

As mentioned above, the cooperatively coordinated networked microgrids cluster will have an 

aggregated capacity that is big enough to have influence on the market prices. This NMGs entity 

is able to submit either supply offers or demand bids to the market. In other words the NMGs entity 

plays as competitors of distribution companies (DisCos) or generation companies (GenCos). In 

this case, a price-maker bidding strategy that considers the operation models of individual DERs 

inside the NMGs entity is needed to maximize the NMGs’ total net revenue from the market. 

1.3.2 Optimization Method 

There are multiple uncertainty sources in the optimization model, including the renewable 

generation, the demand, and the day-ahead market. If these uncertainties are not accommodated 

properly in the model, the obtained optimal decisions may be infeasible in real-world applications. 

As a result, proper methods are needed to deal with these uncertainties. In addition, the 

uncertainties should be modeled in a computationally tractable way. 

1.3.3 Coordination Framework for Microgrids 

Individual microgrids in the NMG are coordinated to deliver the submitted bids to the market, 

which is the aggregated capacity of each microgrid. However, given the fact that each microgrid 

may belong to different stake-holders, the privacy concern of each microgrid must be addressed in 

the bidding model. Particularly, the solution method to the optimization model should obtain the 

optimal operation schedule while given maximum level protection to the privacy of each microgrid. 

1.4 Research Objectives 

Based on the research problems discussed in previous sections, this thesis aims at developing 

the optimal coordination framework of a networked microgrids cluster. Under this framework, 

multiple interconnected microgrids are coordinated as a single dispatchable entity that is able to 
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participate in the pool-based electricity market. In particular, three objectives are dealt with 

sequentially in this thesis as follow: 

 Identify and discuss the uncertainty sources in the bidding model; 

 Propose an optimization framework for offering or bidding strategies under uncertainty; 

 Solve the optimization problem with a privacy-preserved algorithm. 

1.5 Thesis Outline 

This thesis is organized in a manuscript style. To be specific, two main chapters of this thesis 

are based on two manuscripts respectively. Details of the modeling approach have been covered 

in these two chapters. Individual chapters are closely related to each other so that the research 

objective of this thesis is obtained sequentially. 

Chapter 1 puts forward the background and motivations behind this research. The concept, 

development, and current studies on microgrids are briefly reviewed. The challenges, opportunities, 

and benefits of microgrids in future power systems are also discussed in this chapter. This chapter 

also describes the research problems that are addressed in this thesis. The research objectives of 

this thesis are summarized in this chapter. 

Chapter 2 focuses on optimization methods under uncertainties. Common optimization methods 

in recent years are briefly reviewed and discussed in this chapter. An improved day-ahead unit 

commitment model that considers the sub-hourly wind power ramp behaviors is presented to 

illustrate the implementation and solution method to a 2-stage adaptive robust optimization model. 

The work presented in this chapter is based on the paper: Flexible Robust Unit Commitment 

Considering Sub-hourly Wind Power Ramp Behaviors.. 

Chapter 3 presents an optimal price-maker bidding strategy for networked microgrids that aims 

at maximizing the total net revenue from electricity trading in the day-ahead market. In terms of 

microgrids’ owners, this bidding strategy can maximize the total net revenue of microgrid owners, 

and provide the system operators with more flexibility to accommodate the electricity shortage 

caused by severe ramping events in net load profile.  The paper: A Price-Maker Bidding Model 

for Networked Microgrids in Day-Ahead Electricity Market forms the basis of the work presented 

in this chapter. 
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Chapter 4 summarizes the work in this thesis. Key findings are highlighted in this chapter. 

Further, suggestions for future research directions are presented as well. 
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2 Optimization under Uncertainty 

2.1 Abstract 

In this chapter, Common uncertainty management methods in optimization problems are review 

and compared. A robust DAUC model that specifically considers the sub-hourly ramping 

behaviors of wind generation is presented here to illustrate the implementation of uncertainty 

management in optimization problems. The DAUC model is chosen here for the following two 

reasons: (a) In terms of system-level optimization, there are a lot of similarities between microgrids 

models and UC models; (b) There have been extensive methods for modeling UC under 

uncertainties, where these methods can serve as references for the modeling of NMGs under 

uncertainties. 

2.2 Nomenclature 

Set/indices 

𝑡/T Indices/sets for scheduling time horizon. 

𝑔/𝒢
b
 Indices/sets for generators at bus 𝑏. 

𝑏/B Indices/sets for considered buses. 

𝑟/R Indices/sets for wind power generators. 

𝑖 ∈ Segg
b Segments of piecewise linear generation cost functions. 

𝑙/L Indices/sets for transmission lines. 

Parameters  

UT𝑔
𝑏 Minimum up-time of generator 𝑔. 

DT𝑔
𝑏 Minimum down-time of generator 𝑔. 
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PC̅̅̅̅
𝑔
𝑏 Maximum output of generator 𝑔. 

PC𝑔
𝑏  Minimum output of generator 𝑔. 

CRU𝑔
𝑏 Maximum ramp up capacity of generator 𝑔. 

CRD𝑔
𝑏 Maximum ramp down capacity of generator 𝑔. 

C𝑔
𝑏,𝑚𝑖𝑛

 Coefficients related to the piecewise linear generation cost function. 

Slp𝑔𝑖
𝑏  Slope of each segment of the piecewise linear generation cost function. 

F𝑙
max Maximum transmission capacity of line 𝑙. 

SF𝑙𝑏 Shifting factor of the transmission line 𝑙. 

RUR𝑎 Coefficients of functions that estimate the ramp-up capacity requirements. 

RUR𝑏 Coefficients of functions that estimate the ramp-up capacity requirements. 

RDR𝑎 Coefficients of functions that estimate the ramp down capacity requirements. 

RDR𝑏 Coefficients of functions that estimate the ramp down capacity requirements. 

D𝑡
𝑏 Total demand at bus 𝑏 in time slot 𝑡. 

WP̅̅̅̅
�̅�𝑡
𝑛  Central forecast value of wind generator 𝑟. 

WP𝑟𝑡
U Upper bound of the wind power output. 

WP𝑟𝑡
L  Lower bound of the wind power output. 

Decision variables 

𝑠𝑢𝑔𝑡
𝑏  The start-up flag of generator 𝑔 on bus 𝑏 at the beginning of time 𝑡. 

𝑠𝑑𝑔𝑡
𝑏  The shut-down flag of generator 𝑔 on bus 𝑏 at the beginning of time 𝑡. 

𝑓𝑔𝑡
𝑏  The operation cost of generator 𝑔 on bus 𝑏 during time slot 𝑡. 

𝑥𝑔𝑡
𝑏  On/off status of generator 𝑔. 
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𝑝𝑔𝑡
𝑏  Power reference of generator 𝑔. 

ℛ𝑢𝑡 System sub-hourly ramp up capacity requirements. 

ℛ𝑑𝑡 System sub-hourly ramp down capacity requirements. 

𝑤𝑝𝑟𝑡 Uncertain output of wind generation 𝑟. 

2.3 Introduction 

With the rapid changes in power system, more and more uncertainty sources are introduced into 

the power system operation, this conclusion holds in all aspects from generation (renewable energy 

integration), transmission (dynamic thermal rating), distribution and consumption (responsive 

demands). Uncertainties can make huge difference in power system models, if not dealt with 

properly, uncertainties will make the so-called optimal solution become infeasible in real-world 

applications. As a result, the uncertainties managements are becoming more and more important 

in optimization problems for power system operation and planning, including unit commitment 

problem (UC), economical dispatch (ED), transmission system expansion, etc. How to model and 

represent impacts of uncertainties appropriately in optimization models has drowned many 

attentions from both industries and academics. It is generally required that the uncertainty 

formulations should be both accurate and computationally tractable. In this thesis, to conclude the 

development of optimization under uncertainty in power system operations, the UC problems are 

taken as examples. In recent years, there have been extensive studies on solving UC problems 

under uncertainty. In terms of uncertainty formulations in the UC models, the most general 

approaches can be summarized into two categories that are respectively stochastic optimization 

(SO) approaches and the robust optimization (RO) approaches. 

2.3.1 Stochastic Optimization Methods 

In the SO frameworks, uncertain parameters are represented by scenarios, which are generated 

(usually by Monte Carlo method) from the corresponding estimated probability density function 

(PDF). The PDFs are usually derived from historical data. Each scenario is regarded as a typical 

realization of the uncertain parameters and is assigned with a probability. According to the stages 
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of decision making process in the model, there are generally two types of stochastic optimization 

frameworks, one is the 2-stage SO, and the other one is the multi-stage SO. In terms of the 2-stage 

SO, in the first stage the typical scenarios with their corresponding probability are generated from 

the PDFs, then in the second stage the decisions are made to minimize the total expected 

operational cost. The 2-stage SOUC problems are presented in the following compact forms [35]–

[39]: 

 min
𝐮∈𝒰

𝐛𝐓𝒙 + Exp[𝑓(𝒖, 𝒚)] (2.1) 

s.t. Exp[𝑓(𝒖, 𝒚)] = ∑ 𝑝𝑢𝑚𝑖𝑛𝐜𝐓𝑦 (2.2) 

 Au + B𝑦 + C𝑥 ≤ d (2.3) 

Where the 𝑢 represents the uncertain parameters, 𝑥 represents the day-ahead decision variables 

(the on/off status of individual generators), 𝑦 represents the real-time decision variables (power 

reference and reserve margin of individual generators). The objective function of the 2-stage 

stochastic programming is to minimize the total expected operation cost. 

While for the multi-stage SOUC models, the objective function also aims at minimizing the 

total expected operation cost. However, in contrast to the 2-stage ones which only consider the 

uncertainties one time, the uncertainties in multi-stage stochastic optimization models are revealed 

dynamically and gradually over the whole scheduling time horizon [40]–[42]. To facilitate such 

uncertainty modeling method, scenario trees are used which is illustrated in Figure 2.1. 

A scenario tree is a reduced form that stimulates the reveal process of uncertainty scenarios. 

This tree clusters those uncertainty realizations into a set of branches with specified probabilities 

of occurrence. The tree comprises of 𝑆 scenarios, with each scenario contains 𝑡 nodes that equals 

to the time slot numbers. Starting from the root node (initial time slot 𝑡0), the tree continues to 

branch out through the following time slots. When 𝑡 = T, the tree terminates, with each node solely 

belongs to one scenario. Each scenario equals one unique path starting from the root node to the 

leaf node. A probability 𝑝𝑖 is assigned to each scenario 𝑖, the sum of 𝑝𝑖 is 1. 

In this multi-stage framework, based on the revealed uncertainties of previous time slots, the 

PDFs of later time slots are updated sequentially. To release the computational burden of this 
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method, scenario reduction methods are also needed. As shown in the above figure, one scenario 

is equivalent to a unique path starting from the root node (the starting time slot) to the leaf node 

(the end time slot). 

 

Figure 2.1 Illustration of a scenario tree 

2.3.2 Robust Optimization Methods 

Different from SO frameworks, which rely on the PDF of the uncertain parameters, the robust 

optimization (RO) frameworks rely on the discrete finite deterministic uncertainty sets to model 

uncertain parameters. Similar to SO approaches, the RO frameworks can also be summarized into 

two categories based on the stages of uncertainty representation, one is the 2-stage RO, and the 

other one is the multi-stage RO. The formulations of the 2-stage RO framework has the following 

compact form: 

 min
𝒖∈𝒰

𝐛𝐓𝒙 + max𝑓(𝒖, 𝒚) (2.4) 

s.t. 𝑓(𝒖, 𝒚) = min𝐜𝐓𝑦 (2.5) 

 𝐀𝒖 + 𝐁𝒚 + 𝐂𝒙 ≤ 𝐝 (2.6) 
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Where 𝐴 is the coefficient matrix corresponding to the constraints related to uncertain parameters 

𝑢, 𝐵 is the coefficient matrix corresponding to the constraints related to second stage decision 

variables 𝑦, 𝐶 is the coefficient matrix corresponding to the first stage decision variables 𝑥. 𝑑 is 

the vector of right hand constraints. 

In the 2-stage robust optimization framework, the uncertain parameters 𝒖 are modeled using a 

deterministic uncertainty set 𝒰. Details of defining this uncertainty set are covered in the following 

sections. The objective of the 2-stage robust model is to guarantee that the decisions are feasible 

in terms of any realizations of the uncertain parameters modeled by the uncertainty set, and at the 

same time the total operation cost corresponding to the worst-case realizations of uncertain 

parameters is minimized. In this two-stage framework, the on/off decisions are made in the first 

stage, while the economic dispatch decisions are made in the second stage [43]–[45] 

Comparing with SOUC models, ROUC models are generally more computationally efficient. 

However, there is one major problem with these 2-stage models. The second stage decision 

variables are made under an important assumption that the uncertainty parameters over the whole 

scheduling horizon have been fully revealed. While in real-world applications, the decisions in 

power system operations are made sequentially, which means the decisions should be made only 

based on the information that is realized up to that hour. The assumptions of the 2-stage model 

may violate the nonparticipativity rule. To resolve this issue of 2-stage models, in recent studies, 

a multi-stage robust optimization framework is developed, where the uncertainty sets of future 

time slots are dynamically adjusted as the uncertain parameters of previous time slots revealed. 

However, this framework also introduces higher computational burden. To solve the 

accompanying challenges, linear affine policies are widely employed. The formulations of 

multistage RO have the following compact form [46]–[48]: 

 min
𝒖∈𝒰

𝐛𝐓𝒙 + max𝑓(𝒖, 𝒚) (2.7) 

s.t. 
𝑓(𝒖, 𝒚) = min ∑ 𝐜𝐓𝑦𝑡

𝑇

𝑡=1
 (2.8) 

 𝐀𝒖 + 𝐂𝒙 ≤ 𝐝 (2.9) 

 𝒚𝑡 = 𝒈(𝒖1 … 𝒖𝑡−1) (2.10) 
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2.3.3 Other Methods 

Both RO methods and SO methods have their respective advantages. Robust optimization 

methods do not rely on exact PDFs of uncertain parameters, which is the most silent distinction 

between this method and the SO ones. However, if the PDFs of uncertain parameters are available, 

the results of RO methods will be over-conservative. To bridge the gap between the 

conservativeness of RO approaches and the specificity of SO approaches, a more sophisticated 

optimization framework has been proposed and is becoming more and more popular in recent 

years. This method is called distributionally robust optimization (DRO). [49][50]. DRO can be 

viewed as a hybrid of the above-mentioned robust optimization and stochastic optimization 

methods. The uncertain parameters are modeled using an ambiguity set, which is a family set of 

all possible PDFs of the uncertain parameters. It is assumed that the actual PDF of the uncertainties 

is contained in this set. Comparing with conventional RO models, DRO is able to interpret the 

uncertain parameters more appropriately as it can capture the underlying distribution information. 

While comparing with SO methods, DRO is more practical as specific information on the joint 

PDF of uncertain parameters is not needed to construct ambiguity set. The objective function of 

the DRO aims at maximizing the. The DRO methods have been employed to solve a broad variety 

of problems in the area of power system, including energy and reserve schedule problems, 

renewable generation planning, etc. As the core of the DRO models, the construction of ambiguity 

sets is also a popular topic in recent studies [51]–[56]. 

Apart from the method mentioned above, chance-constrained optimization (CCO) is also one 

of the major methods to solve optimization problems under uncertainties. In this method, the 

optimization problem is formulated that the probabilities of satisfying certain constraints are above 

a given level. In other words, the feasible region of the optimization problem is restricted to 

increase the confidential level of the solutions. However, the robustness of this method also brings 

in the difficulty in solving the model [57]–[59]. 

2.4 Flexible Robust DAUC Model 

With the ever-increasing penetration level of wind power generation, management of the 

uncertainty and variability of wind power in day-ahead unit commitment (DAUC) problems have 



 

18 

 

received much attention in recent years. The focus of existing studies on DAUC considering 

uncertain wind power has mainly been on the hourly operation constraints. However, if the sub-

hourly wind power variations are not carefully considered, the obtained unit commitment (UC) 

solutions may not be flexible enough to accommodate the sub-hourly wind variations and results 

in undesired wind curtailments. Lack of flexibility can lead to serious challenges for system daily 

operations. The infamous “Duck Curve”, which is the net load profile of CAISO can be set as an 

example here. It can be observed in Figure 2.2 that, high renewable penetration level requires 

greater system flexibility, as more severe ramp events will occur in the net load profile. 

 

Figure 2.2 Duck Curve in CAISO [60].  

To manage uncertainties of wind power and ensure the full utilization of it, in this chapter a 

robust optimization-based UC model considering sub-hourly wind power variation is proposed. 

The objective of this model is to provide a flexible and as well robust UC solution for the 

conventional thermal units, which guarantees sufficient ramp up and ramp down capacity reserves 

for the variations of wind power in the intra-hour time frame. Firstly, a non-parametric approach 

based on the 2-dimensional kernel density estimation is proposed to quantify the sub-hourly wind 

power variability. Then, based on the quantification results, a set of ramp constraints are imposed 

on the robust UC model. A column and constraint generation (C&CG) method is applied to solve 

the improved UC model. The proposed model is tested and compared with conventional UC 

models on IEEE 39 bus test system to verify its effectiveness. 
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2.5 Background 

The reduction of greenhouse gas (GHG) has been a worldwide joint task in recent years. As a 

consequence, wind power penetration in the electricity generation side is intensively growing 

throughout the world. Integrations of wind power have sophisticated effects on power system 

operations. In practice, it is the system operator’s duty to schedule the production of different kinds 

of power generations so that the real-time balance between supply and demand can be achieved. 

Such that wind power will generally be fully dispatched to their maximum allowable output before 

the conventional power generations are considered. However, the inherent uncertainty and 

variability of wind power make the system balancing more challenging [61]. The uncertainty refers 

to the fact that the output of wind power cannot be forecasted precisely in advance, and the 

variability refers to the fact that the wind power output can change volatilely in a very short time. 

These two characteristics greatly affect the operation schedules of conventional power plants, such 

as unit commitment (UC) and economic dispatch. 

As an important power system planning tool, the day ahead unit commitment (DAUC) is 

presented to schedule the on/off status and approximate output for a set of generators, which 

subject to the corresponding device and system constraints, in an economical and reliable way to 

meet the forecasted demand [62]. In the context of increasing wind power penetration, the DAUC 

must be improved to accommodate the uncertainty and variability of wind power. There have been 

some studies on representing the uncertainty and variability of wind power in the DAUC model, 

but the focus has mainly been on the hourly operation because DAUC generally deals with hourly 

time steps. However, according to some analysis on the ramp behaviors of wind power [54],[55], 

it can sometimes exhibit non-monotonic behaviors and be more severe than the hourly average 

ramp rate. It means that with high penetration of wind power, the obtained UC solution satisfying 

the hourly operation requirements may not be feasible in the sub-hourly time horizon. Because the 

conventional generators may lack the ability to follow the rapid variations due to their technical 

operational constraints. 

Motivated by the problems mentioned above, this chapter proposes a robust optimization (RO) 

based DAUC model that takes into account the hourly as well as the sub-hourly wind power 

variations. In this chapter firstly a non-parametric approach is proposed to quantify the correlation 
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between sub-hourly and hourly wind power variations, in this way the sub-hourly operation 

constraints can be incorporated into the hourly operation constrains. The RO approach is applied 

in this chapter to deal with the hourly wind power uncertainty. The DAUC problem is formulated 

as a 2-stage min-max problem to satisfy the sub-hourly operation constraints in an economic way. 

A C&CG decomposition algorithm is applied to obtain a robust UC solution 

2.6 Model Formulation 

2.6.1 Analysis of the Sub-hourly Wind Power Ramp Behaviors 

To consider sub-hourly ramp behaviors of wind power output, it is necessary to firstly develop a 

systematic way to categorize these variations. Recently there have been some studies on 

analyzing statistical characteristics of wind power variations on different time scales [56],[57]. 

 

Figure 2.3 Flowchart for quantitative sub-hourly wind power ramp behavior modeling 

However, the correlations between wind power variations on different time scales are neglected. 

As the DAUC decisions are made on hourly-basis, quantification of the correlation between sub-

hourly ramp rate and average hourly ramp rate can facilitate incorporating the sub-hourly ramp 

constraints into hourly constraints in the DAUC model. As pointed in [67], the non-parametric 
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approach can represent the wind power variation characteristics more accurately. Thus, in this 

chapter, a 2-dimension kernel density estimation (2D-KDE) based approach is proposed. To be 

specific, in the following analysis we used the complete 2017 year aggregated 15-minute average 

wind power ramp rate (15min-AWPRR) and the 1-hour average wind power ramp rate (1h-

AWPRR) data from Belgian TSO ELIA’s data archive [68]. Such sampling frequency is 

appropriate for our study.  

The 2D-KDE is calculated using the following equation: 

𝑓(𝒙, 𝐇) =
1

𝑛
∑ 𝐾𝐇(𝑥 − 𝑥𝑖)

𝑛

𝑖=1
 (2.11) 

Where the two data sets 15min-AWPRR 𝑥1𝑖 = [𝑥11,𝑥12, 𝑥13, … 𝑥1𝑛]  and 1h-AWPRR 𝑥2𝑖 =

[𝑥21,𝑥22, 𝑥23, … 𝑥2𝑛]  are represented using 𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖) . 𝐇  represents the bandwidth matrix. 

Then based on the 2D-KDE results, quantile regression method is applied to derive the upper and 

lower bound of the sub-hourly wind power ramp ranges. The full data analysis procedure in the 

proposed method for the sub-hourly wind power ramp behaviors are concluded as Figure 2.3. 

2.6.2 Improved 2-Stage Robust DAUC Model Considering Sub-Hourly Wind 

Power Ramp Behaviors 

After analyzing the sub-hourly ramp behaviors of wind power variations, a 2-stage adaptive 

robust DAUC model incorporating the discovered sub-hourly ramp behaviors is developed here. 

The uncertain wind power is modeled with an uncertainty set. It is assumed that the uncertain wind 

power is within an interval [WP̂𝑟𝑡
L , WP̂𝑟𝑡

U] with the central forecast value to be WP̅̅̅̅
�̅�𝑡
F  [69], where 

𝑟/R is the index/set for wind turbines. This interval can be defined by quantiles using historical 

data or wind power forecast data. For instance, we can set WP̂𝑟𝑡
U and WP̂𝑟𝑡

L  equal to the 0.95 and 

0.05 quantiles of the random wind power output, respectively. In addition, an integer Γ𝑏 called 

uncertainty budget is introduced to control the conservativism of the proposed model. This integer 

is regarded as the robust coefficient to control the system conservativism. Based on the bounds 

derived in [70], the robust coefficient is set as Γ𝑏 ≥ 1.64√24 = 8 in this chapter. Correspondingly, 

the uncertainty set can be described as: 
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𝒰 ≔ {ℝ|B|×T: 𝑤𝑝𝑟𝑡 = WP̅̅ ̅̅
�̅�𝑡
F + 𝑧𝑟𝑡

+ WP𝑟𝑡
U + 𝑧𝑟𝑡

− WP𝑟𝑡
L , ∑(𝑧𝑟𝑡

+ + 𝑧𝑟𝑡
− )

𝑇

𝑡=1

≤ Γ𝑏 , ∀𝑏 ∈ B, ∀𝑟

∈ R , ∀𝑡 ∈ T} 

(2.12) 

where, WP̅̅̅̅
�̅�𝑡
F  is the forecasted mean value, 𝑧𝑟𝑡

+  and 𝑧𝑟𝑡
−  are binary variables that indicate the 

wind power reaches the upper bound or the lower bound, WP𝑟𝑡
U and WP𝑟𝑡

L  are the deviations from 

upper and lower bounds, respectively. 

Based on the uncertainty set description and the quantified sub-hourly wind power ramp 

behaviors, the 2-stage robust optimization formulations are proposed to address the sub-hourly 

wind power variations. 

 

min
𝑥,𝑠𝑢,𝑠𝑑

∑ ∑ ∑(𝑠𝑢𝑔𝑡
𝑏 + 𝑠𝑑𝑔𝑡

𝑏 )

Gb

𝑔=1

B

𝑏=1

T

𝑡=1

+ max
𝑤𝑝∈𝒰

min
𝑦∈𝒳(𝑦)

∑ ∑ ∑ 𝑓𝑔𝑡
𝑏

Gb

𝑔=1

B

𝑏=1

T

𝑡=1

  

(2.13) 

s.t. 

∑(1 − 𝑥𝑔𝑘
𝑏 )

G𝑔
𝑏

𝑘=1

, ∀𝑘 = G𝑔
𝑏 + 1, ⋯ , T − UT𝑔

𝑏 + 1 

(2.14) 

 

∑[𝑥𝑔𝑛
𝑏 − (𝑥𝑔𝑘

𝑏 − 𝑥𝑔(𝑘−1)
𝑏 )]

T

𝑛=𝑘

≥ 0, ∀𝑘 = T − UT𝑔
𝑏 + 2, ⋯ , 𝑇 

(2.15) 

 

∑ 𝑥𝑔𝑘
𝑏

𝐿𝑔
𝑏

𝑘=1

= 0 

(2.16) 

 

∑ (1 − 𝑥𝑔𝑛
𝑏 )

𝑘+𝐷𝑇𝑔
𝑏−1

𝑛=𝑘

≥ DT𝑔
𝑏(𝑥𝑔(𝑘−1)

𝑏 − 𝑥𝑔𝑘
𝑏 ), ∀𝑘 = 𝐿𝑔

𝑏 + 1, ⋯ , T − 𝐷𝑇𝑔
𝑏 + 1 

(2.17) 

 

∑[1 − 𝑥𝑔𝑛
𝑏 − (𝑥𝑔(𝑘−1)

𝑏 − 𝑥𝑔𝑘
𝑏 )]

𝑇

𝑛=𝑘

≥ 0, ∀𝑘 = 𝑇 − DT𝑔
𝑏 + 2, ⋯ , 𝑇 

(2.18) 

 𝑠𝑢𝑔𝑡
𝑏 ≥ (𝑥𝑔𝑡

𝑏 − 𝑥𝑔(𝑡−1)
𝑏 )𝑆𝑈𝑔

𝑏 (2.19) 
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 𝑠𝑑𝑔𝑡
𝑏 ≥ (𝑥𝑔(𝑡−1)

𝑏 − 𝑥𝑔𝑡
𝑏 )𝑆𝐷𝑔

𝑏 (2.20) 

 ∀𝑡 ∈ T, ∀𝑏 ∈ B, ∀𝑔 ∈ G𝑏  

Where, 

 𝒳(𝑦): = ∑ (∑ 𝑝𝑔𝑡
𝑏

G𝑏

𝑔=1

+ ∑ 𝑤𝑝𝑟𝑡

R

𝑟=1

)

B

𝑏=1

= ∑ D𝑡
𝑏

B

𝑏=1

 

(2.21) 

 

 |∑ [SF𝑙𝑏 (∑ 𝑝𝑔𝑡
𝑏

G𝑏

𝑔=1

+ ∑ 𝑤𝑝𝑟𝑡

ℛ

𝑟=1

− D𝑡
𝑏)]

B

𝑏=1

| ≤ F𝑙
max 

(2.22) 

 

 𝑓𝑔𝑡
𝑏 ≥ C𝑔

𝑏,𝑚𝑖𝑛𝑥𝑔𝑡
𝑏 + ∑ Slp𝑔𝑖

𝑏

Seg𝑔
𝑏

𝑖=1

δ𝑔𝑡,𝑖
𝑏  (2.23) 

 PC𝑔
𝑏 𝑥𝑔𝑡

𝑏 ≤ 𝑝𝑔𝑡
𝑏 ≤ PC̅̅̅̅

𝑔
𝑏𝑥𝑔𝑡

𝑏  (2.24) 

 𝑝𝑔𝑡
𝑏 − 𝑝𝑔(𝑡−1)

𝑏 ≤ (2 − 𝑥𝑔(𝑡−1)
𝑏 − 𝑥𝑔𝑡

𝑏 )PC𝑔
𝑏 + (1 + 𝑥𝑔(𝑡−1)

𝑏 − 𝑥𝑔𝑡
𝑏 )CRU𝑔

𝑏 (2.25) 

 𝑝𝑔𝑡
𝑏 − 𝑝𝑔(𝑡−1)

𝑏 ≤ (2 − 𝑥𝑔(𝑡−1)
𝑏 − 𝑥𝑔𝑡

𝑏 )PC𝑔
𝑏 + (1 − 𝑥𝑔(𝑡−1)

𝑏 + 𝑥𝑔𝑡
𝑏 )CRD𝑔

𝑏 (2.26) 

 0 ≤ ru𝑔𝑡
𝑏 ≤ 𝐶𝑅𝑈𝑔

𝑏 (2.27) 

 𝑟𝑢𝑔𝑡
𝑏 ≤ [(PC̅̅̅̅

𝑔
𝑏 − 𝑝𝑔𝑡

𝑏 )𝑥𝑔𝑡
𝑏 ]/1h (2.28) 

 ∑ ∑ 𝑟𝑢𝑔𝑡
𝑏

G𝑏

𝑔=1

B

𝑏=1

≥ ℛ𝑢𝑡 (2.29) 

 0 ≤ 𝑟𝑑𝑔𝑡
𝑏 ≤ CRD𝑔

𝑏 (2.30) 

 
𝑟𝑑𝑔𝑡

𝑏 ≤ [(𝑝𝑔𝑡
𝑏 − PC𝑔

𝑏 )𝑥𝑔𝑡
𝑏 ]/1h 

 

(2.31) 



 

24 

 

 ∑ ∑ 𝑟𝑑𝑔𝑡
𝑏

G𝑏

𝑔=1

B

𝑏=1

≥ ℛ𝑑𝑡 

 

(2.32) 

 
ℛ𝑢𝑡 = max {RUR𝑎 × (𝑤𝑝𝑟𝑡 − 𝑤𝑝𝑟(𝑡−1))/60 + RUR𝑏 , 0} 

 

(2.33) 

 ℛ𝑑𝑡 = −min {RDR𝑎 × (𝑤𝑝𝑟𝑡 − 𝑤𝑝𝑟(𝑡−1))/60 + RDR𝑏 , 0} (2.34) 

 ∀ 𝑡 ∈ T, ∀𝑏 ∈ B, ∀𝑔 ∈ G𝑏 , ∀𝑟 ∈ R, ∀𝑖 ∈ Seg𝑔
𝑏 , ∀ 𝑙 ∈ L  

The proposed model is comprised of two stages, where the on/off decisions of units are made 

in the first stage, and in the second stage the power reference of each generator is determined. The 

objective is to minimize the total costs under the worst-case realization of wind power output. The 

constraints listed above including minimum-up/minimum-down operation time constraints (2.14)–

(2.18), start-up and shut-down cost constraints (2.19)–(2.20), system balance constraints (2.21), 

transmission constraints (2.22), operation cost constraints (2.23), generator capacity constraints 

(2.24), and the modified ramp up/down constraints (2.25)–(2.32). In constraint (2.23) the quadratic 

fuel cost is approximated by a p-piecewise linear function. Since DAUC involves hourly 

scheduling, here the intra-hour wind power variation is included in the ramp constraints of the 

DAUC model, in the form of (2.29)–(2.32), where total ramp reserve of all generators, each of 

which ru𝑔𝑡
𝑏 /rd𝑔𝑡

𝑏  is defined by the maximum/minimum output and maximum ramp up/down rates 

as shown in (2.27)–(2.28) and (2.30)–(2.31), is forced to be no smaller than the system sub-hourly 

ramp requirements that are defined as a function of hourly average wind power ramp rate in (2.33)–

(2.34). Note that there is a bilinear term 𝑝𝑔𝑡
𝑏 ∙ 𝑥𝑔𝑡

𝑏  in constraints (2.28) and (2.31). Therefore, the 

big-M method is applied here to linearize this term, let 𝜌 = 𝑝𝑔𝑡
𝑏 × 𝑥𝑔𝑡

𝑏 , then we have: 

 60ru𝑔𝑡
𝑏 − PC̅̅̅̅

𝑔
𝑏 × 𝑥𝑔𝑡

𝑏 + 𝜌 ≤ 0 (2.35) 

 60rd𝑔𝑡
𝑏 + PC̅̅̅̅

𝑔
𝑏 × 𝑥𝑔𝑡

𝑏 − 𝜌 ≤ 0 (2.36) 

 𝜌 ≤ PC̅̅̅̅
𝑔
𝑏 × 𝑥𝑔𝑡

𝑏  (2.37) 

 𝜌 ≥ 𝑝𝑔𝑡
𝑏 − (1 − 𝑥𝑔𝑡

𝑏 )PC̅̅̅̅
𝑔
𝑏 (2.38) 
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2.7 C&CG-based Solution Methodology 

The proposed improved DAUC model has a min-max-min structure, which cannot be solved 

directly by existing commercial optimization solvers such as CPLEX. Enumerating all the possible 

outcomes of the uncertain variables would lead to an extremely large-size problem and cannot be 

solved. Thus, in this chapter, a decomposition approach based on the Column and Constraint 

Generation (C&CG) method is applied. [71] To begin with, the proposed robust DAUC 

formulations are rewritten in a compact form for brevity as follow: 

 min
𝑥

𝒄𝑻𝒙 + max
𝑤𝑝∈𝒰

min
𝑦∈𝒳(𝑦,𝑢)

𝒃𝑻𝒚 (2.39) 

s.t. 𝐀𝐱 ≥ 𝐝, 𝐱 ∈ 𝑺𝒙 (2.40) 

Where, 𝒳(𝑦, 𝑢): = { 𝐲 ∈ 𝑆𝑦: 𝑮𝒙 ≥ 𝒉 − 𝑬𝒚 − 𝑴𝑢}. The main idea of the C&CG method is that, 

by employing a master-subproblem framework, where the subproblem identifies those uncertainty 

realizations that will lead to worst-case. In such way, enumerating all scenarios can be avoided. 

C&CG is implemented with the following procedures: 

Set LB =  −∞, UB =  +∞, k =  0 and 𝐎 =  ∅ 

Solve the following master problem (MP): derive an optimal solution [𝒙𝒌+𝟏
∗ , 𝜂𝑘+1

∗ , 𝒚𝟏∗, … , 𝒚𝒌∗] 

and update the LB =  𝒄𝑻𝒚𝒌+𝟏
∗ + 𝜂𝑘+1

∗ . 

 𝐌𝐏: min
𝑥,𝜂

𝒄𝑻𝒙 + 𝜂 (2.41) 

s.t. 𝐀𝐱 ≥ 𝐝 (2.42) 

 η ≥ 𝒃𝑻𝒚𝒍, ∀ l ∈ 𝐎 (2.43) 

 𝐄𝐱 + 𝐆𝒚𝒍 ≥ 𝒉 − 𝑴𝑢𝑙
∗, ∀ l ≤ k (2.44) 

 x ∈ 𝑆𝑥, 𝜂 ∈ ℝ, 𝑦𝑙 ∈ 𝑆𝑦, ∀ l ≤ k  

Solve the following sub-problem and update the 𝑈𝐵 =  𝑚𝑖𝑛 {𝑈𝐵, 𝒄𝑻𝒙𝒌+𝟏
∗ + 𝒬(𝒙𝒌+𝟏

∗ )}. The 

sub-problem is as follow: 
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 𝐒𝐏:  𝒬(𝐱) = { max
𝑤𝑝∈𝒰

min
𝑦∈𝒳(𝑦,𝑢)

𝒃𝑻𝒚 : 𝑮𝒙 ≥ 𝒉 − 𝑬𝒚 − 𝑴𝑢, 𝐱 ∈ 𝑺𝒙} (2.45) 

If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜖 , return 𝒚𝒌+𝟏
∗  and terminate. Otherwise, create variables 𝐲𝐤+𝟏  and add the 

following constraints to the master problem MP (2.41)–(2.44) where uk+1
∗  is the optimal scenario 

solving 𝒬(𝐱𝐤+𝟏
∗ ), update k =  k + 1, 𝐎 = 𝐎 ∪ {k + 1} and go to step 2. 

 𝜼 ≥ 𝒃𝑻𝒚𝒍+𝟏 (2.46) 

 𝐄𝐱 + 𝐆𝒚𝒌+𝟏 ≥ 𝒉 − 𝑴𝑢𝑘+1
∗  (2.47) 

After the proposed decomposition procedure, the original DAUC formulations can be converted 

into a mixed-integer linear programming (MILP) problem and computed by an existing solver, 

such as CPLEX. 

2.8 Case Study 

2.8.1 Sub-hourly Wind Power Ramp Behaviors. 

The aforementioned quantification method on sub-hourly wind power ramp behaviors is 

performed on the 2017-year data acquired from Belgium TSO ELIA. The numerical simulation 

results are shown in this section.  
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Figure 2.4 KDE results of the quantitive analysis on sub-hourly wind power ramp behaviors. 

As shown in Figure 2.4, the x-axis and y-axis are the hourly average wind power ramp rate (1h-

AWPRR) and the 15-minute average wind power ramp rate (15min-AWPRR), respectively. The 

orange line and the blue line are respectively the derived sub-hourly ramp up/down requirements 

ℛ𝑢𝑡/ℛ𝑑𝑡, which are linear functions of hourly average wind power ramp rate: 

ℛ𝑢𝑡 = max {1.1405 ×
(𝑤𝑝𝑟𝑡 − 𝑤𝑝𝑟(𝑡−1))

60
+ 2.2449,0} (2.48) 

ℛ𝑑𝑡 = −min {1.0725 ×
(𝑤𝑝𝑟𝑡 − 𝑤𝑝𝑟(𝑡−1))

60
− 1.8571,0} (2.49) 

As described before, as long as these two ramp reserve capacity constraints are imposed on the 

hourly ramp constraints in the UC model, the UC solutions will be able to schedule sufficient sub-

hourly ramp reserves to make sure that 95% of the intra-hour ramp behaviors can be 

accommodated, in other words, higher utilization rate of wind power will be achieved. 
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Figure 2.5 IEEE 39 Bus test system 

2.8.2 Flexible UC Decisions 

The aforementioned approximation method for analyzing the wind power ramp behaviors is 

performed on the 2017-year data acquired from Belgium TSO ELIA, which can be accessed in 

public database. The numerical simulation is implemented in MATLAB 2015 on a desktop with 

an Intel i7-6700K CPU @ 3.40 GHz and 16.0 GB RAM memory. IBM CPLEX is employed as 

the solver here. The numerical simulations are carried on a modified IEEE 10-generator 39-bus 

test system. As shown in Figure 2.5, a wind farm is connected to bus 23. The forecast value and 

confidential level of the forecast have been provided in Fig. 2.6.  
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Figure 2.6 Identified worst-case wind power output 

As shown in Fig. 2.6 are the confidence interval of wind power forecast value, the identified 

worst-case wind generation realization, and the forecasted demand. 

Figure 2.7 shows the possible wind power ramp up/down range, system ramp-up reserves (RUR) 

and ramp-down reserves (RDR) in each operation time slot, when the model is with sub-hourly 

ramp constraints and without sub-hourly ramp constraints. As it is shown in Figure 2.7, the 

conventional UC model that neglects the sub-hourly wind ramp behaviors may not have enough 

ramp reserves to accommodate the sub-hourly wind power variations. It can be found in Figure 

2.7 that conventional UC models cannot provide enough RUR except hour 7, 13 and 24, and cannot 

provide enough RDR in hour 6 and 23. In comparison our model that considers the sub-hourly 

ramp constraints will obtain a flexible UC solution. This solution will ensure that there are 

sufficient RUR and RDR to cover all possible sub-hourly wind power ramp range in each schedule 

period, which means that wind power can be fully utilized, and no wind curtailment or load 

shedding is needed. 
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Figure 2.7 System ramp reserves and wind power ramp ranges 

2.9 Conclusion 

In this chapter, the most common methods for optimization under uncertainty are discussed and 

reviewed. In addition, an improved unit commitment model is presented to demonstrate the 

applications of robust optimization frameworks. This improved DAUC model is proposed to 

handle the uncertainty and variability of wind power output, especially in intra-hour time domains. 

Firstly, a non-parametric approach is developed to accurately quantify the correlation between 

intra-hour wind power variation and inter-hour ones. The sub-hourly operation constraints are 

incorporated into UC hourly operation constraints. The robust optimization is applied and the 

uncertain wind power is described in the form of an uncertainty set. The hourly ramp constraints 

in the UC model are modified to included sub-hourly ramp constraints so that the obtained robust 

UC solution is ‘flexible’ enough with sufficient ramp-up and ramp-down capacity reserves to 

accommodate the intra-hour wind variations. The results of case studies show the effectiveness of 

the proposed model, which means it will facilitate the increasing integration of wind power. 
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3 Price-Maker Bidding Model for Networked 

Microgrids under Uncertainty 

3.1 Abstract 

A price-maker bidding strategy for networked microgrids (NMGs) in the day-ahead electricity 

market considering uncertainty is proposed in this chapter. The objective of the proposed model is 

to maximize the net revenue by coordinating individual microgrids in the NMGs to determine 

hourly supply and demand price-quota bidding curves. A hybrid stochastic-robust optimization 

method is developed to manage multiple uncertainties. The bidding problem is originally presented 

as a hard-to-solve mixed-integer nonlinear problem (MINLP), which is later converted to its easy-

to-solve mixed integer linear problem counterpart (MILP). To protect the privacy of each 

microgrid (MG) and improve the scalability of the bidding model as well, a semi-decentralized 

optimization framework based on Dantzig-Wolfe decomposition (DWD) is used to obtain global 

optimality. Numerical simulations based on real-world data are presented to validate the proposed 

bidding model. It has been found that the proposed price-maker bidding model outperforms the 

existing price-taker ones. 

3.2 Nomenclature 

Superscripts: 

ESS Energy Storage Systems. 

CG Controllable Generator 

RG Renewable Generator 

DL Deferrable Load. 

CL Critical Load. 
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min/max Minimum/maximum value of a quota 

Indices and sets: 

𝑡/T Schedule time horizon. 

𝑚/M Index/set of microgrids. 

𝑘/Θ Index/set of stochastic market scenarios. 

𝑔 G𝑚⁄  Index/sets of CGs in MG 𝑚. 

𝑒 E𝑚⁄  Index/sets of RGs in MG 𝑚. 

𝑟 R𝑚⁄  Index/sets of ESSs in MG 𝑚. 

𝑠/S Number of segments of the purchase bid price quota curve. 

𝑙/L Number of segments of sell bid price quota curve. 

Parameters: 

L𝑚𝑗,max
INT  Max transmission capacity between MG 𝑚 and MG 𝑗 

L𝑚,max
EX  Max transmission capacity between MG 𝑚 and the utility grid. 

𝜖𝑔
CG Per unit production cost of CG 𝑔. ($/MWh) 

P𝑔,max
CG  Max output of CG 𝑔. 

P𝑔,min
CG  Min output of CG 𝑔. 

R𝑔,max
CG,U

 Max upward ramp rate of CG 𝑔. 

R𝑔,max
CG,D

 Max downward ramp rate of CG 𝑔. 

𝑃𝑟,𝑡
RG,F

 Renewable generation forecast value of 𝑟 

SOC𝑒,min
ESS  Max state of charge of ESS e. 
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SOC𝑒,max
ESS  Min state of charge of ESS e. 

P𝑒,max
Dis,ESS

 Max discharging power of ESS e. 

P𝑒,max
Ch,ESS

 Max charging power of ESS e 

𝜂𝑒,𝑐
ESS Charging efficiency of ESS e. 

𝜂𝑒,𝑑
ESS Discharging efficiency of ESS e 

C𝑒,max
ESS  Max capacity of ESS e 

𝜎𝑒
ESS Per unit degradation cost of ESS e. ($/MWh) 

D𝑚
DL Total amount of deferrable load of MG 𝑚. 

D𝑚,min
DL  Min serving rate for DL of MG 𝑚. 

D𝑚,max
DL  Max serving rate for DL of MG 𝑚. 

D𝑚
CL,F

 Critical load forecast value of MG 𝑚. 

T𝑚
S  Start time to serve deferrable load. 

T𝑚
E  End time to serve deferrable load. 

Decision Variables: 

𝑝𝑚𝑗,𝑡
INT  Energy transaction between microgrid 𝑚 and 𝑗. (+: from 𝑚 to 𝑗, -: from 𝑗 to 𝑚) 

𝑓𝑚,𝑡
OP Total operation cost of MG 𝑚. 

𝑝𝑚,𝑡
ES  Total energy sold to market by MG 𝑚.  

𝑝𝑚,𝑡
EB  Total energy bought from market by MG 𝑚.  

𝑢𝑔,𝑡
CG Binary variables indicating the on/off status of CG 𝑔. 

𝑝𝑔,𝑡
CG Power reference of CG 𝑔. 
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𝑝𝑟,𝑡
RG Output of RG 𝑟. 

𝑥𝑒,𝑡
ESS Binary variables indicating the charging status of ESS 𝑒. 

𝑦𝑒,𝑡
ESS Binary variables indicating the discharging status of ESS 𝑒. 

𝑝𝑒,𝑡
Ch,ESS

 Charging power of ESS 𝑒 at time 𝑡. 

𝑝𝑒,𝑡
Dis,ESS

 Discharging power of ESS 𝑒 at time 𝑡. 

𝑐𝑒,𝑡
ESS Energy storage level of ESS 𝑒 at time 𝑡. 

𝑝𝑒,𝑡
E,ESS

 Net output of ESS 𝑒 at time 𝑡. 

𝑑𝑚,𝑡
CL  Critical load of MG 𝑚 at time 𝑡. 

𝑑𝑚,𝑡
DL  Deployed deferrable load at time slot t. 

𝑝𝑚,𝑡
NET Net power generation of the MG 𝑚. 

𝑧𝑚,𝑡
EX+ Binary variables indicating that microgrid m is selling energy to market. 

𝑧𝑚,𝑡
EX− Binary variables indicating that microgrid m is purchasing energy from market. 

𝑝𝑘,𝑡
DS Cleared supply energy quota at time slot t in scenario k. 

𝑝𝑘,𝑡
DB Clear purchased energy quota at time slot t in scenario k. 

𝑣𝑘,𝑠,𝑡
DB  Indicate whether the intersection is located on segment s of purchase bid curve for 

period t in scenario k. 

𝑎𝑘,𝑠,𝑡
DB  Horizontal length between the intersection point and the starting point of purchase 

bid curve segment s for period t in scenario k. 

𝑏𝑘,𝑠,𝑡
DB  Vertical length between the intersection and the starting point of demand bidding 

curve segment s for period t in scenario k. 

𝑣𝑘,𝑙,𝑡
DS  Indicate whether the intersection is located on segment l of supply bidding curve for 

period t in scenario k. 
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𝑎𝑘,𝑙,𝑡
DS  Horizontal length between the intersection and the starting point of sell bid curve 

segment l for period t in scenario k. 

𝑏𝑘,𝑙,𝑡
DS  Vertical length between the intersection and the starting point of sell bid curve 

segment l for period t in scenario k. 

3.3 Introduction 

In the context of deregulated electricity markets, microgrids generally act as prosumers because 

they can submit either supply offers or demand bids. In recent years, a considerable amount of 

studies on the bidding models for microgrids have been carried out to maximize their revenue from 

the market [29], [30], [72], [73]. Considering that there will be multiple microgrids in the system, 

the concept of networked microgrids (NMGs) has attracted much attention in recent years. The 

NMGs refers to a collaboration framework that multiple electrical neighboring microgrids are 

networked and coordinated as a single dispatchable unit [74]. This collaboration can greatly 

improve the performance of individual microgrids, as it can better mitigate demand and generation 

uncertainties and promote economic benefits, etc [75]–[77]. When participating in the electricity 

market, however, bidding model for an NMGs entity should be different from bidding model for 

a single microgrid in [75]–[77]. The reason is that, by coordinating generation and demand of 

individual microgrids, the NMGs will have a large aggregated capacity to influence the market-

clearing prices. Comparing with price-taker biding models in [75]–[77], price-maker bidding 

models are more appropriate for NMGs. To be specific, the price-maker bidding model for NMGs 

can compile price-quota bids for both supply and demand to maximize the NMGs’ revenue from 

the market [78]–[80] 

Another problem that needs to be addressed is the coordination framework for the NMGs. 

Existing coordination methods can be summarized into three categories: centralized, decentralized 

and semi-decentralized. In the centralized coordination framework, there is one central coordinator 

that schedules the operations of all microgrids, based on detailed information of each involving 

microgrid, to achieve optimum. However, this framework also brings privacy concerns and high 

computation burdens [33], [81], [82]. The decentralized ones can avoid the drawbacks of 

centralized ones. In such a framework the central coordinator is no longer needed. Instead, the 
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local coordinator at each microgrid solves the bidding problem by sharing information other MLCs 

[15],[16]. However, a decentralized framework also suffers from following drawbacks: i) it relies 

heavily on the communications between individual microgrids, ii) it may violate the physical 

constraints of the network between individual microgrids [85]. 

A third type can be referred to as the semi-decentralized framework, which is a hybrid of the 

first two categories [85]–[87]. There is one network central coordinator (NCC) and multiple self-

owned microgrid local coordinators (MLC) in such a framework. Neither the NCC nor the MLC 

needs to have detailed information about the NMGs configuration to solve the scheduling problem. 

In [85] an energy transaction model between microgrids is solved base on KKT conditions. A 

distributed direct energy trading mechanism considering AC power flow constrains is solved based 

on alternative direction method of multipliers (ADMM) in [86]. An algorithm based on sub-

gradient method is proposed in [19] to optimize the energy transactions problem between 

individual microgrids. However, a common problem of these methods is that none of them is able 

to solve bidding models with integer (binary) decision variables, i.e. the on/off status of generators, 

the charging/discharging of energy storage systems, etc. 

Among existing studies, it can be observed that the research gap exists in price-maker bidding 

models for NMGs. In this chapter, a price-maker bidding model for a networked microgrids entity 

in the day-ahead pool-based electricity market is proposed.  

Main contributions of this research are summarized as follow: 

Considering that an NMGs entity has an aggregated capacity that is large enough to influence 

the market-clearing prices, a price-maker day-ahead bidding strategy for the NMGs entity is 

proposed. All microgrids in the NMGs are coordinated cooperatively to submit aggregated price-

quota bids for each hour of next day. These bids specify the energy and the corresponding price 

that the NMGs would like to supply or purchase. 

Uncertainty sources in the bidding model are discussed and managed using a hybrid stochastic-

robust optimization framework. The bidding model is originally formulated into a mixed-integer 

non-linear problem (MINLP). To reduce the computation burdens, the MINLP is then 

reformulated into its mixed-integer linear problem (MILP) counterpart. 
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To protect the privacy of each microgrid, and enhance the scalability of the bidding model as 

well, the NMGs are coordinated by a semi-decentralized framework. The Dantzig-Wolfe 

decomposition (DWD) is employed to optimize the collaboration between individual microgrids. 

By exchanging necessary information between the NCC and MLCs iteratively, the bidding 

problem can be solved to global optima. 

The rest of this chapter is organized as follows. Section Ⅱ describes the basic setups of the 

model. Section Ⅲ presents the detailed formulations of the price-maker bidding model. 

Reformulation methods and the solution algorithm are presented in section Ⅳ. Section Ⅴ conducts 

numerical simulations based on real-world data. Finally, in section VI the chapter is concluded. 

3.4 Modeling Approach 

A. Coordination Framework 

As shown in Figure 3.1, a semi-decentralized coordination framework for NMGs. In such a 

framework the NCC and LMCs have different duties. The NCC is responsible for scheduling the 

energy transactions between individual microgrids, and interacting with the market operator by 

submitting aggregated bids as well. While MLCs are responsible for scheduling energy sources 

within their individual control area according to the information received from NCC. The clear 

bids are delivered by microgrids that have interconnection with the utility grid (UG). Information 

can be exchanged through bi-directional communications between MLCs and NCC. 

B. Microgrid Components 

Each self-governing microgrid of the NMGs may consist of following energy sources, including 

controllable generators (CG), renewable generators (RG), deferrable loads (DL), critical loads 

(CL), and energy storage systems (ESS), etc [88]. Controllable generators include micro-turbines, 

fuel-cells, and diesel generators. Renewable generators include wind turbines and solar panels. 

Deferrable loads, a.k.a. time-shiftable loads, are these loads that require specific time periods to 

be satisfied, but can be served any time within this period. Examples of deferrable loads including 

plug-in electric vehicles, irrigation pumps, etc. Opposite to deferrable loads are critical loads that 

must be satisfied with the exact amount at exact time. ESSs in this chapter are assumed to be 

battery energy storage systems. 
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Figure 3.1 Semi-decentralized coordination framework of the NMGs 

C. Day-Ahead Market Model 

In the day-ahead market, the market operators collect bids from all participants and clear the 

market for each hour of the next day [60], [89], [90]. The influence of price-maker participants on 

the spot price can be modeled using residual supply/demand curves, as illustrated in Figure 3.2, 

which can be obtained by forecast or from historical data [91]. Generally, there are price-taker 

entities and price-maker entities.  

When the price bids of a participant are zeros, it is called a price taker. A price-taker entity 

cannot affect the pool prices. It will accept the market-clearing prices whatever it is. It is the ISO’s 

responsibility to determine the price and capacity that is going to be sold to the market by a price-

taker entity. This decision making procedure is made based on the principals that aim at 

minimizing the market-clearing prices. However, being price-takers do not mean that they receive 

zero payments because every participant is cleared at the same price as other market participants. 
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For a price-maker NMGs entity, it can either purchase or supply electricity by submitting price-

quota bidding curves to the day-ahead market. The price-quota bidding curves are stepwise curves 

that are comprised of multiple price value and energy quota pairs. These curves indicate that the 

NMGs will purchase (supply) the submitted energy quota only if the market-clearing price is no 

higher (lower) than the submitted price. In terms of purchase bids, the price-quota curves are 

stepwise monotonically increasing, while in terms of supply bids they are stepwise monotonically 

decreasing [32]. As shown in Figure 3.2, the price and corresponding quota are cleared at 

intersection points between the market residual supply/demand curves and NMGs’ price-quota 

offering/bidding curves. 

D. Hybrid Optimization Model 

There are multiple uncertainties that need to be considered in the bidding model. In general, 

these uncertainties can be summarized into two categories: i) external uncertainties and, ii) internal 

uncertainties. The external uncertainties refer to the uncertain market residual supply/demand 

curves, while the internal uncertainties refer to the uncertain generations and demands of each 

microgrid. In this chapter, these uncertainties are managed by a hybrid stochastic-robust 

optimization framework. The scenario-based stochastic optimization method is used to manage 

the uncertainty of residual supply/demand curves on day-ahead market, while the uncertainty sets 

based robust optimization method is used to manage uncertainties of generation and demand. This 

hybrid optimization framework guarantees: i) the submitted supply offers/demand bids capacity 

can be delivered under the worst-case realizations, ii) expected total revenue can be maximized. 
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Figure 3.2 Market residual supply/demand price-quota curves 
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3.5 Model Formulation 

We consider an NMGs entity that participates in the day-ahead market as a price-maker to 

maximize its total revenue while subject to physical constraints and market rules. The constraints 

and objective function are presented sequentially in this section. The objective function of the 

bidding model is to maximize expected total revenue by determining price-quota supply/demand 

bidding curves for each hour of the next day. This model subjects to physical constraints of all 

energy sources inside the NMGs and the interconnection network among each microgrid. It should 

be noted that the reactive power balance constraints and active power losses are neglected here, 

this is because that, i) it is a common practice for day-ahead schedule problems, and ii) 

linearization methods for calculating active power losses and reactive power flow can be found in 

existing studies, which means that the complexity of the model will not be affected [25]-[26]. 

3.5.1 Controllable Generators Constraints 

P𝑔,min
CG × 𝑢𝑘,𝑔,𝑡

CG ≤ 𝑝𝑘,𝑔,𝑡
CG ≤ 𝑃𝑔,max

C × 𝑢𝑘,𝑔,𝑡
CG  (3.1) 

𝑝𝑘,𝑔,𝑡
CG − 𝑝𝑘,𝑔,𝑡−1

CG ≤ R𝑔,max
CG,U × 𝑢𝑘,𝑔,𝑡−1

CG + P𝑔,max
CG × (1 − 𝑢𝑘,𝑔,𝑡

CG ) (3.2) 

𝑝𝑘,𝑔,𝑡−1
CG − 𝑝𝑘,𝑔,𝑡

CG ≤ R𝑔,max
CG,D × 𝑢𝑘,𝑔,𝑡

CG + P𝑔,max
CG × (1 − 𝑢𝑘,𝑔,𝑡−1

CG ) (3.3) 

𝑓𝑘,𝑔,𝑡
CG = 𝑝𝑘,𝑔,𝑡

CG × 𝜖𝑔
CG × 1ℎ (3.4) 

𝑓𝑘,𝑔,𝑡
CG , 𝑝𝑘,𝑔,𝑡

CG ≥ 0, 𝑢𝑘,𝑔,𝑡
CG ∈ {0,1} (3.5) 

The output limits of CGs are described by (3.1). Ramp constraints are enforced by (3.2)-(3.3). 

The generation costs are approximated by (3.4). It should be noted that, in the cases of quadratic 

generation cost functions, they can be easily linearized using piecewise linear functions [35], 

which does not affect the complexity of the model. This piecewise linearization technique also 

works for calculating ESS degradation costs. 
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3.5.2 Energy Storage Systems Constraints 

−1 × 𝑥𝑘,𝑒,𝑡
ESS × P𝑒,max

Ch,ESS ≤ 𝑝𝑘,𝑒,𝑡
Ch,ESS ≤ 0 (3.6) 

0 ≤ 𝑝𝑘,𝑒,𝑡
Dis,ESS ≤ 𝑦𝑘,𝑒,𝑡

ESS × P𝑒,max
Dis,ESS

 (3.7) 

𝑐𝑘,𝑒,𝑡
ESS = 𝑐𝑘,𝑒,𝑡−1

ESS + (𝑝𝑘,𝑒,𝑡
Ch,ESS𝜂𝑒

Ch,ESS − 𝑝𝑘,𝑒,𝑡
Dis,ESS/𝜂𝑒

Dis,ESS) × 1ℎ (3.8) 

SOC𝑒,min
ESS × C𝑒

ESS ≤ 𝑐𝑘,𝑒,𝑡
ESS ≤ SOC𝑒,max

ESS × C𝑒
ESS (3.9) 

𝑓𝑘,𝑒,𝑡
ESS ≥ (𝑐𝑘,𝑒,𝑡

ESS − 𝑐𝑘,𝑒,𝑡−1
ESS ) × 𝜎𝑒 (3.10) 

𝑓𝑘,𝑒,𝑡
ESS ≥ (𝑐𝑘,𝑒,𝑡−1

ESS − 𝑐𝑘,𝑒,𝑡
ESS ) × 𝜎𝑒 (3.11) 

0 ≤ 𝑥𝑘,𝑒,𝑡
ESS + 𝑦𝑘,𝑒,𝑡

ESS ≤ 1 (3.12) 

C𝑒,𝑖𝑛𝑖
ESS = 𝑐𝑘,𝑒,𝑇

ESS  (3.13) 

𝑥𝑘,𝑒,𝑡
ESS , 𝑦𝑘,𝑒,𝑡

ESS ∈ {0,1}, 𝑐𝑘,𝑒,𝑡
ESS , 𝑝𝑘,𝑒,𝑡

Ch,ESS, 𝑝𝑘,𝑒,𝑡
Dis,ESS, 𝑓𝑘,𝑒,𝑡

ESS ≥ 0 (3.14) 

Constraints (3.6)-(3.9) describe the power and energy limits of ESSs. (3.10) and (3.11) are 

linear functions for approximating ESSs’ degradation costs. It enforced by (3.12) that each ESS 

cannot charge and discharge at the same time. (3.13) enforces that the energy stored in the ESS of 

each MG remains the same as the initial storage level C𝑒,𝑖𝑛𝑖
ESS , so that no free energy is used within 

the scheduling horizon. 

3.5.3 Deferrable Loads Constraints 

∑ 𝑑𝑘,𝑚,𝑡
DL

𝑇𝑚
E

𝑡=𝑇𝑚
S

= D𝑚
DL, ∀𝑡 ∈ [T𝑚

S , T𝑚
E ] (3.15) 

D𝑚,min
DL ≤ 𝑑𝑘,𝑚,𝑡

DL ≤ D𝑚,max
DL , ∀𝑡 ∈ [T𝑚

S , T𝑚
E ] (3.16) 

𝑑𝑘,𝑚,𝑡
DL = 0, ∀𝑡 ∉ [T𝑚

S , T𝑚
E ] (3.17) 
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Constraint (3.15) represents the total required electricity amount of deferrable loads, (3.16) 

represents the minimum and maximum serve rate of deferrable demand in each hour. (3.17) 

represents the start and end time to satisfy deferrable loads.  

3.5.4 Transmission Capacity Constraints: 

0 ≤ 𝑝𝑘,𝑚,𝑡
ES ≤ 𝜃𝑡L𝑚,max

EX  (3.18) 

0 ≤ 𝑝𝑘,𝑚,𝑡
EB ≤ (1 − 𝜃𝑡)L𝑚,max

EX  (3.19) 

−L𝑚𝑗,max
INT ≤ 𝑝𝑘,𝑚𝑗,𝑡

INT ≤ L𝑚𝑗,max
INT , 𝑚 ≠ 𝑗 (3.20) 

(3.18) and (3.19) describe the transmission capacity limits on energy transactions between each 

MG and the utility grid, while (3.20) describes the transmission capacity limits on energy 

transactions between individual microgrids inside the NMG cluster.  

3.5.5 Generation-Demand Balance Constraints 

𝑝𝑘,𝑚,𝑡
NET = ∑ 𝑝𝑘,𝑔,𝑡

CG

𝑔∈G𝑚

+ ∑ (𝑝𝑘,𝑒,𝑡
Dis,ESS − 𝑝𝑘,𝑒,𝑡

Ch,ESS)

𝑒∈E𝑚

+ ∑ 𝑝𝑟,𝑡
RG

𝑟∈R𝑚

− (𝑑𝑘,𝑚,𝑡
DL + 𝑑𝑚,𝑡

CL ) (3.21) 

𝑝𝑘,𝑚,𝑡
NET + ∑ 𝑝𝑘,𝑚𝑗,𝑡

INT

𝑗∈𝑀,𝑗≠𝑚

− 𝑝𝑘,𝑚,𝑡
ES + 𝑝𝑘,𝑚,𝑡

EB = 0 (3.22) 

𝑝𝑘,𝑚𝑗,𝑡
INT + 𝑝𝑘,𝑗𝑚,𝑡

INT = 0, 𝑚 ≠ 𝑗 (3.23) 

(3.21) represents the generation-demand balance constraints within each MG. (3.22) represents 

the generation-demand balance constraints of the whole NMGs. (3.23) describes that, for the 

energy transactions between microgrid 𝑚 and 𝑗, the energy exported from microgrid 𝑗 to 𝑚 equals 

to the energy imported by 𝑚 from 𝑗. 
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3.5.6 Market Residual Supply and Demand Price-Quota Curves 

The uncertainties of the day-ahead market are managed by a 2-stage stochastic optimization 

framework. Firstly, K scenarios of residual supply/demand price-quota curves are generated from 

historical data, with each assigned with a probability 𝜍𝑘. Each scenario contains market residual 

supply and demand price-quota curves for 24 hours of the day. It has been illustrated in section II-

C that for price-makers both supply offers and demand bids are submitted in the form of multiple 

price-quota pairs, i.e. (𝑝𝑘,𝑡
DS, 𝛼𝑘,𝑡

DS) and (𝑝𝑘,𝑡
DB, 𝛼𝑘,𝑡

DB). In terms of supply bidding curve, for hour 𝑡 in 

scenario 𝑘, it is formulated into a step-wise increasing curve with L segments. Each segment is 

marked by two pairs of endpoints that are respectively (𝑝𝑘,𝑠,𝑡
DS,min, 𝛼𝑘,𝑠,𝑡

DS,min) and (𝑝𝑘,𝑠,𝑡
DS,max, 𝛼𝑘,𝑠,𝑡

DS,max). 

For each vertical segment, 𝑝𝑘,𝑠,𝑡
DS,min = 𝑝𝑘,𝑠,𝑡

DS,max
, while for each horizontal segment, 𝛼𝑘,𝑠,𝑡

DS,min =

𝛼𝑘,𝑠,𝑡
DS,max

. Similarly, the demand bidding curve for hour 𝑡 in scenario 𝑘 can be formulated into a 

step-wise decreasing curve with L segments. Each segment of the residual demand curve is marked 

by two pairs of endpoints, that are respectively (𝑝𝑘,𝑙,𝑡
DB,min, 𝛼𝑘,𝑙,𝑡

DB,min) and (𝑝𝑘,𝑙,𝑡
DB,max, 𝛼𝑘,𝑙,𝑡

DB,max). For 

each vertical segment, 𝑝𝑘,𝑙,𝑡
DB,min = 𝑝𝑘,𝑙,𝑡

DB,max
, while for each horizontal segment, 𝛼𝑘,𝑙,𝑡

DB,min = 𝛼𝑘,𝑙,𝑡
DB,max

. 

3.5.7 Uncertain Critical Load and Renewable Generation: 

The uncertainties of both renewable generation and critical loads are formulated using 

uncertainty set: 

P𝑟,𝑡
RG,F − 𝛾𝑟,𝑡

L P̅𝑟,𝑡
L ≤ 𝑝𝑟,𝑡

E,RG ≤ P𝑟,𝑡
RG,F + 𝛾𝑟,𝑡

U P̅𝑟,𝑡
U  

𝛾𝑟,𝑡
L , 𝛾𝑟,𝑡

U ∈ [0, Γ𝑟,𝑡
RG] 

(3.24) 

D𝑚,𝑡
CL,F + 𝜀𝑚,𝑡

U D̅𝑚,𝑡
U ≤ 𝑑𝑚,𝑡

CL ≤ D𝑚,𝑡
CL,F − 𝜀𝑚,𝑡

L D̅𝑚,𝑡
L  

𝜀𝑚,𝑡
L , 𝜀𝑚,𝑡

U ∈ [0, Γ𝑚,𝑡
CL ] 

(3.25) 

Uncertainties of RG generations are modeled by using an uncertainty set as described in (3.24), 

where P̅𝑟,𝑡
RG,L

 and P̅𝑟,𝑡
RG,U

 are respectively lower bounds and upper bounds of the renewable 

generation forecast value. 𝛾𝑟,𝑡
L  and 𝛾𝑟,𝑡

U  are respectively the deviation from lower and upper bound. 
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Values of P̅𝑟,𝑡
RG,L

 and P̅𝑟,𝑡
RG,U

 can be obtained from fothe recast or historical data. Γ𝑟,𝑡
RG  is the 

uncertainty budget that controls the conservativeness. Uncertainties of critical loads are modeled 

in a similar way as shown in (3.25). 

3.5.8 Profit Function 

The complete bidding model is formulated as follow:  

max min ∑ 𝜍𝑘

K

𝑘∈Θ
∑ (𝑝𝑘,𝑡

DS × 𝛼𝑘,𝑡
DS − 𝑝𝑘,𝑡

DB × 𝛼𝑘,𝑡
DB − 𝑓𝑘,𝑡

𝑂𝑃)
T

𝑡=1
 (3.26) 

s.t. (3.1)-(3.25)  

 𝑓𝑘,𝑚,𝑡
OP = ∑ 𝑓𝑘,𝑒,𝑡

DE

𝑒∈E𝑚
+ ∑ 𝑓𝑘,𝑔,𝑡

GEN

𝑔∈G𝑚
 (3.27) 

 𝑝𝑘,𝑡
DS = ∑ 𝑝𝑘,𝑚,𝑡

ES

𝑚=1
 (3.28) 

 𝑝𝑘,𝑡
DB = ∑ 𝑝𝑘,𝑚,𝑡

EB

𝑚=1
 (3.29) 

 𝑓𝑘,𝑡
OP = ∑ 𝑓𝑘,𝑚,𝑡

OP

𝑚=1
 (3.30) 

∀𝑘 ∈ Θ, 𝑡 ∈ T, 𝑚 ∈ M, 𝑗 ∈ M, 𝑔 ∈ G𝑚 , 𝑟 ∈ R𝑚, 𝑒 ∈ E𝑚 

(3.26) is the objective function that maximizes the expected total revenue from the day-ahead 

market, where 𝑝𝑘,𝑡
DS × 𝛼𝑘,𝑡

DS is the revenue from selling electricity, 𝑝𝑘,𝑡
DB × 𝛼𝑘,𝑡

DB is the revenue from 

purchasing electricity, 𝑓𝑘,𝑡
𝑂𝑃 is the total operation cost. Constraints (3.27) and (3.28) represents that 

the bid for each hour is the aggregation of all microgrids. (3.30) describes the total operation cost 

for each hour. 

3.6 Solution Methodology 

The bidding problem is originally formulated into a hard-to-solve mixed-integer nonlinear 

problem (MINLP). In this section, firstly a MILP counterpart of the bidding problem is derived. 
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Then the Dantzig-Wolfe decomposition algorithm is employed to solve this MILP counterpart in 

a semi-decentralized manner. 

3.6.1 MILP Counterpart of the Bidding Model 

1  Derive the Robust Counterpart 

Based on strong duality theory [93], by introducing dual and auxiliary variables, constraints 

corresponding to uncertain renewable generation (3.24) and demand (3.25) in the original revenue 

optimization model are reformulated: 

max ∑ 𝜍𝑘

K

𝑘∈Θ
∑ (𝑝𝑘,𝑡

DS × 𝛼𝑘,𝑡
DS − 𝑝𝑘,𝑡

DB × 𝛼𝑘,𝑡
DB − 𝑓𝑘,𝑡

𝑂𝑃)
T

𝑡=1
 (3.31) 

s.t. (3.1)-(3.23)&(3.27)-(3.30)  

 𝑝𝑟,𝑡
RG + 𝜆𝑟,𝑡

RGΓ𝑟,𝑡
RG + 𝜇𝑟,𝑡

RG − (P̅𝑟,𝑡
L + P𝑟,𝑡

U )/2 ≤ 0 (3.32) 

 𝜆𝑟,𝑡
RG + 𝜇𝑟,𝑡

RG + 𝜚𝑟,𝑡
RG × (P̅𝑟,𝑡

L + P𝑟,𝑡
U )/2 ≥ 0 (3.33) 

 𝑑𝑚,𝑡
CL + 𝜆𝑚,𝑡

CL Γ𝑚,𝑡
CL + 𝜇𝑚,𝑡

CL − (D̅𝑚,𝑡
L + D𝑚,𝑡

U )/2 ≤ 0 (3.34) 

 𝜆𝑚,𝑡
CL + 𝜇𝑚,𝑡

CL + 𝜚𝑚,𝑡
CL × (D̅𝑚,𝑡

L + D𝑚,𝑡
U )/2 ≥ 0 (3.35) 

 𝜚𝑚,𝑡
CL , 𝜚𝑟,𝑡

RG ≥ 1, 𝜆𝑚,𝑡
CL , 𝜇𝑚,𝑡

CL , 𝜆𝑟,𝑡
RG, 𝜇𝑟,𝑡

RG ≥ 0 (3.36) 

where, 𝜆𝑟,𝑡
RG, 𝜇𝑟,𝑡

RG are dual variables corresponding to constraints of renewable generation (3.24), 

𝜆𝑚,𝑡
CL , 𝜇𝑚,𝑡

CL  are variables corresponding to constraints of critical loads (3.25), 𝜚𝑟,𝑡
RG  and 𝜚𝑚,𝑡

CL  are 

auxiliary variables that facilitate linearizing relative constraints. Γ𝑟
RG ∈ [0,1] and Γ𝑚

CL ∈ [0,1] are 

the uncertainty budgets that control the conservativeness of the model. The larger Γ𝑟
RG/Γ𝑚

CL is, the 

more conservative the model will be. 

2  MILP Reformulations 

Let 𝑓𝑘,𝑡
DS and 𝑓𝑘,𝑡

DB respectively denote the revenue from supplying and purchasing electricity, 

where 𝑓𝑘,𝑡
DS = 𝑝𝑘,𝑡

DS × 𝛼𝑘,𝑡
DS , 𝑓𝑘,𝑡

DB = 𝑝𝑘,𝑡
DB × 𝛼𝑘,𝑡

DB . Let binary variables 𝑣𝑘,𝑠,𝑡
DS  and 𝑣𝑘,𝑙,𝑡

DB  respectively 

represent intersection points’ locations on the residual supply/demand bidding curve. If 𝑣𝑘,𝑠,𝑡
DS = 1, 
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it means that the supply offer curve intersects with the 𝑠th segment of the residual demand curve. 

Similarly, if 𝑣𝑘,𝑙,𝑡
DB = 1, it means that the demand bidding curve crosses the 𝑙th segment of the 

residual supply curve. The two nonlinear terms 𝑓𝑘,𝑡
DS and 𝑓𝑘,𝑡

DB can be linearized by introducing an 

auxiliary binary parameter ω𝑘,𝑠,𝑡
DS . ω𝑘,𝑠,𝑡

DS = 1 means that this segment is horizontal, while ω𝑘,𝑠,𝑡
DS =

0 means that this segment is vertical. As described in previous sections, for each hour, the cleared 

bidding quota 𝑝𝑘,𝑡
DS/𝑝𝑘,𝑡

DB  and the corresponding price 𝛼𝑘,𝑡
DS/𝛼𝑘,𝑡

DB  are determined by intersection 

points between the NMGs’ demand/supply bidding curves and the market residual supply/demand 

price-quota curves. When the intersection point locates on a vertical segment 𝑙 (𝑣𝑘,𝑠,𝑡
DS = 1, ω𝑘,𝑠,𝑡

DS =

0), follow relationships can be observed: 

𝑝𝑘,𝑡
DS = P𝑘,𝑠,𝑡

DS,min𝑣𝑘,𝑠,𝑡
DS = P𝑘,𝑠,𝑡

DS,max𝑣𝑘,𝑠,𝑡
DS  (3.37) 

𝛼𝑘,𝑡
DS = 𝑏𝑘,𝑠,𝑡

DS + α𝑘,𝑠,𝑡
DS,min𝑣𝑘,𝑠,𝑡

DS  (3.38) 

𝑓𝑘,𝑡
DS = 𝑏𝑘,s,𝑡

DS P𝑘,s,𝑡
DS,min + 𝑣𝑘,s,𝑡

DS α𝑘,s,𝑡
DS,minP𝑘,s,𝑡

DS,min
 (3.39) 

When the intersection point locates on a horizontal segment (𝑣𝑘,𝑠,𝑡
DS = 1, ω𝑘,𝑠,𝑡

DS = 1), follow 

relationships can be observed: 

𝛼𝑘,𝑡
DS = 𝛼𝑘,𝑠,𝑡

DS,min𝑣𝑘,𝑠,𝑡
DS = 𝛼𝑘,𝑠,𝑡

DS,max𝑣𝑘,𝑠,𝑡
DS  (3.40) 

𝑝𝑘,𝑡
DS = 𝑎𝑘,𝑠,𝑡

DS + P𝑘,𝑠,𝑡
DS,min𝑣𝑘,𝑠,𝑡

DS  (3.41) 

𝑓𝑘,𝑡
DS = 𝑎𝑘,𝑠,𝑡

DS α𝑘,𝑠,𝑡
DS,min + 𝑣𝑘,𝑠,𝑡

DS α𝑘,𝑠,𝑡
DS,minP𝑘,𝑠,𝑡

DS,min
 (3.42) 

In summary, 𝑓𝑘,𝑡
DS can be linearized as: 

𝑓𝑘,𝑡
DS = ∑ [(𝑏𝑘,𝑠,𝑡

DS P𝑘,𝑠,𝑡
DS,min + 𝑣𝑘,𝑠,𝑡

DS α𝑘,𝑠,𝑡
DS,minP𝑘,𝑠,𝑡

DS,min) × (1 − ω𝑘,s,𝑡
DS )] + [(𝑎𝑘,𝑙,𝑡

DS α𝑘,𝑠,𝑡
DS,min

𝑠

+ 𝑣𝑘,𝑠,𝑡
DS α𝑘,𝑠,𝑡

DS,minP𝑘,𝑠,𝑡
DS,min) × ω𝑘,𝑠,𝑡

DS ] 

(3.43) 

𝑝𝑘,𝑡
DS = ∑ (P𝑘,𝑠,𝑡

DS,min𝑣𝑘,𝑠,𝑡
DS + 𝑎𝑘,𝑠,𝑡

DS )
𝑠

 (3.44) 



 

48 

 

In addition, horizontal and vertical distances 𝑎𝑘,𝑠,𝑡
DS  and 𝑏𝑘,𝑠,𝑡

DS  between the intersection points and 

the endpoints of the segment are further limited by: 

0 ≤ 𝑎𝑘,𝑠,𝑡
DS ≤ 𝑣𝑘,𝑠,𝑡

DS (P𝑘,𝑠,𝑡
DS,max − P𝑘,𝑠,𝑡

DS,min) (3.45) 

0 ≤ 𝑏𝑘,𝑠,𝑡
DS ≤ 𝑣𝑘,𝑠,𝑡

DS (α𝑘,𝑠,𝑡
DS,max − α𝑘,𝑠,𝑡

DS,min) (3.46) 

It can be observed from (3.43) that, if there is no intersection between the supply offer curve 

and the market residual demand curve (𝑣𝑘,𝑠,𝑡
DS = 0), then 𝑓𝑘,𝑡

DS = 0. If the intersection point locates 

on a horizontal segment, then F𝑘,𝑡
DS is calculated by (3.39). If it locates on a vertical segment, then 

F𝑘,𝑡
DS is calculated using (3.42). 

Similarly, by introducing a binary parameter ω𝑘,𝑙,𝑡
DB , the revenue from purchasing electricity 𝑓𝑘,𝑡

DB 

can also be linearized as follow: 

𝑓𝑘,𝑡
DB = ∑ [(𝑏𝑘,𝑙,𝑡

DB P𝑘,𝑙,𝑡
DB,min + 𝑣𝑘,𝑙,𝑡

DB α𝑘,𝑙,𝑡
DB,minP𝑘,𝑙,𝑡

DB,min) × (1 − ω𝑘,𝑙,𝑡
DB )]

𝑙

+ [(𝑎𝑘,𝑙,𝑡
DB α𝑘,𝑙,𝑡

DB,min + 𝑣𝑘,𝑙,𝑡
DB α𝑘,𝑙,𝑡

DB,minP𝑘,𝑙,𝑡
DB,min) × ω𝑘,𝑙,𝑡

DB ] 

(3.47) 

𝑝𝑘,𝑡
DB = ∑ (P𝑘,𝑙,𝑡

DB,min𝑣𝑘,𝑙,𝑡
DB + 𝑎𝑘,𝑙,𝑡

DB )
𝑙

 (3.48) 

In addition, the horizontal and vertical distances between the intersection point and the 

endpoints of the intersected segment of residual supply price curves are further limited by: 

0 ≤ 𝑎𝑘,𝑙,𝑡
DB ≤ 𝑣𝑘,𝑙,𝑡

DB (P𝑘,𝑙,𝑡
DB,max − P𝑘,𝑙,𝑡

DB,min) (3.49) 

0 ≤ 𝑏𝑘,𝑙,𝑡
DB ≤ 𝑣𝑘,𝑙,𝑡

DB (α𝑘,𝑙,𝑡
DB,max − α𝑘,𝑙,𝑡

DB,min) (3.50) 

Moreover, it is enforced by (3.51) and (3.52) that only one intersection point is allowed for each 

hour in each scenario, which physically means that the NMGs entity is prohibited from supplying 

and purchasing electricity simultaneously within the same time slot. 

∑ 𝑣𝑘,𝑙,𝑡
DB

𝑙
= 1 − 𝜃𝑡 (3.51) 
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∑ 𝑣𝑘,𝑠,𝑡
DS

𝑠
= 𝜃𝑡 (3.52) 

After step 1&2, finally the MILP counterpart of the original model is presented conclusively as 

(3.53): 

max ∑ 𝜍𝑘

K

𝑘∈Θ
∑ (𝑓𝑘,𝑡

DS − 𝑓𝑘,𝑡
DB − 𝑓𝑘,𝑡

𝑂𝑃)
T

𝑡=1
 (3.53) 

s.t. (3.1)-(3.23)&(3.27)-(3.36)&(3.43)-(3.52)  

3.6.2 Dantzig-Wolfe Decomposition Method 

In this chapter, the Dantzig-Wolfe Decomposition algorithm (DWD) is employed to solve the 

MILP counterpart of the bidding problem in a semi-decentralized manner. DWD is an efficient 

algorithm for solving large-scale MIP & LP. The iteration process of DWD is illustrated in Figure 

3.3. 

 

Figure 3.3 Illustration of Dantzig-Wolfe decomposition method 

The DWD decomposes the MILP counterpart into a master problem (MP) and several pricing 

subproblems (SP). The MP subjects to the coupling constraints, including 

(3.20)&(3.22)&(3.23)&(3.27)-(3.30)&(3.43)-(3.52) and convexity constraints, and optimize 

public decision variables 𝑋𝑃 ≔[𝜃𝑡  𝑝𝑘,𝑚𝑗,𝑡
INT  𝑓𝑘,𝑚,𝑡

OP  𝑝𝑘,𝑚,𝑡
NET  𝑝𝑘,𝑚,𝑡

ES  𝑝𝑘,𝑚,𝑡
EB  𝑣𝑘,𝑙,𝑡

DB  𝑎𝑘,𝑙,𝑡
DB  𝑏𝑘,𝑙,𝑡

DB  𝑣𝑘,𝑠,𝑡
DS  𝑎𝑘,𝑠,𝑡

DS  

𝑏𝑘,𝑠,𝑡
DS ]. While the SP subjects to the independent constraints of each microgrid 𝑚, including (3.1)-
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(3.19)&(3.21)&(3.32)-(3.36), and optimize local decision variables 𝑋𝑚
L ≔  [𝑢𝑘,𝑔,𝑡

CG  𝑝𝑘,𝑔,𝑡
CG  𝑥𝑘,𝑒,𝑡

ESS  

𝑦𝑘,𝑒,𝑡
ESS  𝑝𝑘,𝑒,𝑡

Ch,ESS
 𝑝𝑘,𝑒,𝑡

Dis,ESS
 𝑐𝑘,𝑒,𝑡

ESS  𝑑𝑘,𝑚,𝑡
DL  𝑝𝑟,𝑡

RG  𝑑𝑚,𝑡
CL ]. In each iteration, the NCC solves the MP and 

announces the dual variables corresponding to each coupling constraint(𝜋, 𝜌𝑚) to each MLC, 

where while each MLC solves its corresponding pricing SP according to the received variables 

and returns generated columns 𝜛𝑚 to the MP, where integrality constraints can be enforced in this 

procedure. Optimum can be achieved by solving the MP and the SP iteratively. If the pricing SP 

does not return the columns with positive increase in the objective function, then the optimum is 

obtained. Details of the algorithm can be found in [94]–[96]. 

Privacy concerns of each microgrid can be eliminated by the DWD algorithm, as the NCC only 

has access to aggregated data or implicit non-physical-meaning data of each microgrid. In addition, 

advanced communication protocols have been proposed in some relevant studies to prevent the 

NCC from learning detail information of each MG [97]–[98]. 

3.7 Case Study 

3.7.1 Test System Setups 

The price-maker bidding model for NMGs developed in previous sections is used here to 

evaluate the potential net revenue of an NMGs cluster. The tested NMGs cluster is set up as shown 

in Table 3.1. This cluster consists of 9 fully-developed microgrids, which refers to the fact that 

each MG has the capability of operating in island mode at any time. Each MG has identical energy 

sources, including controllable generators, renewable generators, battery energy storage devices, 

critical loads and deferrable loads. Details of these energy sources are listed in Table 3.1. 

Table 3.1 Setups of individual microgrids 

  MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7 MG 8 MG 9 

CG 

P𝑔,max
CG  9 10 9 8 8 10 8 8 10 

P𝑔,min
CG  1 2 1 1 2 2 2 1 1 

R𝑔,max
CG,U

 7.5 8.5 7.5 6.5 6.5 8.5 6.5 6.5 8.5 

R𝑔,max
CG,D

 6.5 6.5 6.5 5.5 4.5 6.5 4.5 5.5 7.5 

𝜖𝑔
CG 13 12 14 13 14 13 14 14 11 
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ESS 

SOC𝑒,max
ESS

/ 

SOC𝑒,min
ESS  

0.9/0.

1 

0.9/0.

1 

0.95/0

.05 

0.9/0.

1 

0.9/0.

1 

0.9/0.

1 

0.95/0

.05 

0.9/0.

1 

0.9/0.

1 

C𝑒,max
ESS  6 7 6 5 7 6 7 7 6 

P𝑒,max
Ch,ESS

/ 

P𝑒,max
Dis,ESS

 
3 4 5 5 4 5 3 4 3 

𝜂𝑒,𝑐
ESS/ 

𝜂𝑒,𝑑
ESS 

0.95/0

.95 

0.95/0

.95 

0.9/0.

9 

0.85/0

.85 

0.95/0

.95 

0.95/0

.95 

0.9/0.

9 

0.85/0

.85 

0.95/0

.95 

𝑐𝑒,0
ESS 3 2 3 2 2 3 2 3 2 

𝜎𝑒
ESS 12 12 12 12 12 12 12 12 12 

DL 

D𝑚
DL 3 2 2 3 3 2 2 3 3 

D𝑚,max
DL /

D𝑚,min
DL  

0.8/0.

2 

0.9/0.

1 

0.9/0.

1 

0.9/0.

1 

0.8/0.

2 

0.9/0.

1 

0.9/0.

1 

0.9/0.

1 

0.8/0.

2 

T𝑚
S / 

T𝑚
E  

10/18 0/7 0/7 20/24 10/18 0/7 0/7 20/24 10/18 

RG P𝑟
RG,max

 4 5 3 4 4 5 3 4 4 

CL 
Peak 

load 
15 15 14 14 15 14 15 14 15 

In addition, there are multiple connection lines between individual microgrids, the 

interconnection status and corresponding transmission capacity are listed in Table 3.2. It should 

be noted that the diagonal elements refer to the transmission capacity between individual 

microgrids and the utility grid. 

Table 3.2 Capacity limits on transmission lines between individual MGs 

  MG1 MG2 MG3 MG4 MG5 MG6 MG7 MG8 MG9 

MG1 12 5 – – – – – – 6 

MG2 5 10 – 3 1 4 – – – 

MG3 – – 13 4 – – 0 2 – 

MG4 – 3 4 9 – – 4 – 4 

MG5 – 1 – 0 12 3 – 3 – 

MG6 – 4 – 0 3 10 1 3 – 
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MG7 – – – 4 – 1 10 – 3 

MG8 – – 2 – 3 3 – 12 3 

MG9 6 – – 4 – – 3 3 11 

In terms of the setups of uncertainty sources, those key parameters are set as Table 3.3. The 

central forecast values of renewable generation and critical load of individual MGs are both 

sampled according to the distribution of real measured data from the Alberta Electric System 

Operator (AESO).  

While in terms of the market residual supply/demand curves, since the bidding problem is 

solved on a rolling time horizon basis, for each hour scheduling day, market residual 

supply/demand curves at the same hour of the past 10 days are used as the scenarios. These curves 

are built using data from the public database in [60]. It should be noted that the residual 

supply/demand curves are transformed into stepwise curves with the same number of steps for 

brevity. 

Table 3.3 Setups of uncertainty parameters 

Name S L Θ 𝜍𝑘 Γ𝑟
RG Γ𝑚

CL 

Value 16 16 10 0.1 0.9 0.9 
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Figure 3.4 Scenarios of market residual supply/demand curves for the selected day 

The numerical simulations are implemented on a desktop with an Intel i7-6700K CPU @ 3.40 

GHz and 16.0 GB RAM memory. The market data is processed using MATLAB R2015b. The 

optimization model is implemented in GAMS 27.2.0. The CPLEX 12.8.0 is employed here as the 

solver. 
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3.7.2 Simulation Results 

 

Figure 3.5 Scheduled price-quantity offers/bids from hour 1 to hour 12 with the corresponding 
market residual supply/demand curves 

Firstly, the price-maker price-quantity curves for each hour of one selected scheduling day (Jan 

26, 2018) are shown in Figure 3.5 and Figure 3.6. The power quantity and the corresponding price 

quantity of each hour are cleared at the intersection points between the submitted price-quantity 

offers/bids curves and the market residual supply/demand curves.  



 

55 

 

 

Figure 3.6 Scheduled price-quantity offers/bids for hour 13 to hour 24 with the corresponding 

market residual supply/demand curves 

Next, the cleared price and power of price-taker bidding (PTB) strategy and price-maker 

bidding (PMB) strategy are compared. As shown in Figure 3.7, under the price-maker bidding 

strategy, the market price profiles become lower and smoother. However, when comparing the 

total net revenue obtained by the PMB and PTB, PMB ($ 25828.35) is higher than that of PTB 

($ 24299.77), this is because that more power is cleared under the price-maker bidding strategy. 
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Figure 3.7 Comparison between price-taker and price-maker bidding strategy for the scheduled 

day 

Finally, the monthly net revenue for the whole year 2018 is compared. Three different bidding 

strategies are considered here. The first one is the non-collaborative microgrids bidding strategy 

(NCMG), under which individual microgrids are not coordinated and do not have direct energy 

transactions with each other. Each microgrid participates solely in the pool based market as price-

takers. The second one is the price-taker bidding strategy for networked microgrids, the NMGs 

submit offers/bids without the price quantity and takes whatever the market-clearing prices are, 

and the third one is the price-maker bidding strategy that has been proposed in previous sections. 

It can be found that: (1), comparing with non-collaborative bidding strategies, collaborative 

bidding strategies (including PTB & PMB) between individual microgrids will lead to higher net 

revenue, this is because that collaborations between microgrids will result in higher utilization 

level of energy storage devices and renewable generations; (2), comparing PTB and PMB bidding 

strategies, it can be found that PMB strategies will lead to higher net revenue. There is about 10% 

increase in annual net revenue compared with PTB strategies. The reason should be that, price-
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maker bidding strategies create more potential intersection points in the market residual 

supply/demand curves, in addition, price-maker bidding strategies enable the NMGs to change the 

submitted power quantity as the market-clearing price changes. 

 

Figure 3.6 Monthly expected net revenue comparison between three different bidding 

strategies 

3.8 Conclusion 

This chapter presents a price-maker bidding model for NMGs in the day-ahead electricity 

market. This model aims at maximizing the NMGs’ revenue by determining supply and demand 

bidding curves for each hour of the next day while subjecting to physical constraints of individual 

energy sources, interconnection lines, and market rules. The original hard-to-solve MINLP bidding 

problem is reformulated into its easy-to-solve MILP counterpart. The NMGs are coordinated under 

a semi-decentralized framework to protect the privacy of each microgrid as well as enhance the 

scalability of the bidding model. On the solution algorithms, in order to protect the privacy of 
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individual microgrids, the Dantzig-Wolfe decomposition (DWD) method is applied to solve the 

MILP counterpart to optimum in a semi-decentralized manner. Case studies are carried out based 

on real-world data. Results show that the proposed price-maker bidding strategy outperforms the 

existing price-taker bidding strategies in terms of expected total net revenue. Sensitivity analysis 

is conducted to investigate the impacts of different parameters on the objective function. 
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4 Conclusion and Future Work 

4.1 Conclusions and Contributions 

Microgrids are small, yet complex systems. The key components of a microgrid, including 

generator, energy management system, energy storage, and demand. The application of microgrid 

involves studies on electrical, control, economic and other aspects. In this thesis, studies on the 

system level modeling of microgrids have been carried out. The optimal bidding model for 

microgrids that seeks for maximizing the total net revenue in the context of deregulated pool-based 

electricity market is studied. The purpose of this research is to provide technical support to 

microgrid development on system-level to make microgrids a viable solution to the general public. 

By promoting microgrids, people will become more open to microgrids. More research projects, 

practical applications, and investments can be attracted to contribute more to microgrids. The 

ultimate goal of this thesis is to fully excavate the potential of microgrids by tackling unsolved 

problems in the operation of microgrids. By providing solutions to such problem, not only the 

economic performances are improved, but also the negative environmental impact of human 

activities can be reduced.  

In this chapter, the contributions of this thesis are summarized as follow: 

 Microgrid system-level modeling and optimization. The key components of a microgrid 

are discussed and modeled in a computational trackable manner. In addition, the 

uncertainty sources in the system-level operation model are identified and mitigated using 

a hybrid stochastic-robust optimization framework, which can deliver robust and optimized 

solutions. 

 Price maker bidding strategy for NMGs. Individual price-taker microgrids are coordinated 

to a price-maker NMGs entity that submits aggregated bids to the market. The overall 

economic performance is improved as the total net revenue expectation is increased. In 

addition, there is also improvement in the energy utilization level of each microgrid in the 
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NMGs, because physically interconnected microgrids are allowed to share electricity with 

each other. 

 Coordination framework between individual microgrids. Considering that the ownership 

of individual microgrids may be different, the privacy concern becomes the major problem 

in the coordination framework. To obtain the global optimal while preserving each 

microgrid’s privacy at the maximal level, the Dantzig-Wolfe decomposition method is 

employed to solve the coordination problem in a semi-decentralized manner. Only limited 

amount of privacy data is needed by the network central coordinator. 

4.2 Future Work 

As mentioned in former sections, the ultimate goal of our research is to deliver sound solutions 

to promote the development of microgrids. The frameworks and models in this thesis can be further 

improved in many aspects. Some possible suggestions to carry out future enhancements are listed 

as follow: 

4.2.1 Real-Time Market Bidding Model 

The main focus of this thesis is on the day-ahead bidding problem for a price-maker NMGs 

entity in the market. However, given the fact that almost all of the deregulated electricity markets 

are two-settlement markets, operation schedules for the NMGs in the intra-day horizon still needs 

more research. 

4.2.2 Advanced Uncertainty Modeling Method 

More advanced, sophisticated, yet computational trackable uncertainty modeling methods are 

needed to model the uncertainties of renewable generation and demand. In addition, microgrids 

generally are multi-carrier energy systems, which may consist of heating, cooling, gas, electricity, 

etc. Uncertainty management methods in future research should also consider the uncertainties of 

other forms of energy  
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4.2.3 Other Collaborations Among NMGs 

Apart from providing energy service to the market, NMGs can also provide ancillary services 

to the market, including frequency regulation, voltage support, spinning and non-spinning reserve, 

and black start (system restoration), etc. By providing Microgrids’ assets can be successfully 

leveraged to provide these services, and the total net revenue can be further maximized. However, 

in the context of providing ancillary services to the utility grid, the coordination between individual 

microgrids requires a more computational efficient solution method that can provide decisions in 

real-time. 

4.2.4 Fair Porfit Allocation Method 

It has been observed that the maximization in the total net profit does not necessarily mean the 

net profit of individual microgrids is maximized. So in the future a fair profit allocation method is 

needed to maximize the net profit of individual MGs and the whole NMGs entity simultaneously. 
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